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The atmosphere harbours a vast diversity of primary biological aerosols (PBAs)
that are subjected to vertical and horizontal dispersal mechanisms that are not
fully understood. In addition to size and weight constraints on PBAs to be lifted
into the air column, local meteorological features dominate the fate of bioaerosols
and their possible inclusion in long‐range transport. For organic particles to be
included into long distant dispersal, they have to overcome surface vertical mixing
of the planetary boundary layer (PBL) to reach levels of laminar air movement.
Hence, the biogeography of PBAs along a vertical distribution through the PBL
needed further study. To assess the microbial biodiversity along an altitudinal gra-
dient, air samples were collected between 1,000 and 3,100 m above sea level at
Mount Sonnblick in the Austrian Alps. 16S rRNA gene and internal transcribed
spacer sequencing for bacteria and fungi, respectively, were used to define distinct
microbial communities that were separated by the PBL. Up to the top of the PBL,
plant‐associated bacteria and fungi were detected and were subjected to limited
vertical dispersal due to size‐constraints. This indicates that those communities
become aerosolised but were not lifted into higher altitudes. However, a variety
of ubiquitous, thermophilic strains that are often identified with heavy dust events
and high endurance towards extreme conditions were significantly increased (rela-
tive abundance) at higher elevations. The lack of information on vertical dispersal
is due to reliance on ground‐based investigations that bias the interpretation of
dispersal dynamics. Thus, to understand the mechanisms for near‐ground commu-
nities to become airborne and subsequently included in long‐range transport, we
recommend investigating meteorological driving forces for an improved biogeo-
graphical assessment. Here, we show, for the first time, an assessment of the bio-
geography of bacterial and fungal assemblages along a vertical alpine air column
transect.
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1 | INTRODUCTION

The atmosphere consists of gases, liquids and particulate matter (i.e., aerosols) that participate in physico‐geochemical
interactions that are not completely understood (Menon et al., 2007). Aerosols exert a net cooling effect on the atmo-
sphere (Boucher et al., 2013) and act as condensation and ice nuclei in clouds. Thus, they play a crucial role in meteo-
rological features like cloud formation, precipitation, radiative forcing and latent heating (Ramanathan et al., 2001).
Billions of tons of aerosols move globally (Griffin, 2007) and their density is typically below 2 g/cm³ (Rissler et al.,
2014). The residence time in the atmosphere depends on their size and travel mode (i.e., particle‐attached vs. free) and
weather conditions. This time can vary from several hours to a few weeks (Smith et al., 2011). Between 15% and 75%
of the global aerosol volume consists of primary biological aerosols (PBAs; Graham et al., 2003). The aerodynamic
properties of bioaerosols keep them suspended for many hours up to days in turbulent air, and facilitate their global
transport (Burrows, Butler, et al., 2009; Prospero et al., 2005). Primary biological aerosols are defined as DNA‐contain-
ing particles composed of bacteria, viruses, pollen, fungal spores, algal and lichen propagules, and plant parts, and are
found either attached to an inorganic particle, in aggregates, or free in the troposphere and the stratosphere (Burrows,
Butler, et al., 2009; Burrows, Elbert, et al., 2009; Fröhlich‐Nowoisky et al., 2012; Jaenicke et al., 2007; Jones & Har-
rison, 2004). Despite their quantitative importance and the occurrence of signature events that demonstrate global PBA
movement, bioaerosols are rarely considered in aerosol surveys and ecosystem flow path estimates (Carotenuto et al.,
2017; Goldstein & Galbally, 2007; Jimenez et al., 2009).

Long‐term transport is also often associated with dust storms that keep bioaerosols in the atmosphere for long periods of
time, and can lead to travel over long distances (Smith et al., 2010). Primary biological aerosols associated with Sahara dust
storm events have been identified in regions as diverse as the European Alps and the Amazon. Several studies demon-
strated a locally significantly enhanced occurrence of desert sand associated genera (Chuvochina et al., 2011; Hervàs et al.,
2009; Peter et al., 2014; Weil et al., 2017).

For global long‐range transport, PBAs have to overcome surface vertical mixing of the planetary boundary layer (PBL)
to reach levels of laminar air movement. The presence of airborne organisms in the air column has been established since
Lindbergh collected cultivable organisms from an airplane (Meier & Lindbergh, 1935). Organisms have been isolated from
as high as 77 km (Imshenetsky et al., 1978). Simultaneous airplane samples at 690, 1,000 and 3,127 m above sea level
(m asl) demonstrated a general pattern of decreasing numbers of cultivable microbes with increasing altitude and low abun-
dances of so called “micropopulations” in an inversion layer (Fulton, 1966). Many studies have investigated composition,
abundance and variability of PBAs across a variety of ecosystems (Bowers et al., 2011; Cuthbertson et al., 2017; Griffin
et al., 2010; Harding et al., 2011; Joung et al., 2017; Pearce et al., 2010). However, these studies rely on ground‐based
sampling that is often restricted to one sampling site. Thus, little information exists about the dynamics that select the
microorganisms that transit the PBL to reach the free troposphere (Womack et al., 2010). These processes might depend on
emission sources of microorganisms, meteorological conditions such as precipitation, wind and humidity (Burrows, Butler,
et al., 2009; Jones & Harrison, 2004; Joung et al., 2017), lifestyle, as has been demonstrated for fungi (Pickersgill et al.,
2017), and vertical mixing of the atmosphere. We expected that the vertical distributions of bacteria and fungi would not
be similarly affected due to differences in their size and lifestyle.

To evaluate the behaviour of bacterial and fungal distribution with elevation and understand their potential to transit the
PBL, air samples were collected from a vertical air column at five elevations between 1,000 and 3,100 m asl profile and
four sampling times, using both ground‐based and cable‐car‐based sampling. Samples were collected at a remote mountain
site in Austria (around the Sonnblick Observatory, 3,106 m asl) that features free troposphere conditions year round. To
our knowledge, this is the first assessment comparing below and above PBL composition of bacterial and fungal airborne
communities along an alpine vertical transect.

