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Variational Study on the Vibrational Level Structure of Ethylene

We present converged large scale calculations on the vibrational frequencies of ground electronic state ethylene (C 2 H 4 ), using our variational vibrational method, incorporating a specific search/selection/Lanczos iteration procedure. In the calculations the exact kinetic energy operator (KEO) derived by Rempe&Watts as well as the ab initio quartic potential energy surface (PES) computed by Martin et al. of ethylene is employed. Both the fundamental frequencies as well as some higher excited frequencies in the first CH stretch region have been calculated. Careful convergence tests have been performed. For some of the fundamentals we have found appreciable deviations from the results of previous calculations, that used the same PES. The possible reasons for the distinctions have been discussed.

Introduction

Ethylene is a popular polyatomic molecule, whose ground electronic state vibrational fundamental frequencies as well as some higher excited frequencies have been studied spectroscopically rather thoroughly [1][2][3][4][5][6][7]. Ethylene is a highly symmetric (D 2h ) molecule.

Ethylene has been considered as a natural candidate for extension of the series of ab initio anharmonic force field computations on smaller molecules, to a six-atomic molecule, e.g. Martin, Lee, Taylor and Francois (MLTF) [8]. These authors produced the first reliable high level ab initio anharmonic (quartic) force field for ethylene, using augmented coupled cluster, CCSD(T), methods and correlation basis sets of spdf quality. This field was generated in terms of symmetry curvilinear local bond-angle coordinates, as defined in the work of Lee et al. [9].

Using their potential energy surface (PES), and straight second order rovibrational perturbation theory, MLTF have obtained all 12 fundamental vibrational frequencies of ethylene in quite 2 good agreement with the experimentally measured values [8]. Later on, ethylene served as a suitable model molecule for testing the performance of advanced variational rovibrational calculation methods on a six atomic molecule [10][11][12][13]. The calculations in [10][11][12] were based on the quartic PES of MLTF [8], with a specific correction for the CH stretching part of this field [10]. In [13], the authors developed their own ab initio PES for ethylene of higher quality than that of MLTF, but they did not publish their field for use by other workers.

Most contemporary variational methods for the calculation of molecular vibrational frequencies are designated for the universal application to a wide class of molecular systems. A few years ago we developed a specific variational vibrational method that was strictly molecule specific, because it was based on the exact kinetic energy operator of the considered molecule, in terms of curvilinear bond-angle coordinates and also taking fully into account the molecular symmetry properties. Our major purpose was to achieve higher accuracy as well as the possibility to explore higher excited vibrational levels and the extent of IVR and vibrational level mixing in that range. Our method was applied originally to formaldehyde and some isotopomers, where extremely good convergence and high accuracy was achieved, extending to very high vibrationally excited levels [14][15][16], and later applied successfully to thiophosgene [17]. In the present work we are applying our modified and improved variational vibrational method to explore the vibrational level structure of ethylene C 2 H 4 . We are using the exact KEO operator for ethylene in curvilinear local coordinates together with the quartic PES of MLTF [8] in the same coordinates. Details of the derivation of the exact KEO operator, coordinates, wavefunctions and basis sets, as well as our specific calculation procedure are described in Sections 2, 3 and 4, respectively, while the results from our calculations on the ethylene vibrational frequencies both in the fundamental region and up to the first CH stretch overtones are presented in Section 5. In Section 6 we discuss our results and conclude.

Kinetic energy operator and potential energy surface for ethylene.

For our purposes it was necessary to obtain the exact KEO of ethylene in explicit analytic form in terms of the curvilinear internal vibrational coordinates in the form of a sum of products of functions of a single coordinate. We decided to make use of the explicit expression of Rempe and Watts [18], derived using the procedure of Handy [19]. However we could not use their expression directly, because we had to use somewhat different weight function for normalization of the wavefunction than theirs that was more convenient for our purposes. Furthermore we needed to introduce the three symmetrized out-of-plane angular coordinates S 4 , S 7 and S 8 from [9], instead of the nonsymmetrized  1 ,  2 ,  3 , from [18] and the four u i coordinates (u i = cos ( i ), 3 i=1,…,4), instead of the four in-plane H-C-C angles  i from [18]. In Fig. 1 are presented the designations for the atoms, bonds and in-plane angles of ethylene as used in this work. After performing the necessary transformations on the explicit expressions given in [18] [Table I (second derivatives) and Table II (first derivatives and nondifferential term)], we obtained the full expression for the KEO of ethylene in terms of our coordinates, that are defined below. This was not a trivial task, which involved rather complicated derivations and transformations. The obtained full KEO expression is presented in Table I (this table is at the end of the manuscript).

