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Abstract: As an important degradation model for monotonic degradation processes, the inverse Gaussian (IG) 

process model has attracted a lot of attention. To characterize random effects among test samples, the traditional IG 

process model usually assumes a normal distributed degradation rate. However, the degradation rates in some 

applications may manifest some asymmetric and non-normal behaviors, such as the GaAs laser degradation data. 

Therefore, we propose an extended inverse Gaussian (EIG) process model by incorporating skew-normal random 

effects, and derive its analytical lifetime distribution. Furthermore, considering that available studies about IG process 

models are limited on the aspect of measurement errors, parameter estimation methods for the proposed degradation 

model are developed for two scenarios, i.e., the maximum likelihood estimations (MLEs) for perfect measurements, 

and an extended Monte Carlo (MC) integration algorithm for the MLEs for perturbed measurements. Then a 

simulation study is adopted to show the effectiveness of the proposed MLEs, and two illustrative examples of GaAs 

laser degradation and fatigue crack growth are provided to illustrate the advantages of the proposed EIG process 

model, i.e., the improvement in degradation data fitting performance and lifetime evaluation accuracy by 

incorporating skew-normal random effects and measurement errors. 

Key words: Extended inverse Gaussian process model; Skew-normal random effects; Measurement errors; the MLE 

method; Extended MC integration algorithm. 

1 Introduction 

Recently, longevity and high-reliability characteristics have become increasingly important for many systems, 

which will certainly enhance the difficulty of generating enough failure data in limited-duration reliability tests, and 
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therefore pose challenges to reliability estimation by traditional lifetime-based methods. In these circumstances, 

degradation analysis has been proposed as an alternative approach to reliability assessment, with the advantages of 

requiring smaller sample sizes and shorter test durations [1]. A lot of studies have contributed to the development and 

extension of degradation models, which can be referred to in the recent review papers in [2] and [3]. 

Because of the necessity to capture stochastic dynamics in degradation phenomena, modelling approaches based 

stochastic processes have developed as a preferred and promising option for degradation analysis. And, in particular, 

the Wiener process, the Gamma process and the inverse Gaussian (IG) process are three popular classes of stochastic 

degradation processes for continuous degradation phenomena modelling. Thanks to its mathematical tractability, the 

Wiener process has been under extensive studies and has been applied to many non-monotonical degradation 

processes [4,5]. For monotonic and gradual degradation processes like crack growth, the Gamma process is an 

alternative and appropriate model [6,7]. 

However, the Gamma process does not work well for all monotonic degradation processes. For the GaAs laser 

degradation data in [1], Wang and Xu showed the poor fitting effects of Wiener and Gamma processes, and proposed 

an inverse Gaussian (IG) process model with better fitting results [8]. Since then, the IG process has become an 

important supplement to the stochastic degradation processes toolbox. Ye and Chen illustrated the physical 

interpretation of the IG process, as well as its inverse relation with the Wiener process [9]. Further researches on the 

IG process model include accelerated degradation planning [10], condition-based replacement and inspection policy 

optimization[11], remaining useful life estimation [12], bivariate degradation analysis [13,14], reliability analysis for 

multicomponent systems under dynamic environments [15] and reliability modelling with random initial degradation 

[16]. Particularly, Guo et al. considered that the degradation increments depend on the current degradation state, and 

proposed an improved IG process[17]. To account for model uncertainty during monotonic degradation modeling, 

Liu et al. developed a Bayesian averaging method for the inverse Gaussian process and the Gamma process [18]. 

Besides, many studies have been devoted to degradation modelling approaches based on the IG process from a 

Bayesian perspective [19–23]. 

Generally, the heterogeneity among test samples leads to unit-to-unit variability in degradation paths, and this 

calls for the development of degradation models with random effects [24]. A traditional way to incorporate random 

effects in the model is to assume some normal distributed model parameters, which can be seen in [25–27], 

respectively for the Wiener process, the Gamma process and the IG process. However, this assumption may not be 

appropriate in all applications. In fact, the traditional normal distribution is symmetric, but the degradation rates in 
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some applications may manifest asymmetry and non-normal behaviors [28,29]. The skew-normal distribution, 

including the normal distribution as a special case, has been proven appropriate for many applications with 

asymmetric behaviors [30–32], and is recently recommended to model the random effects in degradation processes 

[33]. Peng and Tseng analyzed the previously mentioned GaAs laser degradation data, and indicated that the skew-

normal distribution fits the random effects better than the normal distribution [34]. Skew-normal random effects have 

been also incorporated to develop the generalized Wiener process model[35], the adaptive skew-Wiener process 

model [36] and the nonlinear skew-Wiener degradation model [29]. 