2 | MATERIAL AND METHODS

2.1 | Study site

Samples were collected from a roofless cable car descending from Mount Sonnblick (3,106 m asl), Austria (47°3′14″N,
12°57′27″E, Figure 1). This location is operated as a meteorological observatory and is a member of the Global Atmo-
sphere Watch consortium of the World Meteorological Organisation (WMO). The site is exhaust neutral, supplied by elec-
tricity from the valley and equipped with an elevated air outlet to enable undisturbed air measurements. The vegetation in
the valley consists of high alpine forest and shrubs that are dominated by pine (Pinus cembra, Pinus mugo, Pinus silvestris)
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and spruce (Picea abies, Picea montana). The closest settlement is the village Rauris, which is 15 km away. The area
within a 100 km perimeter of the Sonnblick Observatory is sparsely populated.

2.2 | Air sampling

Air samples were taken on 5 May 2017 between 12:00 and 17:00, on 5 August 2017 between 8:00 and 12:00, on 1
December 2017 between 8:00 and 16:00 and on 23 February 2018 between 12:00 and 17:00 on a descent at 3,106, 2,500,
2,000, 1,500 and 1,000 m asl using a liquid impinger (Coriolis μ, Bertin) at a flow volume of 300 L/min into separate ster-
ile vials filled with 15 ml 0.2 μm filtered, distilled water (Table 1). Before each sampling for sequencing, one run was
taken as decontamination purging at each site. The 2,500 and 2,000 m samples were taken out of an open cable car
descending eastwards into the Rauris valley (Austria, County Salzburg), the 1,500 and 1,000 m samples, were taken at
1.5 m above ground using a precision tripod (Bosch; see Figure 1b for sampling setup). A sample of 3 m3 of air was taken
for all samples except that taken at 3,106 m asl, where 6 m3 was taken by pooling two temporally close samples of 3 m3

each (Figure 2, Table 1) to account for assumed lower cell density in higher elevations. During the February sampling, no
samples were taken at 2,500 and 2,000 m due to heavy winds that prohibited the cable car from stopping. Additional sam-
ples of air at 3,106 m asl were taken on each sampling day to obtain a more balanced dataset for above–below PBL com-
parison (see Figure 2, Table 1).

2.3 | DNA extraction and sequencing

The air samples, collected in 15 ml solution of sterile distilled water, were filtered through a 0.2 μm polycarbonate filter
(47 mm, Isopore). DNA was extracted from the filters using a DNeasy Power Water extraction kit (Qiagen) following the
protocol provided with the kit. Amplification, library prep and sequencing were done by the Environmental Microbial
Genomics group at the Laboratoire Ampère (ECL Lyon, University of Lyon, France). Community diversity was targeted:

(a) (b)

FIGURE 1 (a) Location of Mount Sonnblick in Austria; (b) sampling design, not to scale.

TABLE 1 Sampling elevations, sampling times and respective PBL levels above ground level (m AGL) and above sea level (m asl). Each
indicated sample time represents one 3 m3 air sample; samples with two sample times indicated consist of two pooled 3 m3 samples.

Month
Sample elevation
(m asl) 1,000 m 1,500 m 2,000 m 2,500 m 3,000 m

3,000 m
2nd sample

May
5 May 2017

m AGL – – – 1,092 242/206 234/692

m asl – – – 2,592 1,742/1,706 1,734/2,192

Time 17:27 15:53 15:01 14:19 00:00/00:51 8:32/9:28

August
5 August 2017

m AGL 1,339 1,274 1,432 1,293 299/583 940/874

m asl 2,839 2,774 2,932 2,793 1,799/2,083 2,440/2,374

Time 12:00 13:10 10:36 9:54 8:40/8:53 14:48/14:59

November
1 December 2017a

m AGL 229 804 736 575 – –
m asl 1,729 2,304 2,236 2,075 – –
Time 15:21 13:40 12:39 11:53 – –

February
23 February 2018

m AGL 253 168 – – 347/360 200/337

m asl 1,753 1,668 – – 1,847/1,860 1,700/1,837

Time 17:02 15:14 No sample No sample 7:24/8:04 11:06/11:42

aThe November sample was taken on 1 December but belongs to a larger dataset timeseries taken at the end of November.
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the V3–V4 region of the bacterial 16S rRNA SSU gene was amplified using 338F/518R primers and the fungal internal
transcribed spacer (ITS) regions were amplified with primer pair ITS2–ITS4.

Raw sequences were stored at NCBI BioProject database under Project ID PRJNA491625 (https://www.ncbi.nlm.nih.
gov/sra/PRJNA491625).

2.4 | Bioinformatics

Forward and reverse reads were merged using vsearch (Rognes et al., 2016). Sequences were quality filtered and assembled
in QIIME pipeline (Caporaso et al., 2010). Chimeras were removed using UCHIME (Edgar et al., 2011) with closed refer-
ence and a de novo approach. OTUs (operational taxonomic units) were assembled at 97% similarity using vsearch cluster-
ing algorithm at default settings (Rognes et al., 2016) and blasted against the SILVA 132 database (Glöckner et al., 2017;
Yilmaz et al., 2014) for bacteria, and the UNITE 7.2 database (Kõljalg et al., 2013) for fungi. Singletons were removed.
Negative control OTUs from the kit and the sampling liquid were subtracted for all samples (see Supporting Information
for sequence statistics, removed blank genera and rarefaction curves; Figures S1, S4, S5 and Tables S1, S13, S14). Statisti-
cal analyses were done in R (R Core Team, 2015) using the phyloseq (McMurdie & Holmes, 2013), vegan (Oksanen et al.,
2018) and ggplot (Wickham, 2009) packages. Multiple sequence alignment for bacterial and fungal phylogeny was calcu-
lated with clustalo (Sievers et al., 2011); the obtained tree was rooted in OTU_1 for each dataset. There were 1,046 bacte-
rial and 905 fungal OTUs present, which accounted for 834 bacterial and 600 fungal OTUs after removal of blanks. Fungal
OTUs were merged into genus level (i.e., 304 genera) for all analyses apart from alpha diversity, to account for species
length polymorphisms in fungal ITS regions below genus level (Gomes et al., 2002).

