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Abstract Watershed Transform is a widely used image segmentation tech-
nique that is known to be very data-intensive and time-consuming. The M-
border Kernel Algorithm computes watersheds in the framework of Edge
Weighted Graphs and allows to preserve the topology of the initial map. Par-
allelization represents an effective solution to accelerate it. However, this task
remains challenging due to the nature of this technique. In this paper, we ad-
dress this problem. We start by analyzing the Data Dependency Issues that
this algorithm raises when dealing with parallel execution. With respect to
that, we propose a parallelization strategy that opts for vertices scanning in-
stead of edges scanning of the graph while preserving the thinning paradigm
on which the M-border Kernel Algorithm is based. We show that this strategy
overcomes the problem of the simultaneous lowering of two adjacent M-border
edges that may occur when edges scan is used. The implementation of the
proposed algorithm on a shared memory multicore architecture proves its ef-
fectiveness in terms of speedup. In fact, the experimental results show that a
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speedup factor of 5.55 is achieved using 8 processors for 2048× 2048 images
over the performance of the sequential algorithm using a single processor on
the same architecture. Furthermore, the gain in terms of execution time and
thus speedup is guaranteed whatever is the size of images on which the algo-
rithm is applied. In fact, a speedup factor of 5.55 is obtained for 2048×2048
images, 5.11 for 1024× 1024 images and 4.45 for 512× 512 images using 8
cores.

Keywords Image segmentation · parallel algorithms · real-time performance ·
Watershed Cuts · shared memory multicore architecture.

1 Introduction

In the field of image processing, Watershed Transform is considered as one of
the most popular methods used for gray scale image segmentation. This trans-
form denotes a family of methods derived from Mathematical Morphology that
considers a gray scale image as a topographic relief where the gray level of a
pixel represents its altitude. The watershed is defined as the ridges separating
the catchment basins in this relief. Several algorithms that implement the wa-
tershed in the discrete case were proposed [17,22,23]. These algorithms can be
figured out into two main categories according to the approach they are based
on: Watershed by flooding [2,18,24,25] and Topographical Watershed [19].
According to [1], most of the existing algorithms have a drawback in that they
do not preserve the topological properties of the image. In fact, they produce
a binary result that gives no information about the contrast between the ob-
tained regions. Furthermore, they produce contours that do not correspond
precisely to the significant ones of the original image. In [1,7,20], the authors
defined a new approach for Watershed Transform computation that allows to
preserve the image topology. They proposed a new framework allowing the
precise definition of the discrete watershed and leading to what is known as
the Topological Watershed.
In this context, the authors in [10,11] studied the Topological Watersheds in
the framework of Edge Weighted Graphs. They introduced the notion of Wa-
tershed Cuts and have established its consistency [8,9] and optimality in the
sense of their equivalence to the separations induced by the Minimum Span-
ning Forest [5,6,13] relative to the minima subgraph. Watershed Cuts have
important properties detailed in [9–11,17] making them stand as a fundamen-
tal step in a great deal of powerful image segmentation processing. They can
be defined equivalently by their attraction basins or by the lines separating
these attraction basins.
Two algorithms were proposed to compute Watershed Cuts [10,11]. The first
one relies on the extraction of flows. It explores the steepest descent paths,
mixing Depth First and Width First iterations. It produces a flow partition,
and therefore a Watershed Cut. The second one is a linear time algorithm
that is based on a thinning paradigm called border thinning which lower, until
idempotence, the values of edges that satisfy a local property. As a result,
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the minima of the transformed map constitute a Minimum Spanning Forest of
the original map and consequently induce a Watershed Cut. This algorithm,
called the M-border Kernel Algorithm, is among the most efficient Watershed
Algorithms [11].
The Watershed Transform computation through its various algorithms remains
a relatively consuming task in terms of time and memory use [16]. In fact, it
requires several scans of the image, graph building, etc. This leads to the
creation and processing of complex data structures. In different application
domains, images size is still growing, which leads to a similar rise in the pro-
cessing time. In particular, the M-border Kernel Algorithm plays a key role in
a lot of real-time image processing. The features described previously present
reliable constraints to implement it.
To face this issue, parallelization represents both an interesting and challeng-
ing track to explore. In this paper we tackle this issue. For this aim, we focus
on a particular Watershed Algorithm which is the M-border Kernel Algo-
rithm [11] and we investigate its parallelization in order to achieve real-time
processing. Our choice of this algorithm is motivated by its theoretical and
implementation properties. From a theoretical standpoint, the M-border Ker-
nel is a linear time algorithm (i.e. its execution time increases linearly when
the size of the input Edge Weighted Graph increases [28]) that is based on
a thinning paradigm obtained by iteratively lowering down the values of the
graph edges that satisfy a local property. Such a locality is very helpful for
parallel implementation of this algorithm since the edges verifying a certain
condition can be processed independently. However, the locality should not be
misinterpreted in a way that massive parallelism can be applied in the paral-
lel implementation. In fact, the Data Dependency of the algorithm should be
analyzed. From the implementation standpoint, neither a hierarchical queue
nor a sorting step is required.
In this paper we firstly demonstrate that despite the locality of the lower-
ing operation, its parallel execution raises a dependency problem especially at
the level of adjacent M-border edges. Secondly, we propose a parallelization
strategy of this algorithm that overcomes this dependency issue. This strategy
consists in examining non-minima vertices adjacent to minima ones instead
of edges of the initial Edge Weighted Graph. Therefore, a set of independent
vertices are processed in parallel.
The implementation of the proposed parallel M-border Kernel Algorithm on a
shared memory multicore architecture shows a gain in terms of execution time
and thus speedup factor according to both number of cores and images sizes.
Furthermore, the preliminary steps of this algorithm are parallelized. Thus,
parallel Image Segmentation Technique based on Watershed Cut computation
using the M-border Kernel Algorithm is implemented on the same architecture
and the obtained results are evaluated in terms of number of cores and images
sizes.
The remainder of this paper is organized as follows: in the second section, we
introduce basic notions and notation used in this paper and required to han-
dle the computation of Watershed Cuts in the framework of Edge Weighted
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Graphs. In the third section, we introduce and analyze the sequential M-border
Kernel Algorithm. In the fourth section we propose a parallelization strategy
of this algorithm after studying its Data Dependency. In the fifth section we
present and discuss the experimental results of the proposed parallel M-border
Kernel Algorithm. In the sixth section we discuss the results obtained by the
implementation of a gray scale Image Segmentation Technique based on Wa-
tershed Cut computation using the M-border Kernel Algorithm. Finally, we
conclude with a summary.