Besides random effects, measurement errors constitute another source of variability contributing to the 

uncertainty of degradation processes, and pose a great challenge to model parameter estimation. Confronted with this 

issue, a common assumption is to consider the measurement error as a zero-mean normally distributed variable. For 

example, Pan et al. proposed an expectation maximization algorithm for time-transformed Wiener processes with 

temporal variability, unit-to-unit heterogeneity and measurement errors [37]. To calculate the likelihood function for 

the Gamma process model under imperfect inspection, Kallen and Noortwijk proposed a general Monte Carlo (MC) 

integration algorithm with convergence rate , where  is the number of repetition [38]. Lu, Pandey and 

Xie provided a clearer explanation and formulation of the MC approach [39], which is also applied to a novel Gamma 

process with measurement errors that statistically depend on the temporal degradation performance [40]. 

To the best of our knowledge, the existing researches about IG processes only consider normal random effects. 

However, for the GaAs laser degradation data that motivated to propose the IG process model, it has been proven 

that the skew-normal distribution fits the random effects better [34]. Furthermore, studies about the IG process model 

with measurement errors remain limited, except for two corrosion depth growth models for energy pipelines in 

[41,42], which did not cover the issue of random effects. Therefore, in this paper we extend the existing approaches 

of the IG stochastic degradation process by considering at the same time skew-normal random effects (which includes 

normal random effects as a special case) and measurements errors. Our contribution thus consists in the proposition 

of a degradation model based on an IG process with asymmetric random effects and in the development of the 

associated parameter estimation methods for both perfect measurements and perturbed measurements. 

The remaining of the paper is organized as follows. In Section 2, we use the GaAs laser degradation data as a 

motivating example of this work, and further propose an EIG process model with skew-normal random effects. 

Section 3 evaluates the analytical failure time distribution of the proposed EIG process model. Degradation model 

parameter estimation methods for both perfect measurements and perturbed measurements are developed in Section 

( )1 2N -O N
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4. Section 5 illustrates the advantages of incorporating skew-normal random effects and measurement errors, based 

on a simulation study and two applications of GaAs laser and fatigue crack growth. Section 6 concludes the paper 

with some remarks and perspective on future work. 

2 An EIG process model with skew-normal random effects 

2.1 Motivating example 

In this section, we revisit the mentioned GaAs laser degradation data, and illustrate the necessity to consider 

skew-normal random effects for the IG process model. 

The laser device degradation data was provided by Meeker and Escobar in [1], and has been studied by many 

researchers. In general, the output light intensity will degrade over time, but in order to obtain constant laser output, 

a feedback mechanism is adapted to increase the operating current, and thus transferring the output degradation to 

input degradation. The time-varying operating current degradation paths of 15 GaAs laser device samples are 

provided in [1] and plotted in Figure 1. The current of the samples was measured every 250 hours, and the test was 

terminated at 4000 hours. The product is declared as failed when the input current exceeds 10A. 

 

Figure 1  Degradation paths of 15 GaAs laser samples 

To describe this set of GaAs laser degradation data of, various models have been developed. For example, in 

[43], Peng and Tseng proposed a Wiener process model with normal random effects. And in [27], Peng further 

presented an IG process model with normal random effects, and illustrated its advantage over the Wiener process 

model by Akaike information criterion (AIC). Recently in [34], it is illustrated that a skew-normal distribution is 

more appropriate to fit the slopes of the laser degradation data, and the proposed skew-Wiener process model has 
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better performance than the conventional Wiener process model with normal random effects. Therefore, it is 

motivated to also extend the IG process model by considering skew-normal random effects. 