The dataset was run rarefied and untreated, which did not show differences in statistical analyses but removed many rare
OTUs. To include otherwise removed OTUs, data analysis was presented for non‐filtered, relative abundance data to pre-
sent the data characteristics appropriately (Weiss et al., 2017). Unweighted unifrac distance for bacteria and fungi were cal-
culated on datasets normalised to relative abundance (according to Weiss et al., 2017) and ordinated with non‐metric
multidimensional scaling (NMDS). SIMPER analysis was conducted in vegan. Indicator species analysis was conducted
using labdsv (Roberts, 2016) and indicspecies (De Cáceres et al., 2010) packages identifying indicator genera and classes.
Pairwise PERMANOVA was conducted using the package “pairwiseAdonis” (Martinez Arbizu, 2017); Bonferroni p‐value
correction was applied as default for multiple corrections. Statistical parameters of ANOSIM, ADONIS, Wilcoxon, Krus-
kal–Wallis and PERMANOVA analysis are reported in the Supporting Information (Tables S2, S3 and S8).

2.5 | Microbial enumeration

To estimate the abundance of bacteria and fungi, both 16S rRNA genes (primer 338F/518R; Øvreås & Torsvik, 1998) and
18S rRNA genes (primer set FR1/FF390; Chemidlin Prévost‐Bouré et al., 2011) were quantified by quantitative polymerase
chain reaction (qPCR) using Quantifast 2× SYBRGreen dye (Qiagen). Non‐template controls were subtracted.

FIGURE 2 (a) Ceilometer backscatter profile of particle density and (b) height of boundary layer and time and height of respective samples.
Two temporally close samples above the planetary boundary layer were pooled to obtain higher cell density; for ceilometer backscatter
calculation and interpretation, see explanation in the Supporting Information, section 8.3.
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The abundance was normalised for pressure differences between sites applying the barometric height equation (hydro-
static basic equation), assuming calibration of the sampling device for air density of 1.2 kg/m3 at sea level (based on per-
sonal discussion with representatives of Bertin Technologies):

ρ ¼ p "M
R " T (1)

where ρ is the specific density of air, M is the mean molar mass of atmospheric gases (0.02898 kg/mol), R is the universal
gas constant (8.314 J kg−1 K−1), T is the absolute temperature (K) derived for each respective elevation from linear regres-
sion of the temperature at sampling time at 3,106 and 1,500 m asl, and p is the pressure (Pa) derived for each respective
elevation calculated from linear regression of pressure during sampling time at 3,106 and 1,500 m asl (Supporting Informa-
tion Tables S9 and S10).

2.6 | Meteorology

An aerosol backscatter profile from VAISALA CL51 ceilometer located at Kolm‐Saigurn (the base of Mount Sonnblick at
1,500 m asl) and PBL heights were obtained from ZAMG (Zentralanstalt für Meteorologie und Geodynamik, Vienna). The
mixing layer heights were calculated according to Lotteraner and Piringer (2016; see Supporting Information for informa-
tion on calculation Chapter 8.3, Table S12). The Lagrangian model FLEXPART (Stohl et al., 2002) was used in backward
mode to detect the most probable source regions for microorganisms which may have been transported with long‐range air
flows. The model output fields depict the regions with high source‐receptor sensitivity due to the prevailing three‐dimen-
sional flow fields predicted by the ECMWF model. Mixing layer height calculation and FLEXPART backward calculation
are further described in the supplementary information Chapter 8.2, Figure S3. Meteorological data were obtained from
Sonnblick Observatory and Kolm‐Saigurn cable car station (3,106 and 1,500 m asl sample point, see Supporting Informa-
tion). Time of sampling and respective mixing layer heights are summarised in Table 1.

In total, 21 samples were analysed, comprising 84 m³ of air. Thirteen samples were taken below the PBL containing
39 m³ of air; eight samples were analysed from above the PBL containing 45 m³ of air.

3 | RESULTS

3.1 | Meteorology

The air masses reaching Mount Sonnblick on 5 May 2017 originated from the Atlantic, the Mediterranean and north‐
eastern Europe; air masses arriving on 5 August 2017 originated from northern Africa, the Mediterranean and the
Atlantic; air masses arriving on 1 December 2017 originated above Scandinavia, the northern Atlantic and central Eur-
ope; and on 23 February 2018 the air originated from eastern Europe, northern Africa and the Mediterranean (see Sup-
porting Information Figure S3).

The mean air temperatures during sampling ranged between −5.7°C (February) and 16.5°C (August) in Kolm‐Saigurn, and
between −13.0°C (November) and 8.5°C (August) at Mount Sonnblick Observatory. The highest wind speeds were reached in
February, with 9.5 m/s on Mount Sonnblick and 2.0 m/s in Kolm‐Saigurn, during a Foehn event. There was no precipitation
during sampling. Wind was prevailing from the southern sector for all sampling dates, with more from the south‐east in Kolm‐
Saigurn and more from the south‐west on Mount Sonnblick (compare Supporting Information Table S11).