2 Preliminaries

This section is devoted first to an essential background material for Edge
Weighted Graphs. It introduces the basic concepts required to handle the M-
border Kernel Algorithm in both sequential and parallel versions.
An Edge Weighted Graph (or Weighted Graph) is defined as a triple G =
(V,E,F ) where V is a finite set of elements called vertices, E is a subset of
pairs u={x,y} of elements of V called edges such that x 6= y and F is a function
that weights the edges of G.
A digital gray scale image can be represented by a special type of Weighted
Graphs whose drawing in a Euclidian Space forms a regular square tiling. The
set of vertices V corresponds to pixels and the set of edges to any adjacency
relation. In this paper we consider the 4-adjacency. The edges are in that case
horizontal and vertical. Furthermore, we denote by F the map from E to Z
that assigns to each edge u={x,y} the dissimilarity between the gray level
of x and y that is called the altitude of u, i.e. F (u) = {|I(x)− I(y)| such
that u={x,y}}. We denote by V F the map from V to Z such that for any
x ∈ V , V F (x) is the minimal altitude of an edge which contains x, i.e. F (x)
= min{F (u) such that u ∈ E, x ∈ u } and is called the altitude of x.
A set of edges of G is a (regional minimum) of F (at altitude k ∈ Z) if k is the
altitude of any edge of this set and the altitude of any edge adjacent to this set
is strictly greater than k. We denote by Emin the union of all minima edges
of F . A vertex is considered as a minimum vertex of V F if it belongs to a
minimum edge of F . The set of minima vertices of F called Vmin is composed
of the union of all minima vertices of V F . The subgraph of G composed of the
vertices set and edges set of all minima of F and V F is denoted byM=(Emin,
Vmin).
Figure 1 illustrates these notions. It shows a 5×5 image transformation to a
5×5 Weighted Graph and its corresponding minima subgraph.

3 Linear-time M-border Kernel Algorithm

The M-border Kernel Algorithm proposed by J. Cousty and al in [11] is an ef-
ficient linear time algorithm that computes Watershed Cuts in the framework
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Fig. 1 Image transformation to an Edge Weighted Graph G(V,E,F ) and its corresponding
minima subgraph M (a) initial image of size 5×5 (b) its corresponding matrix of size 5×5
(c) its corresponding Edge Weighted Graph and (d) its corresponding minima subgraph in
bold

of Weighted Graphs. In the following, we describe its principle.
Consider a Weighted Graph G(V,E,F ) and its corresponding minima sub-
graph M=(Emin,Vmin), let u={x,y} ∈ E. If only one vertex of u ∈M then
u is said to be outgoing from M . If F (u) > max(V F (x),V F (y)), then u
is said to be locally separating. If F (u) = max(V F (x),V F (y)) and F (u) >
min(V F (x),V F (y)), then u is said to be a border edge. Moreover, an edge
u is said to be a minimum-border or M-border, if it is a border edge and if
exactly one vertex of u is a minimum vertex.
Taking an edge u ∈ E, the lowering of a map F at u is the map F1 such that
F1(u) = minx∈u {F (x)} and F1(v) = F (v) for any edge v ∈E \ {u} [11]. The
M-border Kernel Algorithm is based on a thinning transformation that con-
sists in iteratively lowering the values of M-border edges until stabilization.
Algorithm 1 describes the different steps of this algorithm. It requires two
preliminaries steps: regional minima detection of the initial map and vertices
valuation. Initially and as described in the iterative loop at line 3 of Algorithm
1, outgoing edges are stored in a set L. After that, in the main loop (line 5
of Algorithm 1), the set L is browsed and the lowering process is applied on
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M-border edges (line 11), then, the sets Vmin and Emin are updated (lines 14
and 15). The update of the set L is done by adding new outgoing edges as
described in the loop on line 16. At the end of Algorithm 1, F is an M-border
Kernel of the initial map. The minima of the transformed map constitute a
Minimum Spanning Forest relative to the minima of the initial one and, hence,
induce a Watershed Cut.