Ye and Chen have demonstrated that there is an inverse relation between the IG and Wiener processes [9], i.e., 

a Wiener process  for the degradation will induce an IG process 

 on the first passage times of the threshold , and this motivates to incorporate 

random effects in the IG process by letting  follow a normal distribution, which is the case in most exiting works 

about the IG process. Therefore, instead of investigating the distribution characteristic of the degradation slopes, we 

reanalyze the inverse slopes in the following. 

For the laser degradation data of 15 test samples, a regression analysis is conducted to obtain 15 positive slopes, 

then we can also obtain 15 inverse slopes. Similar to the candidates of distribution types for random effects in [34], 

here we also fit the inverse slopes with the Normal, Gamma, Log-Normal, Weibull and Skew-normal distributions. 

Maximum likelihood estimations (MLEs) for the parameters of each distribution are calculated, with the log-

likelihood listed in Table 1. Furthermore, we select the best distribution type for random effects based on the popular 

AIC index, which is denoted as follows: 

  (1) 

where  is the maximum value of the log-likelihood function for the candidate distribution, and  is the number 

of distribution parameters. Generally, the distribution type with the smallest AIC will be chosen as the best model. 

Table 1 lists the AIC for each distribution type for random effects. These results show that the skew-normal 

distribution, with the smallest AIC, leads to the best fitting performance on the inverse slopes of the laser data. 

Therefore, based on the skew-normal random effects, we propose an EIG process model in the following subsection. 

Table 1  Maximum log_likelihoods and AICs for the inverse slopes of laser degradation data 

Distribution type for random effects  AIC 

Normal -89.8168 183.6336 

Gamma -90.3049 184.6098 

Lognormal -90.6636 185.3272 

Weibull -89.1474 182.2948 

Skew-normal -87.4892 178.9784 
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2.2 Model assumption and formulation 

Defined as a stochastic degradation process, an IG process  with fixed effects satisfies the 

following properties: 

(1)  with probability 1; 

(2) Increments of  are independent, that is,  is independent with  for 

; 

(3)  follows an IG distribution  for , where  and  are 

respectively the slope and shape parameters,  is the monotonously increasing drift function. 

Therefore,  follows an IG distribution , with the following probability density 

function (PDF) and cumulative distribution function (CDF): 

  (2) 

  (3) 

where  is the CDF of standard normal distribution. 

To incorporate random effects in the IG process model, the traditional way is to let  follow a normal 

distribution. Here by relaxing the traditional normal assumption to a skew-normal one, we propose an EIG process 

model, where the PDF of  is given by 

  (4) 

where  are respectively the location, scale and shape parameters,  is the PDF of standard normal 

distribution. 

Note that if ,  will reduce to a normal distribution, which indicates that the traditional IG 

process model with normal random effects is a special case of the proposed EIG process model. 
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3 Reliability assessment and lifetime evaluation 

After developing the EIG process model, a significant task in reliability engineering is to assess the reliability 

and lifetime. A degrading system is declared as failed when its degradation path first exceeds a predetermined 

threshold level , and due to the monotonicity property of the IG process, its lifetime CDF can be expressed as 

  (5) 

For the traditional IG process model with fixed effects, the CDF of lifetime  can be derived as [8]: 

  (6) 

where  is the lifetime for the IG process model with fixed effects. 

For the IG process model with normal random effects, the CDF of lifetime  can be derived by integrating 

 with respect to  [12]: 

  (7) 

where  is the lifetime for the IG process model with normal random effects, and  is the CDF of  

with fixed . 

For the IG process model with skew-normal random effects, the derivation of the CDF of the lifetime  can 

be derived by integrating  with respect to . The derivation process is a little tricky, 

so in order to clarify the process, we first develop the following Lemmas 1-3 and Theorem 1. 

Lemma 1. if , then the following result holds, 

  (8) 

where  denotes the CDF of the standard bivariate normal distribution: 

  (9) 
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Although Owen has given the same result as early as 1980 [44], the proof was omitted. In order to fulfil this gap, 

here we present the proof of Lemma 1 in Appendix A, relying on the Dominated Convergence Theorem. 

Lemma 2. If  and , then the following result holds: 

  (10) 

Proof: According to the result of Lemma 1, along with some changes of variables, the proof of the above result 

is rather straightforward, and is thus omitted here. 