The ceilometer profiles show distinct seasonal patterns for boundary layer development (see Figure 2a). For May, the
calculation revealed prevailing mixing up to a height of around 680–1,200 m above ground level (AGL; 2,180–2,700 m
asl) during the sampling time. After sunset, which occurred at 15:30 on 5 May in the valley, convective mixing within the
boundary layer ceased. The aerosol accumulations within the remaining nocturnal residual layer only dissolved gradually
and a nocturnal mixing layer built up within the lower few hundred metres above the valley floor and prevented ground
emissions reaching higher elevations. The nocturnal mixing layer height could not be identified from the ceilometer profile
in May due to the low aerosol content. August showed a typical rapid summer mixing, that was driven by thermic energy,
and almost reached the summit of Mount Sonnblick.

In November, due to very cold temperatures and little light, a detectable mixing layer was formed from 260 to
820 m AGL, 1,760–2,320 m asl during sampling between 10:00 and 17:00. However, mixing was supposedly weak at
low temperatures, as can also be seen for February, when a stable layer located around 170–330 m AGL, 1,670–1,830
m asl during sampling prevailed the whole day.
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3.2 | Alpha diversity

There were 834 bacterial and 600 fungal OTUs after the blanks were removed in the dataset. The lowest and highest num-
ber of bacterial OTUs were observed in August below the PBL (12 at 2,000 m, 260 at 2,500 m).

The bacterial diversity had a larger range below the PBL with a non‐significantly higher Chao1 mean (i.e., richness,
Wilcoxon p = 0.21) and non‐significantly lower means of Shannon (i.e., evenness, Wilcoxon p = 0.7) and Simpson (i.e.,
coverage, Wilcoxon p = 0.55) indices (Figure 3a). When separated by seasons, the bacterial evenness (Shannon) was
higher above the PBL for May and August, with the highest and lowest values in August and higher below the PBL for
November and January (Supporting Information Figure S2, Figure 3a). Chao1 richness was lowest above the PBL in
November, and highest below the PBL in August. The lowest observed number of OTUs were found in May above the
PBL (1 OTU at 3,000 m) and the highest observed OTUs were found in August below the PBL (169 OTUs at 2,500 m,
see Supporting Information Figure S2).

For fungi, the Chao1 measure had a significantly higher range and mean below the PBL (Wilcoxon p = 0.037) (Figure
3b). When split by season, this is explained by high richness in May and August, with the highest value in August, and
very low Chao1 in November and February with the lowest value in February. Shannon (Wilcoxon p = 0.037) and Simp-
son (Wilcoxon p = 0.064) indices displayed a wide range above the PBL, with higher mean below the PBL. When split by
season, the August sample displayed almost the same evenness at a high level above and below the PBL, showing the
highest value for August below the PBL. For May and November the evenness was clearly higher below the PBL, but only
slightly higher in February, with the lowest value above the PBL in November.

3.3 | 16S rRNA gene and 18S rRNA gene copy numbers

Bacterial abundance did not show significant differences above and below the PBL (Figure 4), whereas the abundance of
18S rRNA genes was significantly higher below the boundary layer (Wilcoxon p = 0.03) and the ratio of bacteria to fungi
was significantly higher above the PBL (Wilcoxon p = 0.03). The abundance varied significantly between each sampling

FIGURE 3 Alpha diversity Chao1, Shannon and Simpson indices for (a) bacteria and (b) fungi on operational taxonomic units level
comparing above and below planetary boundary layer levels; blanks were removed.

FIGURE 4 Abundance per cubic metre of air of (a) 16S rRNA genes, (b) 18S rRNA genes and (c) the ratio of 16S:18S genes for above
and below boundary layer samples for each sampling season.
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date for bacteria (Kruskal–Wallis p = 0.039) and the 16S–18S ratio (Kruskal–Wallis p = 0.016), but not for fungi (Krus-
kal–Wallis p = 0.17).

The lowest number of bacteria was found in the 1,500 m November sample (1.2 × 104 bacteria/m3), and for fungi in
May at 3,000 m (8.6 × 10−1 fungi/m3). The highest abundance of bacteria occurred in May at 3,000 m (1.2 × 107 bacteria/
m3) and the highest fungal density in August at 1,000 m (2.5 × 104 fungi/m3).

The ratio of bacteria to fungi was highest in May at 2,500 m (8.6 × 04 16S per 18S) and lowest in November at
1,500 m (5.5 16S per 18S), with the biggest difference above and below the PBL in August and the smallest difference in
November at 1,500 m.

3.4 | Beta diversity

Ordination by PBL (Figure 5a) for bacteria displayed a higher phylogenetic proximity above the boundary layer than below
the PBL, since they were significantly different (ADONIS p = 0.014). Fungi show comparable phylogenetic spread above
and below the PBL and no significant difference between the groups (ADONIS p = 0.231). When plotted by season (Fig-
ure 5b), fungi displayed a more pronounced seasonality, but bacteria and fungi were both significantly different between
the seasons (both ADONIS p = 0.001) with a significant interaction effect of season and PBL (bacteria ADONIS
p = 0.019, fungi ADONIS p = 0.011). However, when tested separately for each season – above vs. below PBL differ-
ences – no significant differences could be detected between bacteria and fungi, although some tendencies were apparent,
for example, they both had the lowest p‐value for May (ADONIS bacteria p = 0.067, fungi p = 0.13) and the highest for
August (ADONIS bacteria p = 0.8, fungi p = 0.4). Pairwise PERMANOVA for season comparison found the highest dif-
ferences for bacteria for August–November (p adjusted = 0.012), February–August (p adjusted = 0.018) and May–August

FIGURE 5 Unweighted unifrac of bacteria and fungi of (a) the total dataset by planetary boundary layer (PBL); (b) by season and PBL.
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(p adjusted = 0.030), and for fungi for May–November (p adjusted = 0.012), May–August (p adjusted = 0.018), February–
August (p adjusted = 0.024) and August–November (p adjusted = 0.024).

3.5 | What is driving the differences?