Algorithm 1: Sequential M-border Kernel Algorithm [11]
Data: (V,E,F ) a Weighted Graph, M = (Vmin,Emin) its minima

subgraph and V F the vertices valuation function.
Result: F an M-border kernel of the initial map and M its minima

subgraph.
1 // Initialization
2 L := φ;
3 foreach (u ∈ E outgoing from (Vmin, Emin)) do
4 L := L∪{u}; // The set L contains outgoing edges from M

5 while (it exists u ∈ L) do
6 L := L \ {u}; // Remove the edge to be processed from the set L
7 if (u is a border edge for F) then
8 x :=vertex of u such that V F (x) < F (u);
9 y :=vertex of u such that V F (y) = F (u);

10 // The lowering process
11 F (u) := V F (x);
12 V F (y) := F (u);
13 // Update of the minima subgraph M
14 Vmin := Vmin∪{y};
15 Emin := Emin∪{u};
16 foreach (v={y’,y} ∈ E such that y’ /∈ Vmin) do
17 L := L∪{v};// add new outgoing edges from M to the set L

4 Parallel M-border Kernel Algorithm

In parallel programming, Data Dependency study is a crucial step that per-
mits to know which data and operations can be performed simultaneously. We
begin this section by such a study applied to the M-border Kernel Algorithm.
Based on the result of this study we then propose a parallelization strategy
for this algorithm.

4.1 Data Dependency Analysis

The M-border Kernel Algorithm is based on an elementary local operation
called lowering. This operation does not involve any information from other
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Fig. 2 A graph G and a map F (a) in bold minima of F (b) the edge {c,d} is lowered and
the edge {d,e} is not an M-border edge anymore

edges in order to perform it. Consequently, a set of independent M-border
edges can be lowered in parallel. The result will be an M-border thinning and
is optimal in the sense of its equivalence to the separations induced by the
Minimum Spanning Forest relative to the Minima. This optimality is guaran-
teed whatever the order in which the values of edges are lowered.
However, a particular edge configuration causes a problem when dealing with
simultaneous lowering. This configuration occurs when two or more adjacent
M-border edges have a non-minimum common vertex. In this case, only one
of the adjacent M-border edges must be lowered. Figure 2 illustrates this con-
figuration. Fig. 2 (a) presents a Weighted Graph G and a map F in which
minima of F are depicted in bold. In this figure, edges and vertices values are
assigned as indicated in section 2. Edges {a,f} and {o,t} are two non-adjacent
M-border edges so they can be processed in parallel. However, the edges {c,d}
and {d,e} are two adjacent M-border edges. So, they cannot be lowered in par-
allel. In fact, if the edge {c,d} is lowered, the edge {d,e} is not an M-border
edge anymore as shown in Fig. 2 (b).

4.2 Proposed parallel M-border Kernel Algorithm

To cope with the Data Dependency problem, we propose a parallelization
strategy of the M-border Kernel Algorithm that is based on the examination
of vertices instead of edges in order to obtain a set of edges that forms the
Watershed Cut.
The main idea of the proposed parallel algorithm (Algorithm 2) consists in
examining in parallel the non-minima vertices adjacent to the minima ones of
the initial map while preserving the thinning paradigm on which the sequen-
tial M-border Kernel Algorithm is based.
As noted in the loop on line 6 of Algorithm 2, for each non-minimum vertex
that has an adjacent minimum vertex, if the edge connecting these two vertices
is an M-border edge, then, the non-minimum vertex and the M-border edge
detected are lowered as shown on lines 9-10 and the rest of neighbors are not
examined. Furthermore, an update of the minimum subgraph is performed as
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noted on lines 12 and 13. Finally, the set of non-minima vertices is updated
by deleting the lowered vertex as noted on line 14.

Algorithm 2: Parallel M-border Kernel Algorithm
Data: a Weighted Graph (V,E,F ) , M = (Vmin,Emin) its minima

subgraph and V F the vertices valuation function;
Data: P number of processors;
Result: F M-border Kernel of the initial map F and M its minima

1 // Initialization
2 VNmin= V \ {Vmin} ; // The set VNmin contains non-minima vertices
3 while ( VNmin 6= φ) do
4 (S1, . . . ,SP )=Dynamic_Partition(VNmin,P );
5 foreach (p ∈ {1, . . . ,P } ) do in parallel
6 foreach ( x ∈ Sp and x ∈ VNmin and x adjacent to y ∈ Vmin )

do
7 if ( u={x,y} is an M-border edge ) then
8 // Lowering process
9 F [u]:=F [y];

10 F [x]:=F [u];
11 // Update of the minima subgraph M
12 Emin:= Emin ∪ {u} ;
13 Vmin:= Vmin ∪ {x} ;
14 VNmin:= VNmin \ {x} ; // Remove the vertex processed

from the non-minima vertices set

The loop on line 6 of Algorithm 2 consists in examining all vertices that belong
to V \Vmin set. This loop is scheduled on P processors. The latest processing
is performed for all non-minima vertices (VNmin) as indicated in the loop on
line 3.
When applying Algorithm 2 on aWeighted Graph, we distinguish several cases:
in the first case, a non-minimum vertex has only one neighbor vertex that is
labeled as minimum vertex. In this case, if the edge linking these two vertices
is an M-border edge, both the edge and the non-minimum vertex are lowered
otherwise the lowering process is not applied and the edge is a separating edge.
In the second case, a non-minimum vertex has more than one neighbor vertex
that is labeled as a minimum vertex and the edge linking them is an M-border
edge. In this case, only one adjacent vertex and an M-border edge are lowered.
Figure 3 details these cases: Fig. 3 (a) represents a Weighted Graph where
edges and vertices altitudes are assigned as indicated in section 2. In this figure
the minima subgraph is depicted in bold. Figures 3 (b) and 3 (c) illustrate the
first case. The vertex m is adjacent to an unique minimum vertex which is
the vertex n, but the edge {m,n} is not an M-border edge. Thus, neither the
edge {m,n} nor the vertex m is lowered as shown in Fig. 3 (b). However, in
Fig. 3 (c) the non-minima vertex f is adjacent to a unique minimum vertex
which is the vertex a. Since the edge linking these two vertices is an M-border
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Fig. 3 An Edge Weighted Graph and its minima (in bold) (a) case of a non-minimum
vertex adjacent to an unique minimum vertex (but the edge linking the two vertices is not
an M-border edge) (b) case of a non-minimum vertex adjacent to an unique minimum vertex
and lowering the M-border edge linking them (c) case of a non-minimum vertex adjacent to
more than one minimum vertex (d)