Lemma 3. If  and , then the following result holds: 

  (11) 

Proof: Based on some algebraic manipulations, we can obtain: 

  (12) 

where . 

Therefore, with some changes of variables, Equation (12) can be established based on the result of Lemma 1. 

Theorem 1. For the IG process model with skew-normal random effects, the CDF of lifetime  is: 

  (13) 
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Proof: According to the formula of total probability, the CDF of  can be derived by integrating  with 

respect to : 

  (14) 

where  is the expectation of functions of . 

Therefore, respectively calculating the two expectations based on Lemma 2 and Lemma 3, we can obtain 

Equation (13). 

4 Degradation model parameter estimation 

In this section, we focus on estimating the EIG model parameters based on the degradation data of a practical 

system. Two MLEs are developed for two scenarios of measured degradation performance, including perfect 

measurements and perturbed measurements. 

4.1 MLEs for perfect measurements 

We first consider the scenario of perfect measurements. Suppose a total of  samples are tested under identical 

condition, and the degradation of them is perfectly measured at ordered times , where  denotes the 

available number of measurements. For  and , let  denote the 

degradation performance of sample  at time . Furthermore, denote the transformed time interval and 

degradation increment by  and , where  holds for all . 

Due to the independence between degradation increments, the complete log-likelihood function is derived as: 

  (15) 
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  (16) 

The proof of Theorem 2 is given in Appendix B. 

Based on the given Theorem 2 and some changes of variables,  can be expressed by: 

  (17) 

Therefore, the complete log-likelihood function will be: 
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the measurement error item: 

  (19) 

where  is the measured degradation performance at time ,  is the actual degradation performance 

at time , and  is the measurement error item at time . 

Keeping the same notations as in the previous subsection, except that  and  are denoted for the 

actual degradation performance, and let  denote the measured degradation performance of sample  

at time ,  denote the measured degradation increment, where  holds for all . 

Considering the MC integration method in [38] can only estimate the parameters not concerning measurement 
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Therefore, in order to estimate all parameters together, an extended MC integration algorithm is presented as follows: 
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; 

(5) Calculate the simulated actual degradation increments as , where  is the  
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(7) Therefore, on condition that , the MLEs of unknown parameters and the corresponding maximum 

log-likelihood function value are respectively expressed as: 

  (20) 

  (21) 

(8) Find the largest item among all , i.e., , then the parameter estimation 

result will be . 

5 Numerical experiments: degradation and reliability model verification 

In this section, a simulation study is presented to show the effectiveness of the proposed parameter estimation 

methods, and discuss the effect of model mis-specification on lifetime estimation accuracy. Besides, two real 

applications are provided to demonstrate the advantages of the proposed EIG process model. The mentioned GaAs 

laser example is revisited to illustrate the necessity of incorporating skew-normal random effects, and the example 

of fatigue crack growth is conducted to show the advantage of considering measurement errors. 

5.1 Simulation study 

At first, Monte Carlo simulations are conducted to study the performance of the proposed MLEs for the EIG 

process model. Both cases of perfect measurements and perturbed measurements are under consideration. Without 

loss of generality, we focus on the EIG process model with power drift function, i.e., . In the simulations, 

the sample size is set to be , and the degradation parameters are . 

For each sample, we generate its degradation path with inspection interval , and the number of inspections is 

50. Based on the simulated sample degradation data and the proposed parameter estimation methods, we can obtain 

the MLEs for the proposed EIG process model. For both cases, the simulations are repeated 1000 times to obtain the 

bias and standard deviations of the MLEs. 

The parameter estimation results are shown in Tables 2-3. It can be indicated that through the developed MLE 

methods, the proposed EIG process model parameters can be accurately estimated. Besides, for both cases of perfect 

measurements and perturbed measurements, the biases and standard deviations of the MLEs will decrease as the 

sample size increases. And although the contamination of measurement errors will lead to larger biases and standard 
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deviations, the MLEs still show rather good performance for all model parameters. 