Samples collected below the PBL showed high relative abundances of Gammaproteobacteria (mean relative abundance
29.8%), Alphaproteobacteria (mean 24.4%) and Oxyphotobacteria (mean 11.7%), while Bacilli (mean 25.2%) were dominant
in most samples collected above the PBL (Figure 6). Fungal diversity was dominated by Agaricomycetes (mean below
PBL 52.2%, mean above 42.8%), and further Leotiomycetes (mean 7.2%), Eurotiomycetes (mean 5.9%) and Doth-
ideomycetes (mean 4.6%) were abundant in samples collected below the PBL (Figure 6). Above the PBL, Sordariomycetes
(mean 14.9%), Saccharomycetes (mean 8.9%) and Microbotryomycetes (mean 13.7%) showed high relative abundances.

3.6 | SIMPER analysis

SIMPER analysis (vegan package) calculates the average contribution of each species to the average overall Bray‐Curtis
dissimilarity between groups. Gammaproteobacteria, Bacilli, Alphaproteobacteria, Oxyphotobacteria and Actinobacteria
were identified as the five bacterial classes contributing most to dissimilarity above and below the PBL, accounting for
62.27% cumulative contribution. On a genus level, below PBL air community differences were due to Paraburkholderia
(12.1%), Nevskia (5.0%), Wolbachia (5.0%), Mesorhizobium (2.9%), Acinetobacter (2.8%), uncultured Chlorophyta (2.4%)
and Pseudomonas (2.2%). Above the PBL, community differences were due to Bacillus (8.6%), Geobacillus (9.6%),

FIGURE 6 Bar charts displaying the relative abundance of the most abundant (a) bacterial phyla and (b) fungal classes above and below the
planetary boundary layer (PBL); heat map displaying relative abundance above and below the PBL for (c) bacterial and (d) fungal classes seen
more than three times in 20% of the samples, bray‐clustering of samples.
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Acidiphilum (3.2%) and Paenibacillus (2.7%) and accounted together for 40.3% of the cumulative contribution to dissimilar-
ity above and below the PBL (percentages are average relative abundances in the group of higher abundance; see Support-
ing Information for additional information; Tables S6 and S7).

Basidiomycota were more abundant below the PBL (mean 65.5% vs. 60.0% above), whereas Ascomycota were more
abundant above the PBL (mean 39.3% vs. 30.4% below). Below the PBL, the difference was driven by the classes of
Agaricomycetes (54.2% vs. 42.8% above the PBL), Leotiomycetes, Eurotiomycetes, Wallemiomycetes and Doth-
ideomycetes. Above the PBL, the classes Sordariomycetes, Microbotryomycetes, Saccharomycetes and Tremellomycetes
drove the difference; together these classes accounted for 90.3% cumulative contribution to the dissimilarity (percentages
are average relative abundances in the group of higher abundance; see Supporting Information for additional information).

At genus level, above the PBL, Formitopsis (10.5%), Phanerochaete (13.7%), Rhodotorula (9.1%), Stereum (4.8%), Sac-
charomyces (7.0%), Sporobolomyces (4.6%) and Filobasidium (3.2%) showed the biggest impact. Below the PBL, the gen-
era Wallemia (4.6%), Pseudoclitocybe (4.6%) and Aspergillus (3.7%) showed the biggest differences and accounted for
53.9% of dissimilarity among groups.

3.7 | Indicator genera and classes

Indicator species analyses (combination of results from packages labdsv [indval] and indicspecies [multipatt]) calculating
significance based on fidelity, frequency and relative abundance identified Geobacillus (p = 0.008), Planifilum (p = 0.041)
and SM1A02 (p = 0.039) as bacterial indicator genera of the community above the PBL. On a class level, Planctomyetacia,
Bacilli and Acidobacteria were identified as above PBL indicator classes, and Gammaproteobacteria and Alphaproteobacte-
ria as below PBL indicator classes. The genera Pedobacter (p = 0.049) and Acinetobacter (p = 0.033) were identified as
below PBL bacterial indicator genera.

For fungi, no indicator genus for above the PBL could be identified. In air below the PBL, the genus Mycena (p = 0.047)
and the class Dothideomycetes (p = 0.012) were identified as indicators (see Supporting Information Tables S4 and S5).

The unique genera accounted for 11.3% of all found bacterial genera above the PBL and 60.7% below the PBL, and
4.9% and 64.8% for fungi respectively (see Figure 7).

4 | DISCUSSION

4.1 | Air movements and PBL dynamics on an alpine slope

Boundary layer dynamics are more complex in hilly and mountainous terrain compared with flat terrain and are still not
well understood (Wekker & Kossmann, 2015) because plain‐to‐mountain and mountain‐venting air flows, fast changing val-
ley winds, and up‐ and down‐slope winds are occurring (Rotach et al., 2015). Mountains passively affect momentum
exchange between surface and atmosphere by their barrier function and are actively involved in thermal and radiative heat
exchange by interaction with diurnal heating and cooling (Wekker & Kossmann, 2015; Zardi & Whiteman, 2013). Small‐
scale vegetation changes and seasonally variable land cover also influence air movements. During snow cover, down‐slope
wind systems occur due to snow sublimation that creates a cold layer directly above the surface. During snow‐free time
periods, canopy reflections of solar radiation form a layer of warm air above and induce up‐slope air movements (Rotach
et al., 2015).

FIGURE 7 Venn diagram of common and unique bacterial and fungal genera.

ELS ET AL. | 9 of 20



During winter, a more stable stratification forms, and thus, the mountain site likely did not have a big disturbing influ-
ence. However, the February sampling was characterised by the highest wind speeds, as a Foehn system was occurring
from the south, and presumably affected mixing. During the sampling periods with higher thermal dynamics (May,
August), stronger air mixing and movement was likely.

Sloped terrain in general facilitates air mass exchange with the free troposphere (Kossmann et al., 1998), thus the overall
mixing of air masses and therefore of bioaerosols would presumably be higher in the mountains than over flat terrain.
Despite presumed stronger mixing, differences between above and below PBL bioaerosol communities were still observed.