edge, both the edge {f,a} and the vertex f are lowered as shown in Fig.3
(c). The second case is illustrated in Fig. 3 (d). The non-minimum vertex d is
adjacent to three minima vertices which are e, i and c. Hence, only the edge
{d,e} which is an M-border edge is lowered together with vertex d.
Taking the Weighted Graph of Fig. 4 (a) and its corresponding minima sub-
graphM = (Vmin,Emin) which is depicted in bold as an example to be treated
using P=3 processors, only five iterations are required to obtain the final result
as shown in Fig. 4. At each iteration, the partition of non-minimum vertices
on P processors is performed according to a Dynamic Partition Algorithm:
Algorithm 3 detailed in the next section.

4.3 Dynamic Partition Algorithm

In our proposed parallel M-border Kernel Algorithm, at each iteration, the
vertices are distributed on P processors using a Dynamic Partition Algorithm.
This algorithm consists in computing, at each iteration, partitions (S1, . . . ,SP )
of a set S containing vertices to process by P processors. Each partition is
treated by a processor. As noted in the loop on line 4 of Algorithm 3, for each
processor p such as p = {1, . . . ,P} the starting and ending indexes of data to
process are computed and copied in a constant time.
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Fig. 4 G(V,E,F ) a Weighted Graph and M its corresponding minima depicted in bold (a)
Application of Algorithm 2 on G using P=3 processors (b), (c), (d), (e) and (f) and final
result with the Watershed Cuts depicted in dashed lines (g)

Algorithm 3: Dynamic_Partition
Data: S the set of vertices to be treated in parallel ;
Data: P the number of processors.
Result: (S1, . . . ,SP ) the sets of vertices to be treated by each

processor.
1 // Initialization
2 Q= |S|

P ;
3 R= |S| mod P ; // R is the rest of the division of |S| by P
4 foreach (Processor p ∈ {1, . . . ,P}) do in parallel
5 if (p ≤ R) then
6 start[p]=(p-1)*(Q+1);
7 end[p]:=start[p] + Q;
8 else
9 start[p]=(p-1)*Q+R;

10 end[p]:=start[p]+ Q - 1;
11 Sp:=S[start[p], . . . ,end[p]];
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Fig. 5 Dynamic Partition (Algorithm 3): case of R=0 (a) and case of R 6= 0 (b)

Let Q ∈ N be the quotient of the division of |S| by the number of processors
P and let R ∈ N be the rest of this division. Algorithm 3 generates partitions
of size Q or Q+ 1. In fact, depending on the value of R, two cases are distin-
guished: in the first case R=0, then, the obtained partitions are balanced and
are of size Q, otherwise, the first R partitions are of size Q+1 and the (P −R)
remaining partitions are of size Q. These two possible cases are illustrated in
Fig. 5.

5 Parallel implementation and experimental results

In this section, we describe first the platform of test on which the M-border
Kernel Algorithm is implemented and the performance measures used to eval-
uate its parallelization. We describe then the image dataset used for the ex-
perimental assessments. Finally, we present and discuss the obtained results.

5.1 Target platform and performance evaluation

Multicore architectures have become a popular way to implement dynamic,
highly asynchronous, concurrent programs. There are mainly two models of
parallel programming paradigms for multicores CPUs environments: shared
memory and distributed memory [14,15]. In the distributed memory model,
each processor has its own local memory and its content is not replicated
anywhere else. However, for the shared memory model, there is one common
shared memory for all processors. For the first model, the communication of
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Table 1 Description of the image dataset that sequential and parallel algorithms are applied
on

Number of images 10 10 10 10 10 10

Resolution 64×64 128×128 256×256 512×512 1024×1024 2048×2048
Number of Vertices
in the correesponding
Graph 4096 16384 65536 262144 1048576 4194304
Number of Edges
in the correesponding
Graph 8192 32768 131072 524288 2097152 8388608
The range of
the number of minima 12-487 13-4065 17-16220 67146-36880 253886-165548 408764-879834

data occurs through discrete messages sent from a processor to another. In
this case, the Message Passing Interface (MPI) is the standard language for
parallel programs. For the second model, thread communication is efficient be-
cause they operate in the same address space. The main advantage of Message
Passing model is scalability while the shared memory is faster. With respect
to the context of our work we opted for the shared memory model for the im-
plementation of the proposed parallel algorithms. Therefore, experiments are
carried out on a computer with 64 GB of RAM and an Intel Xeon processor
E5-2640 v3 (8 cores, a basic frequency of 2.6 GHz and a smart cache of 20 MB)
using OpenMP as an API extension to the C/C++ language for the support
of the shared memory model.

The performance of the proposed parallelization strategy is evaluated through
the execution time and thus, the speedup factor. Speedup is used to measure
the gain of performance of parallel algorithms compared to sequential ones
which deal with the same problem. It represents the gain in execution time of
a task implemented using P processors compared to its implementation using
a single processor on the same architecture.

5.2 Assessment image dataset

The image dataset used for the experimental evaluations is detailed in Table
1. It is composed of 60 standard and synthetic gray scale images of different
sizes (64× 64, 128× 128, 256× 256, 512× 512, 1024× 1024 and 2048× 2048).
The standard images used are selected among those which are commonly used
in image processing benchmarking (such as Lena, cameraman, peppers. . . ).
These images contain different types of scenes.
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Fig. 6 Execution time of Algorithm 1 according to the images sizes

5.3 Experimental results

In this section, the results obtained by implementing both sequential and par-
allel M-border Kernel Algorithms are presented and discussed. The evaluation
of the proposed parallel algorithm is discussed in terms of number of cores and
images sizes.