Table 2  Bias (standard deviation) of the MLEs for the EIG process model with skew-normal random effects 

      

30 0.0747 
(0.1441) 

-0.0201 
(0.0343) 

0.0261 
(0.2459) 

0.0143 
(0.2655) 

0.0035 
(0.0174) 

60 0.0713 
(0.1435) 

-0.0149 
(0.0271) 

0.0205 
(0.2430) 

0.0119 
(0.2620) 

0.0032 
(0.0161) 

90 0.0460 
(0.1397) 

-0.0128 
(0.0264) 

0.0235 
(0.2553) 

0.0078 
(0.2517) 

0.0015 
(0.0162) 

Table 3  Bias (standard deviation) of the MLEs for the EIG process model with both skew-normal random effects 

and measurement errors 

       

30 -0.1717 
(0.1770) 

0.0235 
(0.0305) 

0.0978 
(0.2047) 

-0.0597 
(0.1628) 

0.1021 
(0.1518) 

0.0350 
(0.1664) 

60 -0.1681 
(0.1706) 

0.0195 
(0.0337) 

0.0467 
(0.2259) 

-0.0433 
(0.1941) 

0.0582 
(0.1692) 

0.0594 
(0.2010) 

90 -0.1453 
(0.2065) 

0.0141 
(0.0390) 

0.0449 
(0.2401) 

-0.0285 
(0.1961) 

-0.0196 
(0.1610) 

-0.0184 
(0.2667) 

 

Furthermore, we investigate the effect of model mis-specification on the performance of the parameter 

estimation and reliability assessment. To this aim, we generate simulated degradation data using the proposed EIG 

process model, for both cases of perfect measurements and perturbed measurements, with the same model parameters 

as in the previous example and with a sample size 90. Then the simulated samples are used for parameter estimations 

for the proposed EIG model and for different available IG process models. These “candidate” degradation models 

are: 

l IG process model with fixed effect (IG_FE): 

 

l IG process model with normal random effects (IG_NRE): 

 

l IG process model with skew-normal random effects (IG_SNRE): 

 

l IG process model with skew-normal random effects and measurement errors (IG_SNREME): 

n 2µ = 0.2s = 5a = 2h = 1.2b =

n 2µ = 0.2s = 5a = 2h = 1.2b = 1es =

( ) ( ) ( )( )2 1~ , ,Y t IG t tb h b µ-L L =
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( ) ( ) ( )( ) ( )2 1 2~ , , ~ , ,Y t IG t t SNb h b µ s a-L L
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Based on the parameter estimations, we can then obtain the lifetime distribution and reliability assessment for 

each candidate degradation model. Figure 2 and Table 4 show the lifetime estimation accuracy for the case of perfect 

measurements. It can be seen that the true model IG_SNRE can be accurately selected with the best fitting 

performance and the lowest mean squared error (MSE) between the true and estimated curves. The model 

IG_SNREME can also provide rather good performance. The comparison results for the case of perturbed 

measurements are shown in Figure 3 and Table 5, which indicate that using the true model IG_SNREME leads to the 

best estimation performance among all the considered candidate models. Furthermore, for both cases, if we choose 

the wrong models IG_FE or IG_NRE, then the lifetime and reliability of the product will be either overestimated or 

underestimated, which will lead to additional life cycle cost because of unexpected failure or premature maintenance 

actions. 

 

Figure 2  True and estimated lifetime CDFs for simulated degradation data without measurement errors 

Table 4  MSEs of candidate models for simulated degradation data without measurement errors 

Candidate Model MSE 

IG_FE 1.91E-3 

IG_NRE 3.62E-3 

IG_SNRE 5.68E-04 
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( ) ( ) ( ) ( ) ( )

2 1 2

2

~ , , ~ , ,

, ~ 0,

k k k

k k k k

Y t IG t t SN

Z t Y t t t N

-ì L Lï
í

= +ïî e

b h b µ s a

e e s



 

15 

 

IG_SNREME 9.32E-4 

 

Figure 3  True and estimated lifetime CDFs for simulated degradation data with measurement errors 

Table 5  MSEs of candidate models for simulated degradation data with measurement errors 

Candidate Model MSE 

IG_FE 3.36E-3 

IG_NRE 5.63E-3 

IG_SNRE 1.27E-03 

IG_SNREME 4.13E-4 

 

5.2  Application to the GaAs laser degradation data 

Following the analysis in some available works in [1,27,34], here we also assume that the GaAs laser devices 

experience a linear degradation process, i.e., . Then the MLE method is utilized to estimate the unknown 

parameters for the 4 considered degradation models, respectively. The estimation results, sample log-likelihoods and 

the AICs for the 4 candidate models are listed in Table 6. It can be noticed that compared to the existing models 

IG_FE and IG_NRE, the proposed models IG_SNRE and IG_SNREME have smaller AICs, which demonstrates that 

the incorporation of skew-normal random effects can definitely improve the degradation data fitting performance. 