4.2 | Vertical abundance and bacteria to fungi ratio

While the bacterial richness, evenness and coverage were significantly different above and below the PBL for fungi, this
was not the case for bacteria. Pronounced differences in bacterial and fungal community structure collected below and
above the PBL elevations probably resulted from different dispersal patterns for bacteria and fungi across the PBL. Fungal
patterns were more sporadic than the bacterial distributions, with higher abundances below the PBL. However, for 16S
rRNA gene copy numbers, equal or higher abundances were observed above the PBL. Bacterial abundances estimated by
fluorescence microscopy from filtered air ranged from 2.0 × 104/m3 air in the Austrian Alps (Bauer et al., 2002) to 104–
105/m3 air in temperate regions (Burrows, Elbert, et al., 2009). We and others used qPCR to measure bacterial numbers
from air filters. Greenland air was reported to have 6.8 × 103/m3 16S copies (Šantl‐Temkiv et al., 2018). In this study, val-
ues ranged up to 1.17 × 107/m3 for 16S rRNA gene copies in the May sample. The other values fell in the described
range.

The high number obtained here might be due to the high plant productivity in May, and therefore inclusion of eukary-
otic organisms containing bacterial DNA, for example, Oxyphotobacteria comprising plant chloroplasts or endoparasitic
Wolbachia (order Ricksettsiales, class Alphaproteobacteria). The phyllosphere contains 2.1 × 105 bacteria/cm² plant surface
on average (Redford et al., 2010) and as one of the largest microbial habitats on earth, exceeds 108 per km² globally (Lin-
dow & Brandl, 2003). Plant surfaces are highly productive emission sources of bioaerosols (Bowers et al., 2011; Šantl‐
Temkiv et al., 2018). This high emission potential is reduced by the size and weight of plant parts, and is a disadvantage
for aerodynamic horizontal and especially vertical dispersal.

The observation of increasing bacteria numbers with increasing elevation can be skewed by the presence of atmospheric
conditions such as air currents or transport of uplifted sediments that promote the numbers at a given elevation. For exam-
ple, desert sand clouds were found to provide higher than expected abundances (Maki et al., 2017). These abundances ran-
ged from a low of 102 up to 105 bacteria‐like particles per m−3 air in sand clouds at 2,500 m asl. Since 16S rRNA gene
copy numbers vary between different microorganisms (Větrovský & Baldrian, 2013), these numbers should be interpreted
as relative differences and not absolute numbers.

Fungal abundances in air and cloud water generally show higher variation than bacteria due to their lifestyle‐dependent
dispersal and occurrence (Amato et al., 2007; Pickersgill et al., 2017). Plants are considered to be the biggest source of fun-
gal spores to the air (Burge, 2002). The 18S rRNA qPCR enumeration showed a general decrease in fungi above the PBL,
but with strong seasonal fluctuations that had the biggest difference in February, which might be due to the impact of
Foehn events and higher values above the PBL in November. Fungal density, based on fluorescence microscopy, accounts
for 103–104 cells/m³ air globally (Elbert et al., 2007) and 2.7 × 102 cells/m3 air in the Austrian Alps (Bauer et al., 2002).
As a maximum, we observed over 2.53 × 104 18S rRNA gene copies/m3 in air samples from 1,000 m in August.

Vegetation likely played a big role in the release of fungal spores below the PBL, since the indicator genera and classes
identified below the PBL were strongly associated with plant and soil habitats. However, higher fungal abundances below
the PBL might also be related to the higher presence of non‐fungal eukaryotic phyla in the air at the lower elevations that
are also targeted by this primer set. Chemidlin Prévost‐Bouré et al. (2011) demonstrated a 50% hit rate for non‐fungal
eukaryotic phyla for the primer set used here, but also the best overall performance for fungal enumeration. The signifi-
cantly lower abundance of fungi observed at higher elevations would reduce estimates based on global fungal model extrap-
olations that use ground measurements (Elbert et al., 2007; Hoose et al., 2010).

The ratio of bacteria to fungi in the air increased significantly above the PBL. Fungi are approximately 10 times as large
as bacteria and range from 2 to 200 μm in length (mainly around 5–30 μm). Their size and weight makes their dispersal
into high altitudes more difficult than bacteria (Smith et al., 2011). Moreover, non‐spore‐forming fungi might be less com-
mon in higher altitudes where UV radiation is greater and increases cell death (Smith et al., 2011). This radiation sensitivity
and the size‐dependent dispersal might explain the significant decrease of fungi at higher elevations. Hence, dispersal limi-
tation, independent of selection, can be an important process in forming fungal biogeographic patterns (Adams et al.,
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2013). The high number of fungi above the PBL in August might be linked to strong thermally driven vertical mixing at
higher temperatures together with higher altitude of the PBL and a higher level of fungal spores in the air. Bacteria showed
the highest difference above and below the PBL in November. With higher numbers above the PBL, the separation might
be due to a more stable layering of the PBL at lower temperatures and the formation of an inversion layer leading to an
accumulation above the PBL. In November, the air masses travelled over central Europe before reaching the sampling
point, similar to their pathway in May, when comparable high numbers above the PBL were measured.

4.3 | Main tendencies in above and below PBL communities and seasonal influence

Statistical significance for the temporal effect was greater than that for the distinction between above vs. below PBL com-
munities for bacteria and fungi. The pronounced seasonality could be explained by the strongly differing air mass origins
for the four sampling dates (see Supporting Information Figure S3). Different land cover at the site might also explain these
differences. Within most seasonal groups, separation between the above and below PBL groups was identifiable, but the
sample size was likely too small to observe significant differences at our p‐value cut‐off.

While the bacterial richness, evenness and coverage were significantly different above and below the PBL for fungi, this
was not the case for bacteria. However, the significant difference of above and below PBL bacteria for the whole dataset
implied specific selection modes for certain bacterial genera, whereas the fungi did not follow this pattern.