Experimental results of the sequential M-border Kernel Algorithm Taking into
account the dataset described in Table 1, Fig. 6 represents the execution time
of Algorithm 1 with respect to the images sizes. In this figure, for each size, the
associated execution time corresponds to the average of the execution times
of 10 images. It shows that the execution time increases with respect to the
segmented images sizes and thus, to the number of edges of their associated
Weighted Graph.

Experimental results of the parallel M-border Kernel Algorithm Figure 7 illus-
trates some results obtained by applying the parallel M-border Kernel Algo-
rithm taking into account the two preliminary steps on images of different sizes.
The obtained contours by Algorithm 2 are superimposed on the initial images.

In image segmentation, one of the evaluation criteria of parallel implemen-
tation of algorithms is the ability of the parallel version to produce a result
as similar as possible to the one produced by the sequential version. Such
an ability is evaluated using similarity metrics such as Dice [26] and Jaccard
[27] coefficients. Table 2 presents the values obtained for these two coefficients
when comparing the sequential and the parallel M-border Kernel segmentation
results. Each value corresponds to the average of values of 10 images having
the same size. This table shows that the parallel algorithm produced results
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Fig. 7 (a) and (c) initial images and (b) and (d) their corresponding segmented images
obtained by applying the parallel M-border Kernel Algorithm using 4 cores

Table 2 Quantitative assessment between parallel and sequential algorithms

Number of images 10 10 10 10 10 10

Resolution 64×64 128×128 256×256 512×512 1024×1024 2048×2048
Dice index 0,963 0,959 0,949 0,950 0,963 0,969
Jaccard index 0,981 0,979 0,968 0,974 0,975 0,978

that are similar to the sequential ones at a satisfactory rate of about 95 to
98%.
In order to study the performance of the parallel algorithm according to the
number of processors, we proceed to increasing iteratively the number of cores
from 1 to 8 for an image of size 2048×2048. Figure 8 presents the execution
time and the speedup of the proposed parallel algorithm. This figure shows
that this algorithm allows a gain in terms of execution time. It implies a
speedup of 5.99 using 8 cores.

In order to evaluate the impact of the images resolutions on our parallel algo-
rithm, we apply Algorithm 2 on each image of the dataset described in Table
1 while increasing the number of cores.
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Fig. 8 Execution time and speedup of the parallel M-border Kernel Algorithm (Algorithm
2) according to the number of cores for a 2048×2048 image

Fig. 9 Speedup of the proposed parallel M-border Kernel Algorithm applied on images of
different sizes according to the number of cores
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Table 3 Speedup of Algorithm 2 applied on images of different sizes using 8 cores

Number of images 10 10 10 10 10 10

Resolution 64×64 128×128 256×256 512×512 1024×1024 2048×2048
Speedup 3.03 3.05 3.83 4.45 5.11 5.55

Figure 9 illustrates the obtained results. Each curve in Fig. 9 represents the
evolution of the speedup according to the number of cores for a given image
size. The obtained curves show that our proposal enables a gain in terms of
speedup whatever the size of images is. Table 3 presents the speedup factor of
algorithm 2 for images of different sizes using 8 cores. Note that for each size
the corresponding speedup factor is the average speedup of 10 images of this
size.

Algorithm 2 is based on a dynamic partitioning. The partition of vertices to be
processed in parallel by P processors is performed at each iteration using Al-
gorithm 3. This algorithm produces balanced partitions. Thus, all processors
are assigned with the same workload. Consequently, idle time is minimized
and parallelism performance is better preserved.

6 Application: Image Segmentation based on Watershed Cut
computation using the parallel M-border Kernel Algorithm

The Image Segmentation Technique based on Watershed Cut computation us-
ing the parallel M-border Kernel Algorithm is composed of three main steps:
the regional minima detection of the initial map, the vertices valuation of the
Weighted Graph and finally the M-border Kernel computation. The two first
steps are preliminary steps and are common to some other Watershed Algo-
rithms. The third step constitutes the main core of the technique that we are
dealing with in this paper. To the best of our knowledge, this algorithm has
not been parallelized in the literature. That is why we focused on its paral-
lelization in the previous section.
Parallelizing the Image Segmentation Technique based on the M-border Kernel
Algorithm consists in parallelizing its three steps. Two parallelization strate-
gies can be considered in this context: either a global parallelization of the
three steps or an individual parallelization of each step. Since each step needs
the global result of the previous one, we opted for the second parallelization
strategy that is illustrated in Fig. 10.

6.1 Parallel Regional Minima Detection Algorithm

The sequential Regional Minima Detection Algorithm [12] generates the set
of all regional minima edges of the initial map F . It consists in examining
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Fig. 10 The proposed parallelization strategy of the Image Segmentation Technique based
on the M-border Kernel Algorithm

