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Algebraic Approach for the Reconstruction of
Linear and Convolutional Error Correcting Codes

Johann Barbier, Guillaume Sicot, and Sébastien Houcke

Abstract— In this paper we present a generic approach for the
problem of the blind estimation of the parameters of linear and
convolutional error correcting codes. In a non-cooperative context,
an adversary has only access to the noised transmission he has
intercepted. The intercepter has no knowledge about the parameters
used by the legal users. So, before having acess to the information
he has first to blindly estimate the parameters of the error correcting
code of the communication. The presented approach has the main
advantage that the problem of reconstruction of such codes can
be expressed in a very simple way. This allows us to evaluate
theorical bounds on the complexity of the reconstruction process but
also bounds on the estimation rate. We show that some classical
reconstruction techniques are optimal and also explain why some of
them have theorical complexities greater than these experimentally
observed.

Keywords— Blind estimation parameters, error correcting codes,
non-cooperative context, reconstruction algorithm.

I. INTRODUCTION

IN all communication where the channel is noisy, the
use of an error correcting code is mandatory. This code

adds some redundant bits to the information to protect it
from noise. In a non-cooperative context, these additional
bits make the task of an adversary harder. Indeed, before
having an access to the information, the intercepter must
first locate the main information and the redundant bits and
then, correct the noise introduced by the channel. In such
a context, the adversary has only acces to the intercepted
noised communication with no knowledge of the parameters
of the error correcting code. So, he has to estimate blindly
these parameters in order to decode the information. Many
papers in cryptography provides techniques to cryptanalyse
ciphered texts, but authors always make the hypothesis they
have access to noiseless information with no extra bits. In
the practical context of communication interception, this
hypothesis does not hold. Surprisingly, only few papers deal
with the reconstruction of error correcting codes. Rice [11]
was the first one to present a technique to determine the
parameters of convolutional encoders of rate 1

n , then Filiol
generalized it [7], [6], [5] for all the rates and also for
punctured convolutional encoders. Barbier [1] introduced an
algebraic approach to greatly improve Filiol’s technique. He
also developped a method to reconstruct turbo-code encoders.
The binary linear codes have also been studied. Planquette
[10] adapted algorithms for finding codewords of small weight
[3], [8], [15] to estimate the parameters of binary linear
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codes. Then, Valembois [17], [16] approaches the problem
through the scope of statistical hypothesis tests and pointed
out optimal thresholds for these tests. He also introduced
a criterion based on the rank of a matrix composed of the
intercepted bits. He claimed the citerion is not sufficient and
propose to find codewords of small Hamming weight. Its
technique has been recently improved by Cluzeau [4]. Then
Burel [2] solved the problem for noiseless channels and Sicot
and Houcke [14], [12], [13] proposed to blindly estimate the
parameters using Gauss pivot for noisy channels.

In this paper, we propose a generic approach for
the estimation of binary linear and convolutional codes
parameters. This approach is based on linear algebra and
turns the problems of error correcting codes reconstruction
in a very simple way. This allows us to evaluate theorical
bounds on the complexity of reconstruction algorithms but
also bounds on the success rate of these algorithms. We also
show that the algorithms proposed by Sicot and Houcke [12],
Filiol [5] and Barbier [1] are optimal and explain why the
experimental results Filiol and Barbier obtained are better
than these they theoricaly claimed.

First, we will introduce the notations and translate the
reconstruction problem into algebraic equations. Then, we will
study the intrinsic probability of detecting the parity checks
when the estimated dimension of the code is the right one or
not. In the fourth section, we propose a compromise between
the detection probability and the false positive rate. In the last
section, we measure theorical detection probability bounds and
the complexity of resolving the problem of the reconstruction
of linear and convolutional error correcting codes. Finally, we
conclude showing the optimality of some techniques presented
above and explain why Filiol and Barbier observed better
experimental results than these they theoricaly proved.

II. THE ALGEBRAIC APPROACH

Let G be the generator matrix of the binary linear error
correcting code C, of rate ρ = k

n , we want to reconstruct.
The following technique also fits when the output of the
error correcting code is interleaved. In that case, we consider
G

′

= P × diag(G), where P is the permutation matrix of the

interleaver and diag(G) defined by

⎛
⎜⎝

G 0 0

0
. . . 0

0 0 G

⎞
⎟⎠.

Let us denote (yi)i=1...m the codewords generated during
the communication, and (ỹi)i=1...m the noised codewords
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intercepted by the adversary.