Our curvilinear vibrational coordinates q 1 ,…,q 12 , for the KEO of ethylene, are defined as follows: q i = r ir 0 (i = 1,..,4) are the shifts of the four C-H bond lengths r i from their equilibrium value r 0 (Fig. 1); S 2 (A g ) = q 5 = r 5r 0 CC is the shift of the C-C bond length r 5 from equilibrium r 0 CC ; q i = u i-5u 0 (i = 6,..,9) are the shifts of the four cosine functions u i = cos ( i ) (i = 1,..,4) of the four H-C-C in-plane angles  i from equilibrium u 0 = cos ( 0 ) (Fig. 1); q 10 = S 7 (B 1u ); q 11 = S 4 (A u ); q 12 = S 8 (B 2g ) are the three symmetrized out-of-plane angular motions, defined in [9]. The connection between S 4 , S 7 , S 8 [9] and  1 ,  2 ,  3 [18], is given by the relations:

S 7 (B 1u ) = 1/√2( 1 - 2 ), S 4 (A u ) = 1/√2(2 3 - 1 +  2 ), S 8 (B 1u ) = 1/√2( 1 +  2 ).
All KEO terms given in Table I, are presented in terms of the coordinates q 1 ,…,q 12 . Of these, only q 5 = S 2 (A g ), q 11 = S 4 (A u ), q 10 = S 7 (B 1u ) and q 12 = S 8 (B 1u ) are symmetrized.

For the definition of the PES [8] however, the symmetrized combinations S 1 , S 5 , S 9 , S 11 of the coordinates q 1 -q 4 and S 3 , S 6 , S 10 , S 12 of the coordinates q 6q 9 , are also needed. Here we give these symmetrization relations for consistency, although they were already defined in [9]: S 1 (A g ) = 1/√2(q 1 + q 2 + q 3 + q 4 ), S 5 (B 1g ) = 1/√2(q 1 + q 2q 3 + q 4 ), S 9 (B 2u ) = 1/√2(q 1q 2q 3 + q 4 ), S 11 (B 3u ) = 1/√2(q 1q 2 + q 3 + q 4 ), S 3 (A g ) = 1/√2(q 6 + q 7 + q 8 + q 9 ), S 6 (B 1g ) = 1/√2(q 6 + q 7q 8 + q 9 ), S 10 (B 2u ) = 1/√2(q 6q 7q 8 + q 9 ), S 12 (B 3u ) = 1/√2(q 6q 7 + q 8 + q 9 ).

In terms of the symmetrized coordinates S 1 ,…,S 12 , the completely symmetrized quartic PES for ethylene is given by the following expression (where F ij , F ijk and F ijkl are the quadratic, cubic and quartic force constants [8]):

U(S 1 , …,S 12 ) = 1/2∑ ∑ + 1/24∑
This is the correct expression for the quartic potential of MLTF [8] and not eq. 6, from [10]. However, as pointed out by Avila an Carrington [10], and based on the considerations of Burcl et al. [20], using the powers of the CH stretch coordinates q i = r ir 0 directly in the potential does not yield satisfactory results in a variational calculation (as it does in a perturbative calculation [8]), because such a potential would not behave correctly at the larger CH stretch displacements. Therefore it is adviseable to use a Morse variable y i = 1exp(-q i ) 4

and hence q i =log(1y i ). We replace q i (i=1,..,4) and its powers in the MLTF potential with the following expansions in terms of the Morse variable y i up to fourth order: q i = y i + y i 2 /2 + y i 3 /3 + y i 4 /4, q i 2 = y i 2 + y i 3 + 11/12 y i 4 , q i 3 = y i 3 + 3/2 y i 4 , q i 4 = y i 4 . This is similar but not exactly equivalent to the procedure employed by Avila and Carrington [10].

Wavefunctions and basis sets.

Our nonsymmetrized basis functions  n1,n2,..,n12 (q 1 ,q 2 ,…,q 12 ) are defined as products of 12 one-variable basis functions:

 n1,n2,..,n12 (q 1 ,q 2 ,…,q 12 ) = | n 1 ,n 2 ,…,n 12 › =  n1 (q 1 ) n2 (q 2 )… n12 (q 12 ) (1) 
Each factor  ni (q i ) in this product is a member of the basis set for the variable q i with quantum number n i . All functions  ni (q i ) of the variable q i are orthogonal and normalized in the quantum numbers n i = 0,1,… A harmonic oscillator basis set is employed for each of the four CH stretches  n1 (q 1 ), …, n4 (q 4 ); another harmonic oscillator basis set describes the CC stretch,  n5 (q 5 ); a third harmonic oscillator basis set is used for each of the three out-of-plane vibrations q 10 = S 7 , q 11 = S 4 and q 12 = S 8 . The parameters of each harmonic oscillator basis set are adapted to represent most closely the frequencies of the corresponding vibrational motion (3100 cm -1 for the CH stretches, 1600 cm -1 for the CC stretch and 950 cm -1 for the three out-of-plane bends). Our goal has been to build a vibrational basis set that describes energetically as closely as possible the molecular vibrational levels. With such a basis set, the molecular vibrational eigenfunctions would be obtained as linear combinations of a minimal number of basis functions and the required active space (AS) of basis set functions for a vibrational calculation is optimally reduced in dimensionality. Finally, for the four H-C-C(θ) bends (coordinates q 6 -q 9 , corresponding to in-plane bends  i , i = 1,..,4, Fig. 1) we have used a set of associated Legendre