In the case of metabolic capability despite hostile conditions, this might also imply a more pronounced presence for
some of the better adapted genera in the free troposphere, but also less frequent dispersal of fungi above the PBL. This
was supported in part by the lower bacteria to fungi abundance ratio above the PBL in addition to lower quantities of
unique fungal genera (14.0% unique above the PBL) compared with bacteria (28.9% unique genera above the PBL; see Fig-
ure 7).

4.4 | What drives the differences?

SIMPER analysis identified the plant and soil associated Gammaproteobacteria (genera Nevskia, Paraburkholderia, Acineto-
bacter, Pseudomonas), Alphaproteobacteria (genera Wolbachia, Acidiphilium) and chloroplast‐containing Oxyphotobacteria
(genus uncultured Chlorophyta) as the most abundant and different bacterial classes below the PBL. This is in contrast to
spore‐forming, potentially highly resistant, ubiquitous and often pathogenic Bacilli (genera Bacillus, Geobacillus, Paeni-
bacillus) together with the phyla Acidobacteria and Planctomycetes were abundant above the PBL. While these classes
were present overall in the vertical profile, the difference above and below the PBL was most prominent for Bacilli (25%
above compared with 8% below the PBL).

The driving bacterial classes identified here were repeatedly found in other bioaerosol studies; Bacilli and Cyanobacteria
were repeatedly identified with dust storms and long‐range troposopheric transport, while Alpha‐, Beta‐ and Gammapro-
teobacteria as well as Actinobacteria often characterised non‐dust below the PBL air (Jeon et al., 2011; Maki et al., 2017;
Smith et al., 2010, 2011, 2012, 2018). Some species of Bacilli are frequently detected in connection with dust events, and
hence long‐distance transport, and are seen as characteristic of Saharan and Chad desert sand events (Favet et al., 2013;
Smith et al., 2010, 2012).

Spore‐forming Bacilli are particularly resistant to cold, heat, radiation and chemicals (Setlow, 2006). The Bacilli
(Firmicutes) are considered among the most resistant bacterial genera on Earth (Driks & Eichenberger, 2016). Their capa-
bility to protect themselves by forming spores helps them stay viable under extreme, even extra‐terrestrial, conditions
(Nicholson et al., 2000).

Firmicutes and Bacilli are frequently found in air samples collected during Arctic and Antarctic campaigns (Bottos et al.,
2014; Cuthbertson et al., 2017). Bacillus was repeatedly isolated from clean rooms and environmental air (Bottone, 2010;
Seiler et al., 2013; Vaishampayan et al., 2010).

In general, heavy dust events, increasing deforestation, and periods of desiccation will provide a more pronounced
source of bioaerosols being dispersed into the atmosphere, where they will undergo long‐range transport. This issue
becomes relevant with the dispersal of pathogens that could be deposited after becoming airborne.

Samples from below the PBL were dominated by Agaricomycetes (genera Formitopsis, Pseudoclitocybe, Stereum), a
mushroom‐forming class with a wood‐rotting, decaying, pathogenic and mutualistic lifestyle (Hibbett et al., 2014; Prasher,
2015). Plant‐associated Leotiomycetes, saprobic Eurotiomycetes (genus Aspergillus), Wallemiomycetes (genus Wallemia)
and endo‐ and epiphytic Dothideomycetes, which can also be expressed in a lichenicolous mode or completely (Hane et al.,
2007; Hernández‐Restrepo et al., 2017; Nelsen et al., 2011; Tan et al., 2012), were also found below the PBL.
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Above the PBL, Agaricomycetes were also abundant (genera Formitopsis, Phanerochaete, Stereum) together with plant
pathogenic, endophytic Sordariomycetes (Hongsanan et al., 2017), yeast spores forming Saccharomycetes (genus Saccha-
romyces; Mortimer, 2000) and Microbotryomycetes (genera Rhodotorula, Sporobolomyces; Kurtzman et al., 2011)
increased in occurrence. Yeast are resistant to various environmental stresses like heat and cold shocks, chemicals and even
animal digestion (Coluccio et al., 2008).

4.5 | Indicator genera and classes

The three identified indicator genera (Geobacillus, SM1A02, Planifilum) and two indicator classes (Acidobacteria, Plancto-
mycetes) of air above the PBL share properties such as thermostability adaptation, high resistance to diverse environmental
stresses, and spore‐forming capability. They have repeatedly been found in bioaerosol studies and a broad variety of other
environments. Spore‐forming microbes can survive for long periods in resting state and withstand extreme conditions like
radiation, temperature extremes and desiccation (Saffary et al., 2002). Hence, they provide the best prerequisite to remain
viable in this environment.

Acidobacteria, which is globally widespread in diverse habitats (Kielak et al., 2016), and generalistic, cell‐comparted
and archaea‐related Planctomycetes, which feature anammox pathways (Fuerst & Sagulenko, 2011), were identified as indi-
cator classes above the PBL.

Geobacillus is a spore‐forming, gram‐positive obligate thermophilic, facultative anaerobe bacterium with a growth range
between 35 and 80°C (Marchant et al., 2008), most frequently isolated from hot springs (Canakci et al., 2007; Pinzón‐Mar-
tínez et al., 2010) and geothermal vents (Kimura et al., 2003; Maugeri et al., 2001). However, Geobacillus has also been
found in high abundances in a wide range of geographical and ecological environments, such as cold seafloor sediment
(Bartholomew & Paik, 1966), Arctic soils (Marchant et al., 2002; Rahman et al., 2004), the upper troposphere (DeLeon‐
Rodriguez et al., 2013), the Bolivian Andes at 3,653 m asl (Marchant et al., 2002) and compost air (Le Goff et al., 2010),
as well as clean rooms for space craft assembly (Mahnert et al., 2015). Zeigler (2014) attributes the ubiquitous occurrence
of Geobacillus to so‐called bridges in the sky, that is, airborne dispersal.