ỹj
i = yj

i + eij , ∀i = 1 . . . m, j = 1 . . . n, (1)

and eij = 1 with probability Pe and eij = 0 with probability
(1 − Pe). Pe is the error rate of the channel. Without loss of
generality we will consider m as constant and m � n. Let
H be the dual code of C, so that for all parity checks h ∈ H,
< h.yi >= 0 ∀i. Since recognizing the code C is equivalent
to estimate the dual code, we consider now the estimation of
H.

We define the m × n matrices H with the codewords by
[H]ij = yj

i and H̃ with the intercepted noised codewords by
[H̃]ij = ỹj

i . If E = [eij ] then H̃ = H + E.

First, we have to consider that the adversary is not
synchronized, i.e. the first intercepted bit is not necessary the
first of a noised codeword. We denote d the desynchronization
parameter, d ≤ n, and define the m × n matrices H(d) and
H̃(d) by [H(d)]ij = yj+d

i ∀i = 1 . . . m, j = 1 . . . n − d,
[H(d)]ij = yj−d

i+1 , ∀i = 1 . . . m, j = n − d + 1 . . . n, and
H̃(d) = H(d) + E(d).

Since the adversary has to blindly estimate the parameter
n, he will have to try all the possible values for n, na from
2 to n. For a tested value na, we build the m × na matrix
H̃(na, d) with the intercepted bits. As previously, H̃(na, d) =
H(na, d) + E(na, d). H̃(na, d) is split into two sub-matrices
H̃1(na, d) and H̃2(na, d), where H̃1(na, d) is a na square
matrix composed of the first na rows of H̃(na, d). We get
two equations,

H̃1(na, d) = H1(na, d) + E1, (2)

H̃2(na, d) = H2(na, d) + E2, (3)

where Ei = Ei(na, d). Moreover H = Ker(H1(n, αn)),
∀α ∈ N. So, the problem of binary error correcting codes
reconstruction is equivalent to determine Ker(H1(n, αn))
observing H̃1(na, d). The problem of the reconstruction of
convolutional codes [1], [5] and of turbocodes [1] can be ex-
pressed in the same way. In these cases, the H̃(na, d) matrices
are slightly different but always built from the intercepted bits.

III. OPTIMAL DETECTION OF THE PARITY CHECKS

To detect the parity check we will use the rank criterion
introduced by Valemebois [16] and mainly used by Burel [2],
Sicot and Houcke [12], Filiol [5] and Barbier [1]. It appears
that the rank of H1(na, d) does not behave in the same way
wether na = βn or not, where β is an integer.

A. Case na= βn

In the case na �= βn, no relation may exist between the
columns of H1(na, d), otherwise, the dimension of C would
be smaller than n. H1(na, d) and then H̃1(na, d) can be
considered as a random binary matrices.

Theorem 1: In the case of na �= βn,

Pr(rk(H̃1(na, d)) < na) = 1 −
na−1∏
i=0

(1 − 2i−na). (4)

Proof : straightforward application of the classical result [9]
(p. 455) : the probability that a k× l random binary matrix be
full rank is

l−1∏
i=0

(1 − 2i−k).

We denote P0
fa = Pr(rg(H̃1(na, d)) < na). This is the

probability to detect a relation between the columns of
H̃1(na, d) which is not a parity check of H1(na, d). We
deduce a corollary which bounds this probability

Corollary 1:

2−na(1 − 2−na) ≤ P0
fa ≤ (1 − 2−na). (5)

Proof : see appendix.
The probability P0

det to detect a real parity check is trivialy
negligible.

B. Case na = βn

The following theorem is the central theorem which gives
us a necessary and sufficient condition to detect a parity
check. Since this condition is necessary and sufficient,
computing the kernel of H̃1(na, d) is an optimal technique
for estimating the parameters of binary linear or convolutional
error correcting codes.

Theorem 2: Let h be a parity check, i.e. h ∈
Ker(H1(na, d)) then,

h ∈ Ker(H̃1(na, d)) if and only if

na∑
j=1

[E1]ijhj ≡ 0 mod 2 ∀j = 1 . . . na.

Proof : trivial.

Let h ∈ Ker(H1(na, d)) and Ch =
{Hi

1(na, d) ith column of H1(na, d) so as hi = 1}. The
previous theorem claims that h ∈ H̃1(na, d) if and only if
for all rows of H̃1(na, d), the number of noised bits counted
for the columns of Ch is even. We can deduce the following
theorem.

Theorem 3: Let h ∈ Ker(H1(na, d)), of Hamming weight
wh, then the probability that h is in Ker(H̃1(na, d)) is

Pr(h ∈ Ker(H̃1(na, d))|h ∈ Ker(H1(na, d)) =

„
1 + (1 − 2Pe)

wh

2

«na

.