Furthermore, comparing IG_SNRE and IG_SNREME, we can find that IG_SNREME has a larger sample log-

likelihood but also more model parameters, therefore eventually performs worse than IG_SNRE. This illustrates that 

( )t tL =
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the GaAs laser devices degradation measurements can be considered as perfect (i.e. without any measurement error), 

and this conclusion is the same as the one in [34] and [48]. 

Table 6  MLEs, sample log-likelihoods and the AICs of the 4 candidate models for GaAs laser degradation data 

       AIC 

IG_FE 5.43E-5 490.65 - - - 75.03 -146.06 

IG_NRE 6.09E-5 498.59 61.3033 - - 75.23 -144.46 

IG_SNRE 6.09E-5 500.26 61.41 -29.70 - 77.18 -146.36 

IG_SNREME 5.99E-5 499.25 58.27 -24.52 2.778E-3 77.33 -144.66 

 

Moreover, by plugging the degradation parameter estimates into Equations (7), (8) and (13), we have calculated 

the lifetime CDFs for the candidate models, and have plotted them as lines in Figure 4. Also, the pseudo failure times 

of the 15 test samples are obtained by regression analysis in [1], and the empirical CDF of the samples is plotted as 

dots in Figure 4. It can be shown that at the early stage, the lifetime CDF of model IG_NRE is closest to the dots. 

While in the later stage, it is model IG_SNRE that has closest lifetime CDF. Therefore, to further quantify and 

compare the performance, we also present the MSE as a distance indicator, and list the MSEs of all candidate models 

in Table 7. The results indicate that the proposed model IG_SNRE has the smallest MSE, and it provides the most 

precise estimation for the lifetime distribution. 

 

Figure 4  Empirical CDF and estimated lifetime CDFs under candidate models for GaAs laser degradation data 

h µ s a es L



 

17 

 

Table 7  MSEs of candidate models for GaAs laser degradation data 

Candidate Model MSE 

IG_FE 5.21E-3 

IG_NRE 2.22E-3 

IG_SNRE 1.62E-3 

 

5.3 Application to the fatigue crack growth data 

This subsection studies the example of fatigue crack growth data to illustrate the necessity of considering 

measurement errors. The experiment was carried to explore the degradation law of 2024-T351 aluminum alloy [49], 

where a constant amplitude fatigue test was conducted to stimulate the fatigue crack growth of 30 specimens. The 

crack lengths of the samples are measured after 10000 cycles and then every 5000 cycles. The whole degradation 

data is presented in [49], and the degradation paths are shown in Figure 5. 

 

Figure 5  Fatigue crack growth paths of 30 aluminum alloy specimens 

An exponential function is found to be the most appropriate to fit the nonlinear degradation path of this crack 

growth process [27]. Therefore, in this subsection we also choose an exponential drift function, i.e., . 

Similar to the GaAs laser example, we firstly fit the degradation path of each specimen with the exponential function, 

and obtain 30 inverse slopes. Then 5 candidate distribution forms are compared for these inverse slopes, with the log-

likelihoods and AICs shown in Table 8. It can be noticed that the skew-normal distribution has the smallest AIC and 

performs the best to model the random effects of the fatigue data. 

( ) 1tt egL = -
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Table 8  Log_likelihoods and AICs for the inverse slopes of fatigue crack growth data 

Distribution type for random effects  AIC 

Normal 24.6104 -45.2208 

Gamma 25.4566 -46.9132 

Lognormal 24.3753 -44.7506 

Weibull 25.5983 -47.1966 

Skew-normal 26.8775 -47.755 

 

We then use the 4 candidate degradation models to estimate degradation parameters for these crack growth data. 