iteratively the set of edges in a raster scan order. For each edge u, the plateau
that contains u is browsed. If a neighbor edge of u whose value is lower than
that of u is found, then the edge u and its corresponding plateau are labeled as
non-minima edges. If not, the plateau to which the edge u belongs is expanded
and labeled as a regional minimum. Figure 11 represents an Edge Weighted
Graph and the minima obtained when applying the sequential Regional Min-
ima Detection Algorithm on it.
For the parallelization of this algorithm, we propose a strategy that is based
on the Split and Merge model. To prove the correctness of our proposal, we
discuss in the following the possible merge configurations that may occur and
the decisions taken to remedy each one.
Let G1 and G2 be two graphs such that G1 ∪ G2 = G as shown in Fig. 12 (a).
The result of applying the sequential Regional Minima Detection Algorithm
independently on these graphs is shown in Fig. 12 (b). This figure shows that
two local regional minima are detected respectively in G1 and G2. In fact, the
minimum of altitude 0 is detected in both graphs. Furthermore, the minimum
of altitude 0 detected in G2 is adjacent to the minimum of altitude 2 detected
in G1. However, the merge of G1 and G2 does not lead to the detection of
global regional minima of G illustrated in Fig. 11 (b). In fact, plateau of al-
titude 2 detected as a regional minimum in G1 is not labeled as minimum in
the graph G. Furthermore, the same minimum of altitude 0 is labeled in both
graphs G1 and G2 by different labels. We distinguish two possible cases: in
the first case, a regional minimum is extended on more than one subgraph of
G. In the second case, a local regional minimum detected in a subgraph of G
has a neighbor edge that belongs to an adjacent subgraph which has a lower
altitude.
In order to resolve this issue, regional minima edges that belong to the bound-
aries of each subgraph must be browsed and their altitudes must be compared
to their neighbor edges that belong to adjacent subgraphs. On the basis of this
comparison, two decisions are taken: fusion of minima plateaus or deletion of
bad minima. This processing is called “Merge Step”. An example of deletion
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Fig. 11 Regional Minima Detection Algorithm applied on a Weighted Graph G

of bad minima is shown in Fig. 12 (c). In fact, the plateau of altitude 2 that
belongs to G1 has a neighbor minimum edge with an inferior altitude that
belongs to G2. Therefore, this plateau is not considered as minimum anymore
and thus its label is deleted. On the other hand, the minima plateaus of al-
titude 0 detected in G1 and G2 belong to the same global minimum. Thus,
these minima are merged and labeled by the same label as shown in the same
figure. As a result, the minima obtained by applying the sequential Regional
Minima Detection Algorithm on the graph partitioned into 2 subgraphs are
equal to those obtained by applying the sequential Regional Minima Detection
Algorithm on the graph G (cf. Fig. 11 (b) and Fig. 12 (c)).
The regional minima detection in subgraphs G1 and G2 is an independent pro-
cessing. Thus, it can be executed in parallel in order to reduce the execution
time of this step.
The main idea of the proposed parallelization strategy of the Regional Min-
ima Detection Algorithm can be summarized as follows: splitting the initial
graph into equal and non-overlapped subgraphs or partitions in order to apply
the Minima Detection Algorithm locally on each one and then performing the
“Merge Step” to obtain the adequate global result. Based on the same method-
ology, the "Split Step" can be applied to each partition. It leads to increase
the parallelism level when performing the Minima Detection Algorithm. The
"Merge Step" is applied on pairs of neighbor subgraphs. This principle allows
the merging of subgraphs results in a pyramidal way [3,4] in order to perform
the independent subgraphs merge in parallel. Thus, the initial graph is parti-
tioned into P subgraphs such that Ui=1..P {Gi} = G with P is the number
of available processors. After processing the minima detection and labeling on
each partition, the merge of local regional minima is performed in order to
obtain global regional minima.
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Fig. 12 A Weighted Graph: partitionned into two non-overlapped subgraphs (a) the re-
gional minima obtained in each subgraph independently before the merge step (b) and after
the merge step (c)

Algorithm 4: Parallel Regional Minima Detection Algorithm
Data: (V,E,F ) a Weighted Graph and P the number of processors.
Result: Emin the set of regional minima edges of the initial graph.

1 // Initialization
2 foreach ( processor p ∈ (1, . . . , P ) ) do in parallel
3 Lp := φ;
4 Emin := φ;
5 // Split Step
6 (partition1, . . . ,partitionP ):= Static_Partition((V,E,F ), P ) ;
7 // Regional Minima Detection applied on partitions in parallel
8 foreach ( processor p ∈ (1, . . . , P ) ) do in parallel
9 foreach ( u ∈ partitionp ) do

10 if (u is not yet processed) then
11 Emin := Emin∪{u};
12 Lp := Lp∪{u};
13 // Browse the plateau to which u belongs
14 while ( Lp 6= φ ) do
15 foreach ( w ∈ Lp ) do
16 Lp := Lp \{w};
17 foreach ( v ∈ E neighbor of w) do
18 if (( w ∈ Emin) & (F [v]< F [w]) ) then
19 Emin := Emin \{w}; //w is processed but not

labeled as a minimum edge
20 Lp := Lp∪{w};
21 else if ( F [v] = F [w] ) then
22 if ( ( w ∈ Emin & v not yet processed ) ‖ ((w

is processed and /∈ Emin) & (v not processed
or /∈ Emin) ) ) then

23 Emin := Emin∪{v};
24 Lp := Lp∪{v};

25 // Merge Step
26 Emin:=Pyramidal_Merge(F , (Emin(1),. . . , Emin(P )) ,(partition1,