(6)
Proof : let us define P1

det = Pr(h ∈ Ker(H̃1(na, d)|h ∈
Ker(H1(na, d)) . From theorem 2,

P1
det =

⎛
⎝�wh/2�∑

i=0

(
wh

2i

)
P 2i

e (1 − Pe)
wh−2i

⎞
⎠

na

.
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We have just to write

(1 − 2Pe)
wn =

whX
i=0

 
wh

i

!
(−1)i

P
i
e(1 − Pe)

wh−i
,

1 = ((1 − Pe) + Pe)
wh =

whX
i=0

 
wh

i

!
P

i
e(1 − Pe)

wh−i
,

„
1 + (1 − 2Pe)

wh

2

«na

=

0
@�wh/2�X

i=0

 
wh

2i

!
P

2i
e (1 − Pe)

wh−2i

1
A

na

Computing the kernel of H1(na, d) makes possible the de-
tection of a parity check h of Hamming weight wh with
probability P1

det. Moreover, from corollary 1, the probability
P1

fa to detect h
′

which is not a parity check is

P1
fa ≥ 2−na(1 − 2−na) ≈ 2−na .

C. Estimation of the Synchronization

In case of na �= βn, Ker(H1(na, d)) = {0} and so
Ker(H̃1(na, d)) = {0} with probability 1 − P0

fa for all d.
If na = βn and d �= αn, then Ker(H1(na, d)) ⊆
Ker(H1(na, αn)). Actually, parity checks of H1(na, αn)
which implie the last d columns of H1(na, αn) are not in
Ker(H1(na, d)). So the rank criterion

rk(H1(na, αn)) ≤ rk(H1(na, d)) ∀d �= αn, (7)

gives us a condition on the right synchronization parameter
dopt,

dopt = Argmind (rk(H1(n, d))) . (8)

To estimate dopt, we need first to introduce the l-randomized
rank for noised binary matrices. Let H̃(na, d), H̃1(na, d) be
two binary noised matrices as defined previously and l an
integer. We generate l matrices H̃i

1(na, d), for i = 1 . . . l,
by randomly mixing the m rows of H̃(na, d). Then, we
compute Al = span(Ker(H̃1

1 (na, d)), . . . ,Ker(H̃ l
1(na, d)))

and define the l-randomized rank of H̃1(na, d), noted
l-rrk(H̃1(na, d)) by

l-rrk(H̃1(na, d)) = na − dim(Al). (9)

l is considered as a parameter of the detection algorithm.
Because of theorem 2 and equation 7, we have

l-rrk(H̃1(na, αn)) ≤ l-rrk(H̃1(na, d)) ∀d �= αn, (10)

with high probability. So, we have adapted the rank criterion
to a randomized rank criterion. Then, the estimation of the
parameter dopt, d̃opt is defined by

d̃opt = Argmind

(
l-rrk(H̃1(n, d))

)
. (11)

Moreover, d̃opt

n is an estimation of dopt

n = n−(n−k)
n = k

n = ρ,
the rate of C.

D. The Detection Algorithm

Detection Algorithm

Input :(ỹi), the intercepted codewords and l, nmax parameters.

Output : H, the dual code of C which has generated the (ỹi),
its rate ρ and n.

1. H ←− ∅,
2. r ←− 1,
3. n, dopt ←− 0,
5. for na from 2 to nmax do
6. for d from 0 to nmax − 1 do
7. fill H̃(na, d) with (ỹi)

8. if l-rrk(H̃1(na, d)) < r then
9. r ←−l-rrk(H̃1(na, d)),
10. n ←− na,
11. dopt ←− d,
12. H ←− Al.
13. end if
14. end for
15. end for
16. if n == 0 then return ”fail”
17. else return H, dopt

n , n.

Since the generator matrix of C is full rank, the parity checks
are independent. So, to calibrate our algorithm we have to
focus on the hardiest parity check to detect, i.e. this which
has the greatest Hamming weight, wh. The probability that the
detection algorithm succeed in detecting all the parity checks
is P1

det. To have a high detection rate, the order of magnitude

of l should be choosen proportional to O
(

1
P1

det

)
.