Table 9 shows the MLEs, sample log-likelihoods and the AICs for the 4 models. It can be seen that model 

IG_SNREME, i.e., the proposed EIG model with both skew-normal random effects and measurement errors, has the 

smallest AIC, which demonstrates the necessity of considering measurement errors in the IG process model. 

Table 9  MLEs, sample log-likelihoods and the AICs of the 4 candidate models for fatigue crack growth data 

        AIC 

IG_FE 92.69 0.2915 - - 0.2582 - -41.4935 88.99 

IG_NRE 204.17 0.2829 0.06558 - 0.2428 - -37.0137 82.03 

IG_SNRE 136.73 0.3093 0.07698 0.8252 0.2680 - -33.7023 77.40 

IG_SNREME 186.55 0.2805 0.07033 0.8481 0.2509 2.54E-4 -32.6324 77.26 

 

Furthermore, the test specimen is declared to fail when its fatigue crack length exceeds 15, therefore we can 

derive the pseudo failure times based on exponential regression results, and then present the empirical CDF of the 30 

specimens as dots in Figure 4. Besides, the lifetime CDFs for the candidate models are also plotted in Figure 6. And 

the MSE of each candidate model with the empirical CDF is provided in Table 10, which indicates that the proposed 

model IG_SNREME can estimate the lifetime distribution and assess the reliability with the maximum precision, and 

it is significant and effective to consider measurement errors in the IG process model. 

L̂

h µ s a g
es L
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Figure 6  Empirical CDF and estimated lifetime CDFs under candidate models for fatigue crack growth data 

Table 10  MSEs of candidate models for fatigue crack growth data 

Candidate Model MSE 

IG_FE 4.53E-3 

IG_NRE 2.14 E-3 

IG_SNRE 1.70 E-3 

IG_SNREME 1.66 E-3 

 

6 Conclusion 

Confronted with degradation processes with asymmetric and non-normal degradation rates, we extend the 

traditional IG process by incorporating skew-normal random effects, and propose an EIG process model. Reliability 

assessment and lifetime evaluation of the EIG process model are obtained analytically. Relevant degradation model 

parameter estimation methods are developed for two scenarios, including the MLEs for perfect measurements via 

GA, and an extended MC integration method for the MLEs for perturbed measurements. Through simulation studies, 

we illustrate the effectiveness of the proposed MLEs, and discuss the effect of model mis-specification on lifetime 

estimation accuracy. Furthermore, by comparing with existing IG process models, the advantage of the proposed EIG 

process model is demonstrated through two applications of GaAs laser degradation process and fatigue crack growth 

data. The necessity of considering skew-normal random effects in the IG process model is shown in both examples. 

Besides, the results show that the laser degradation measurements can be considered as perfect, while the 
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measurement error term in the fatigue crack growth model cannot be ignorable. In conclusion, it is significant and 

effective to consider skew-normal random effects and measurement errors in the IG process model, and we 

recommend the proposed EIG process models in both degradation data fitting and lifetime evaluation. 

For interesting directions of future work, initial degradation values and covariates can be further considered in 

the EIG process model. Besides, accelerated degradation test planning based on the proposed model can be also 

studied in the future. Another possible direction can be the optimization of inspection and maintenance strategy for 

products experiencing the proposed degradation process. 
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Appendix 

A. Proof of Lemma 1 

Considering that the integral result only depends on , we can denote it by . And due 

to Dominated Convergence Theorem, we can first compute the second order partial derivative of  

with respect to : 

 

Considering that the integrand function is proportional to the PDF of a normal distributed variable 

, it can be further derived that 
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Then integrating it over , we can obtain that  

 

Making the variable substitution , then it can be derived that 

 

Note that this is just the CDF of the standard bivariate normal distribution, i.e.,

, which completes the proof of Lemma 1. 

B. Proof of Theorem 2 

Based on some algebraic manipulations, we can obtain: 

 

Making the variable substitution , then it can be derived that 
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The last equation is satisfied because of the corollary that 

 

which can be obtained by setting  in Lemma 1. And this completes the proof of Theorem 2. 
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