. . . ,partitionP ), P );
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In the Split Step noted on line 6 of Algorithm 4, each processor computes
the boundaries of its corresponding partition. These boundaries are defined
by the indexes of the first (start_index) and the last (end_index) horizontal
(respectively vertical) edges as noted in Algorithm 5 presented in Annex 1.
Note that these boundaries are determined in a way to produce non-overlapped
and balanced partitions (partition1, ... , partitionP ). Then, each processor
copies the indexes of edges between "start_index" and "end_index" of both
horizontal and vertical edges. The Split Step of the Weighted Graph into P
partitions generates P −1 boundaries to be merged. In this paper we opt for a
pyramidal merge described in [3, 4]. This is allowed due to the fact that such
a division ensures that, at each step, the partition containing a given label
will be merged with only one partition at a time. Note that a label is present
in only one partition. Furthermore, if the neighbor’s edges of u belonging to
Pi+1 are labeled as regional minima edges, they must have the same label since
they belong to the same partition. The merge step is applied only on adjacent
boundaries as noted in Algorithm 6 presented in Annex 2. At the partitions
boundaries, each vertical edge u belonging to the partition of a processor
Pi has three neighbor edges belonging to the partition corresponding to the
processor Pi+1: two horizontal edges and one vertical edge (without taking into
account the edges situated at the boundaries of the Weighted Graph which
have only two neighbor edges). To minimize the scan cost, the value of u is
compared only to the lowest neighbor edge belonging to Pi+1. It should be
reminded that the merge of the results at the boundaries leads either to the
fusion of minima labels or to the deletion of labels, i. e. the edges are no longer
labeled as minima edges. To minimize the time cost, the update of labels was
not made directly on the Weighted Graph. We used a correspondence table
[21] to save the equivalences and/or the deletion of labels. Note that initially
each processor Pi has its own correspondence table. The size of the local
correspondence table of each processor is the number of regional minima in
its corresponding partition. Furthermore, each processor labels the regional
minima in its corresponding partition by a local set of labels. Then, at each
step the local correspondence tables are merged in a pyramidal way [3,4] until
a final global correspondence table is obtained. In this context, if the number
of partitions is a power of 2 (i. e., P = 2×q), then the number of steps required
to obtain global correspondence table is given by (1) [4]:

q = log2(P ) (1)

The Average Degree of Parallelism (ADP) is then given by the number of
boundaries to be treated divided by number of steps (cf. Eq. 2) [4]:

ADP = (2q−1)/q (2)

Figure 13 illustrates this processing. It represents an 8× 8 Weighted Graph
partitioned on P=4 processors. Each processor has its local correspondence
table which will be merged until obtaining the global correspondence table. In
this case, the total number of steps is 2 and the average parallelism is equal
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Fig. 13 Pyramidal merge of local results using the correspondence tables: case of equiva-
lence between minima labels (a) and case of deletion of bad minima labels (b)

to 3/2=1.5.
Finally, the labels update step consists in applying, in parallel, the global
correspondence table on the graph.

6.2 Parallel Vertices Valuation

The Vertices Valuation step consists in browsing the vertices of the Weighted
Graph in a raster scan order and attributing to each vertex the minimum
value of the edges to which it belongs. In fact, each vertex x is explored, its
neighbor’s vertices are examined one by one and its altitude is compared to
that of the edge linking the two vertices. If there is an edge with a lower
altitude, then this altitude is attributed to x. Furthermore, if x belongs to
an edge that is labeled as minimum edge, then, it is labeled as a minimum
vertex. This processing is local and does not raise any Data Dependency Issue.
Thus, several vertices can be treated in parallel. Consequently, we applied full
parallelism for its implementation.
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Fig. 14 Execution time and speedup of the parallel Image Segmentation Technique accord-
ing to the number of cores for a 2048×2048 image

Table 4 Speedup of the parallel Image Segmentation Technique applied on images of dif-
férent sizes using 8 cores

Number of images 10 10 10 10 10 10

Resolution 64×64 128×128 256×256 512×512 1024×1024 2048×2048
Speedup 3.34 2.17 2.46 2.67 2.25 2.09

6.3 Experimental results

As we proceeded for the assessment of the parallel M-border Kernel Algorithm,
we evaluated the parallel Image Segmentation in terms of number of cores and
images resolutions.
Figure 14 presents the execution time and the speedup of the parallel Image
Segmentation Technique according to the number of cores. It shows that this
technique allows a gain in terms of execution time. This gain implies a gain in
terms of speedup that increases when the number of cores increases. The best
speedup factor obtained using 8 cores is equal to 2.59 for a 2048×2048 image.
Figure 15 (respectively 16) presents the execution time (respectively speedup)
of this technique applied on the dataset described in Table 1 and implemented
using P={2, . . . , 8} cores. Note that for each size, the associated execution
time (respectively speedup) corresponds to the average values of the execu-
tion times (respectively speedup factors) obtained for 10 images. These figures
show that our parallelization strategy enabled a gain in terms of execution
time (respectively speedup) whatever the images size. Table 4 presents the
speedup factors obtained for images of different sizes using 8 cores.
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Fig. 15 Execution time of the parallel Image Segmentation Technique based on Watershed
Cut computation using the M-border Kernel Algorithm applied on images of different sizes
according to the number of cores

Fig. 16 Speedup of the parallel Image Segmentation Technique based on Watershed Cut
computation using the parallel M-border Kernel Algorithm applied on images of different
sizes according to the number of cores

In Figures 14 and 15, we note that the drop of the execution time of the par-
allel Image Segmentation Technique from 4 to 6 cores is lower than that from
6 to 8 cores. This is not due to the M-border Kernel computation step but to
the regional minima detection step, and more precisely to the merge step. In
fact, for P=4 cores, and according to Eq. 1, only 2 iterations are required to
perform the pyramidal merge of local regional minima. For P=6 cores, 3 itera-
tions are required to obtain the global result. Thus, when the number of cores
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increases from 4 to 6, the regional minima detection processing time is reduced
but the merge cost increases (number of iterations rises from 2 to 3). Conse-
quently, this affects the performance of the whole parallel Image Segmentation
Technique. However, when the number of cores rises from 6 to 8, the number
of the required merge iterations remains the same (3 iterations). Thus, in that
case, the execution time of the regional minima detection processing in each
partition is reduced without increasing the merging cost. Therefore, the gain
of the regional minima detection step in terms of time is more notable from 6
to 8 cores compared to the one from 4 to 6.