IV. IMPROVING THE DETECTION ALGORITHM

Now, we use the H̃2(na, d) matrix in order to increase
the probability of parity checks detection. Let be h ∈
Ker(H1(na, d)) of Hamming weight wh and γ ∈ [0, 1]. Let
us note Wh the Hamming weight of H̃2(na, d) × h. Wh can
be considered as a random variable in [0,m − na]. Whether
h is in Ker(H1(na, d)) or not, Wh does not follow the same
probability law. Let us denote Pp = 1+(1−2Pe)wh

2 . With the
same reasoning we made for the proof of theorem 2, we easily
prove the following statement.
If h ∈ Ker(H1(na, d)),

Pr(Wh = x) =

(
m − na

x

)
P x

p (1 − Pp)
(m−x), (12)

otherwise,

Pr(Wh = x) = 2m−na

(
m − na

x

)
. (13)

If h ∈ Ker(H1(na, d)) then Wh follows a Binomial law of
parameter Pp otherwise it follows a Binomial law of parameter
1/2. One can so deduce the optimal threshold, γopt, for this
distinguisher in order to discriminate the two hypothesis H1

“h ∈ Ker(H1(na, d))” and H2 “h �∈ Ker(H1(na, d))”. The
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induced decision rule Rγ : one decides H1 if Wh ≤ (m−na)γ
and H2 otherwise.

We compute the detection and the false alarm probability,

P2
det = Pr(Wh ≤ (m − na)γ|H1),

=

�(m−na)γ�∑
i=0

(
m − na

i

)
P i

p(1 − Pp)
(m−na−i),

P2
fa = Pr(Wh ≤ (m − na)γ|H2),

= 2na−m

�(m−na)γ�∑
i=0

(
m − na

i

)
.

So, to improve our detection algorithm, we first compute a
Gauss elimination process onto H̃(na, d) and then, we apply
the decision rule Rγ to each vector of the new basis. This
strategy is clearly more efficient than applying Rγ only to
vectors of Ker(H̃1(na, d)).

As previously, we generate l matrices H̃i(na, d), for i =
1 . . . l, by randomly mixing the m rows of H̃(na, d). Then,
we compute a Gauss elimation process onto each H̃i(na, d)
and obtain l new basis, Bi, for i = 1 . . . l. Let us define
Si ⊂ Bi by the set of the vectors of Bi which are detected
by the decision rule Rγ and Sl = span(

⋃
i=1..l S

i). The
new detection algorithm is exactly the same as in section
III-D, but the refined l-randomized rank of H̃(na, d), noted
l-rrk(H̃(na, d)) is defined by

l-rrk(H̃(na, d)) = na − dim(Sl). (14)

V. THEORICAL COMPLEXITY

Let h be the parity check of greatest Hamming weight, wh.
We will now evaluate the complexity of the entire process.
We consider that the probability to detect a parity check when
na �= βn as negligible. When the parity check h is detected by
the improved algorithm, the detection probability of the entire
process, Pdet is better than P1

det.P
2
det and in the same way

Pfa is bounded by
∑n

na=2 na.P2
fa(na). Noting z = 1 − 2Pe

which only depends on the channel,

Pdet ≥

�(m−n)γ�∑
i=0

(
m − n

i

)
P (z)n+i (1 − P (z))

(m−n−i)
,

(15)
where P (z) = 1+zwh

2 . Moreover the false alarm probability is
bounded by

Pfa ≤ n.2n−m

�(m−n)γ�∑
i=0

(
m − n

i

)
. (16)

Let (hi) the (n−k) parity checks of Hamming weight of (wi)
with ∀i, j so as i < j, wi < wj and wn−k = wh. Trivialy, if
(Pi

det) is the probability to detect hi then

∀i, j so as i < j then, Pj
det ≤ Pi

det.

Parity checks are detected independently, so we have to choose
γ which minimizes the probability that h is not detected, which

is γopt =

Argminγ

0
@1 −

�(m−n)β�X
i=0

 
m − n

i

!“
2n−m − P

i
p(1 − Pp)(m−n−i)

”1A .

(17)
To detect all the parity checks, we need an average of 1

Pdet

distinct matrices H̃(n, d). This gives us a criterion on the
minimal number of bits to intercept, mmin. mmin must verify(

n

mmin

)
≤

1

Pdet
. (18)

We blindly estimate n and d, so at most n2

2 trials are needed.
For each trial we compute 1

Pdet
iterations. For each iteration,

we compute a Gauss elimination process onto H̃(na, d), in
time O(m.n2

a), and na decision rules in time O(na.m), that
is

O

(
m.

n∑
i=0

i

2
(i2 + i)

1

Pdet

)
= O

(
m.n4

4.Pdet

)
.