Uncultured SM1A02 (phylum Planctomycetes) was first retrieved from Mammoth hot spring, Yellowstone National Park,
USA (Fouke et al., 2003) and then found in diverse aquatic habitats such as lake water driven plug‐flow bioreactors (Rie-
mann & Søndergaard, 2004), bio‐cathode denitrifying biofilms (Ding et al., 2018) and lake algal blooms (Yang et al.,
2017). It was also sequenced in DNA extracted from Antarctic dry valley soil (Moodley, 2004). It was further identified as
characteristic for epiphytic freshwater communities with hypothesised metabolic functions including hydrolytic capability
(Ivanova et al., 2018), metabolism of complex compounds (van Kessel et al., 2011), anammox‐pathways (Chu et al., 2015)
and high ozone resistance (Tian et al., 2017),

Planifilum (family Thermoactinomycetaceae), a thermophilic, spore‐forming, filamentous, gram‐positive, facultative
anaerobe Bacilli genus was found in hot springs (Zhang et al., 2007), compost (Han et al., 2013; Hatayama et al., 2005)
and sludge compost (Yu et al., 2015). Planifilum is present in a range of bioaerosol studies from pharmaceutical indoor air
(Park et al., 2014) and dominated other phylotypes in thermophilic composting bioaerosols (Le Goff et al., 2010; Wéry,
2014). It also occurred with high viable abundances in a controlled clean room for space craft assembly (Mahnert et al.,
2015), which indicated its adaption to harsh environments.

At first sight, the identification of three thermophilic genera as indicators for adaption in the free troposphere seems para-
doxal. Why are they so frequent and abundant in an environment where their activity is most likely hampered? Thermophiles
need to be cold‐shock adapted when exposed to a mesothermal environment (Baraúna et al., 2017; Cavicchioli et al., 2002 in
Gerday & Glansdorff, 2009). Adaptions to cold might derive by evolution from adaptions to hot conditions (Russo et al.,
2010). Cold‐adapted bacteria often feature heat resistance as well (Cloutier et al., 1992; Hébraud & Potier, 1999). This sug-
gests, that those microbes are indeed an easy subject of transport but are not necessarily metabolically active.

The longevity and resistance of spores coupled with global atmospheric dissemination could lead to an accumulation of
these organisms and thus to the observation of certain extremophilic genera in diverse habitats (Zeigler, 2014). This is con-
sistent with our observation of a higher relative abundance of the spore‐forming Bacilli class above the PBL. Marchant et
al. (2008) suggest that thermophilic bacillus ubiquity in cool temperate soils was continuously replenished by long‐range
transport and rainwater input of highly robust spore‐forming bacilli, rather than from the growth of these genera. Andersson
et al. (1995) characterised a range of thermophilic bacilli as dominant genera in urban air.

Pedobacter and Acinetobacter were identified as indicator genera associated with ground and vegetation emissions and
as main bioaerosol community members below the PBL. Pedobacter, which had mainly been identified in soil and freshwa-
ter environments (Dahal & Kim, 2016; Gallego et al., 2006; Hwang et al., 2006; Kook et al., 2014; Roh et al., 2008; Yoon
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et al., 2006), was also detected in an Antarctic ice shelf microbial mat (Bottos et al., 2008), an alpine cryoconite (Margesin
et al., 2003) and a Himalayan glacier fore field (Shivaji et al., 2005). Epiphytic Acinetobacter can act as a plant‐growth‐
promoting or mould‐regulating bacteria, but is also known as a multi‐resistant hospital pathogen (Bergogne‐Bérézin &
Towner, 1996; Sachdev et al., 2011; Trotel‐Aziz et al., 2008; Tsavkelova et al., 2004). It was frequently found in Arctic air
samples taken close to surface (Cuthbertson et al., 2017).

Saprophytic mycena (Guo et al., 1997) and plant pathogenic Dothideomycetes (Hane et al., 2007) were identified as fun-
gal below PBL indicator genus and class, suggesting ground‐based emission.

5 | CONCLUSIONS

One of the paradigms of the bioaerosol community is whether PBAs represent a specific airborne microbial community or
are randomly collected from different sources for atmospheric transport (Gandolfi et al., 2013). Insight into PBA dispersal
is restricted by mainly ground‐based aerobiology studies.

We have shown that bioaerosol occurrences below the boundary layer do not represent PBA abundance and composition
of the free troposphere, despite the air mass mixing effect induced by a mountain location.

Fungal spores reached the free troposphere in significantly lower numbers than bacteria, and exhibited a much higher
seasonality in abundance and diversity. Among the increasing number of studies investigating aerobiology, only a few pro-
vide insights into fungal community distributions (Adams et al., 2014). The genera residing in the free troposphere in high
abundances were dominated by globally omnipresent thermophilic, resistant, spore‐forming Bacilli, generalistic Plancto-
mycetes and yeast formers.

The observed pattern could be either the result of physical filtering related to particle size and density occurring at the
limit of the PBL or through the selection of genera with specific resistance properties allowing them to survive in the free
troposphere. The results obtained here suggest that emissions from ground sources aerosolise microorganism into the PBL,
but in order to be selected for the free troposphere, genera need eco‐physiological traits that allow them to stay intact.

Once in the free troposphere, global dissemination of these organisms is facilitated, and this could explain their abundant
presence in habitats in which they have not been reported to grow, due to incompatible conditions. Hence, they are subject
to transport but might not be eminent for metabolic activity rates.

Certain genera could be more likely to undergo long‐distance transport than others and the genera identified here are
consistent with other studies for a “long‐range air transport microbiome.”

Further investigations of vertical PBA dispersal in connection with boundary layer dynamics as the driving selection
forces are necessary in order to comprehensively assess the biogeography of microbial airborne communities.
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