7 Conclusion

In this paper, we tackled the parallelization of a Watershed Cut Algorithm
called M-border Kernel Algorithm. We showed that the parallel execution of
this algorithm raises a Data Dependency problem at the level of adjacent M-
border edges. To overcome this problem, we proposed a parallelization strat-
egy of this algorithm that consists in examining non-minima vertices that are
adjacent to minima ones instead of edges in order to obtain a set of edges
that constitutes the Watershed Cut. We showed that this strategy allowed to
overcome the problem of the simultaneous lowering of two or more adjacent
M-border edges that may occur when edge scan is performed. Therefore, a
set of independent vertices were processed in parallel. The aim was to reduce
the execution time of this Watershed Algorithm while preserving the segmen-
tation quality. The results of the segmentation using the parallel algorithm
were similar to those of the sequential Watershed Algorithm which have been
demonstrated to produce good results [8, 11]. Furthermore, the experimental
results showed that the parallel M-border Kernel Algorithm allowed a gain
in terms of execution time and thus speedup. This gain increases when the
number of cores rises and is guaranteed whatever the images resolution is.
The M-border Kernel Algorithm starts by detecting regional minima of the
initial map followed by vertices valuation of the graph. These two preliminary
steps were parallelized in order to improve the overall performances of the Im-
age Segmentation Technique based on Watershed Cut computation using the
M-border Kernel Algorithm. The experimental results showed that similarly
to this algorithm, the speedup factor of the Image Segmentation Technique
was guaranteed whatever the images resolution was and increased when the
number of cores increased.
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Annex 1

Algorithm 5: Static_Partition
Data: A Weighted Graph (V,E,F ) of size rs*cs and P the number of

processors;
Result: (partition1, . . . ,partitionP ) partitions to be treated in parallel

by P processors.
1 //Initialization
2 Q:= cs

P ;
3 R:= cs mod P ; // R is the rest of the division of cs by P
4 foreach (Processor p ∈ {1, . . . ,P}) do in parallel
5 if (p≤R) then
6 cs_start[p]:=(p-1)*(Q+1);
7 cs_end[p]:=cs_start[p] + Q;
8 else
9 cs_start[p]:=(p-1)*Q+R;

10 cs_end[p]:=cs_start [p]+ Q - 1;
11 //First index of horizontal edges
12 HE_StartIndex[p] := cs_start[p]∗ rs;
13 //Last index of horizontal edges
14 HE_EndIndex[p] := (cs_end[p]+1)∗ rs−2;
15 //First index of Vertical edges
16 V E_StartIndex[p] :=N + cs_start[p]∗ rs;
17 //Last index of horizontal edges
18 V E_EndIndex[p] :=N +(cs_end[p]+1)∗ rs−1;
19 partitionp:=E[[HE_StartIndex[p], . . . ,HE_EndIndex[p]]+

[V E_StartIndex[p], . . . ,V E_EndIndex[p]]];

Annex 2
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Algorithm 6: Pyramidal_Merge
Data: a map F and its minima M(F )
Data: (P1, . . . ,PN )set of partitions and N the number of processors.
Result: M(F ) Merged Minima of F .

1 // Initialization
2 Nbbords :=N −1; // Number of boundaries to process
3 Start:=0;
4 while (start < Nbbords) do
5 // Do in Parallel
6 foreach (Partition Pi such that i ∈ (1, . . . , N)) do in parallel
7 if ( ( (Pi - Start) mod Step ) = 0 ) then
8 True:=1;
9 IsActive:=( True & (p < (N -1)) ) ;

10 if (IsActive) then
11 //Browse the low boundary of partition
12 foreach ( u ∈ BPi ) do
13 //Compute the neighbour edge of u of the lowest altitude
14 v:= MinVoisin (u); // MinVoisin is a function that returns

the edge neighbor v of an edge u which have the lowest
altitude

15 if ( F (u) = F (v) ) then
16 if (u ∈ M(F ) & v ∈ M(F )) then
17 // Merge plateaus of the minima u and v by

attributing the same label
18 else if (u ∈ M(F ) & v /∈ M(F )) then
19 // Delete plateau of u from the minima set
20 else if (u /∈ M(F ) & v ∈ M(F )) then
21 // Delete plateau of v from the minima set

22 if ( F (u)< F (v) ) then
23 if (v ∈ M(F )) then
24 // Delete plateau of v from the minima set

25 if ( F (u)> F (v) ) then
26 if (u ∈ M(F )) then
27 // Delete plateau of u from the minima set

28 // Final Update of the equivalence table to obtain global labels
29 foreach ( i ∈ (1, . . . , NbLabels )) do
30 h := i;
31 while ( TabEq[h] 6= h ) do
32 h := TabEq[h];
33 TabEq[i] := h;
34 Start:=Step-1;
35 Step:=2*Step;
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Table 5 Symbols used in Algorithms

Symbol Symbol Name Meaning/Definition
mod modulo the rest of the division: remainder calculation
∗ multiplication multiplication
− minus sign substraction
= equal sign equality
< strict inequality less than
> strict inequality greater than
6= not equal sign inequality
∈ element of set membership
/∈ not an element of no set membership
:= assignment assignment
φ empty set φ={}
& and and
‖ or or
A\B relative complement elements that belong to A and not to B
Z integer numbers set Z = {...−3,−2,−1,0,1,2,3, ...}
N natural numbers set N = {0,1,2,3, ...}