VI. CONCLUSION

In this paper we have proposed a generic algebraic approach
to unify different techniques for blindly estimating the parame-
ters of binary linear and convolutional encoders. The general
problem of reconstructing such error correcting codes appears
to be expressed in a very simple way. The theorem 2 gives us
an optimality condition to estimate the dual code. Computing
the kernel of H(na, d) is one optimal method to reconstruct
the dual code. Sicot and Houcke [12] have proposed such a
method computing the kernels using a Gauss elimination, so
as Filiol [5] and Barbier [1] for the convolutional codes. But
Filiol and Barbier obtained experimental results better than
their theorical ones since they made the hypothesis that no
error must appear in the entire matrix H̃1(na, d), whereas
theorem 2 gives us a lighter condition on the error. Moreover,
this approach points out theorical bounds on the complexity
and on the detection probabilities of reconstruction algorithms.
Our futur work will be to generalize this approach to soft
decision channels in order to design heuristics for selecting
good rows for H̃1(na, d), i.e. for which the probabilty of being
under the application condition of theorem 2 is the highest.

APPENDIX

To prove corollary 1, we first prove the following proposi-
tion.

Proposition 1: The property P (n)

1 −
n−1∑
i=0

2i−M ≤
n−1∏
i=0

(1 − 2i−M ),

and

n−1∏
i=0

(1 − 2i−M ) ≤ 1 −
n−1∑
i=0

⎛
⎝2i−M −

n−1∑
j=i+1

2i−M2j−M

⎞
⎠ ,

is true for all n ≥ 1.
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Proof : we will reason by induction. Let us denote

un =
n−1∏
i=0

(1 − 2i−M ),

vn = 1 −
n−1∑
i=0

2i−M ,

wn = 1 −
n−1∑
i=0

⎛
⎝2i−M −

n−1∑
j=0

2i−M2j−M

⎞
⎠ ,

= 1 −
n−1∑
i=0

2i−M

⎛
⎝1 −

n−1∑
j=i+1

2j−M

⎞
⎠ .

Since v1 = u1 = w1 = 1 − 2−M , (P1) is true.

Assuming (Pn) is true. First, we compute

wn+1 − wn = 1 −
n∑

i=0

2i−M

⎛
⎝1 −

n∑
j=i+1

2j−M

⎞
⎠− wn,

= −
n−1∑
i=0

2i−M

⎛
⎝1 −

n−1∑
j=i+1

2j−M − 2n−M

⎞
⎠

+1 − 2n−M − wn,

= 2n−M
n−1∑
i=0

2i−M − 2n−M + 1

−
n−1∑
i=0

2i−M

⎛
⎝1 −

n−1∑
j=i+1

2j−M

⎞
⎠− wn,

= 2n−M

(
n−1∑
i=0

2i−M − 1

)
�

We can now compute an upper bound for un+1,

un+1 = (1 − 2n−M )un ≤ (1 − 2n−M )wn

≤ wn − 2n−M

⎛
⎝1 −

n−1∑
i=0

2i−M

⎛
⎝1 −

n−1∑
j=i+1

2j−M

⎞
⎠
⎞
⎠ ,

≤ wn − 2n−M + 2n−M
n−1∑
i=0

2i−M

⎛
⎝1 −

n−1∑
j=i+1

2j−M

⎞
⎠ ,

≤ wn + 2n−M

(
n−1∑
i=0

2i−M − 1

)

−2n−M
n−1∑
i=0

2i−M
n−1∑

j=i+1

2j−M ,

≤ wn+1 − 2n−M
n−1∑
i=0

2i−M
n−1∑

j=i+1

2j−M ,

≤ wn+1 �

The lower for un+1 is obtained in the same way,

un+1 = (1 − 2n−M )un ≥ (1 − 2n−M )vn

≥ (1 − 2n−M )

(
1 −

n−1∑
i=0

2i−M

)
,

≥ 1 −

(
n−1∑
i=0

2i−M + 2n−M

)
+ 2n−M

n−1∑
i=0

2i−M ,

≥ vn+1 + 2n−M
n−1∑
i=0

2i−M ,

≥ vn+1 �

Finally, Pn+1 is true and so (Pn) for all n ≥ 1 �

Now, we can prove corollary 1.

1 − una
≤

na−1∑
i=0

2i−M = 2−M (2na − 1) and

1 − una
≥

na−1∑
i=0

⎛
⎝2i−M −

na−1∑
j=i+1

2i−M2j−M

⎞
⎠ ,

≥ 2−M
na−1∑
i=0

2i − 2−2M
na−1∑
i=0

2i
na−1∑
j=i+1

2j ,

≥ 2−M (2na − 1) − 2−2M
na−1∑
i=0

2i
na−1∑
j=0

2j ,

≥ 2−M (2na − 1) −
(
2−M (2na − 1)

)2
.

For M = na we obtain corollary 1 �
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