polynomials ) (cos 2  n P
, n=2,3,…, that cancel the singularities in the KEO operator. However these wavefunctions have no free parameters to adjust and are not well adapted to the molecular vibrations, therefore in order to optimize and adapt them to the considered vibrational problem, we perform prediagonalization of the original 1D basis using a simple 1D Hamiltonian.

We proceed in the following way to calculate the Hamiltonian matrix elements ‹m 1 ,m 2 ,…,m 12 |T+U|n 1 ,n 2 ,…,n 12 ›, where T and U are the KEO and the PES operator, respectively. Since both T and U take the (separable) form of a sum of products of functions (operators) f ki (q i ) of one q i variable only, the above matrix element also takes the form of a sum of products of 1D matrix elements:

5 ‹m 1 ,m 2 ,…,m 12 | T+U |n 1 ,n 2 ,…,n 12 › = ∑ ⟨ | | ⟩ ⟨ | | ⟩ ⟨ | | ⟩ (2) 
For each of the four different 1D basis sets (described above) there exists a comparatively small number of different operators or functions. These are calculated preliminarily to each vibrational calculation, in some cases analytically but in most cases by numerical integration. E.g., considering the CH stretches, f k1 (q 1 ) can be one of ⁄ , ⁄ 1/q 1 , 1/q 1 2 for the KEO and one of q 1 , q 1 2 , q 1 3 , q 1 4 , for the PES. Each of these is preliminarily calculated for all possible combinations of quantum numbers n 1 , m 1 = 0, 1, 2,…,n CH max , where n CH max is the size of the 1D basis, in this case n CH max = 31. In this way, for each of the five f k1 (q 1 ) functions, we obtain a 2D numerical array f k1 (n 1 ,m 1 ) (n 1 , m 1 = 0, 1, 2,…,n CH max ), that is stored in computer memory. In analogous manner we proceed for the CC stretch basis (n CC max = 31), for the out-plane bend basis, where n o.p. max = 38 and for the in-plane bend basis, where n i.p. max = 40. As a result, each matrix element ( 2) is readily calculated algebraically as the sum of products of the required numbers, that are taken from computer memory. On the other hand it is seen, that the primitive space (PS) of all available basis states for a vibrational computation is obtained as 31 5 × 40 4 × 38 3 = 4×10 18 , which is quite a huge number. From this huge PS, using our specific search/selection procedure, which will be briefly discussed below, we select a small but representative AS, that is most suitable for solving the considered vibrational problem at a desired level of accuracy. To further reduce the size of the selected AS, in our approach we use symmetrized basis states. As a result, the selected AS always consists of states of one and the same symmetry species. A basis function of the type (1) is symmetrized by applying on it the required permutations of atoms, corresponding to the appropriate symmetry operations of the point group D 2h . As a result, the symmetrized function will either retain only one term, if it has a totally symmetric distribution of all CH bond stretch occupation quantum numbers (n 1 =n 2 =n 3 =n 4 ) and of all in-plane angular bends occupation quantum numbers (n 6 =n 7 =n 8 =n 9 ), or according to the symmetry of these distributions, it may be a linear combination of either two or four basis functions (1).

Search/selection procedure.

Our search/selection procedure is designed to select from a huge PS a small AS of appropriately symmetrized states, that is both optimally economic but also exhaustively representative for the vibrational couplings around the considered vibrational state of interest.

Our search/selection procedure is a central part of our vibrational calculation method and it has been described in considerable detail in some of our previous publications [15][16][17]. The present 6 procedure to be applied to ethylene has been substantially modified and improved but in essence it retains the same key features. Here we shall only briefly and schematically mention some important details that will be helpful for our presentation. The search/selection procedure is started with a symmetrized basis state |0›, that is closest to the vibrational eigenstate to be explored. E.g., in order to perform a calculation on the CH stretch fundamental  1 , and the vibrational structure around this frequency (of A g symmetry), the (symmetrized version of the) state |0›=|1 1 ,0 2 ,…,0 12 › is taken. The mechanism for successively probing all basis states around |0›, at continuously increasing distance in quantum number space, has been described previously [15][16][17]. Starting with |0›, the basic criterion for probing and selecting new states is the sufficiently large ratio k of the coupling matrix element between the new state and a previously selected state and the energy gap between these states. For a probed basis state to be selected and supplemented to the AS, it must also fulfil the requirement for a sufficiently large cumulative coupling strength q to the already selected manifold of basis states. The cumulative coupling strength q is essentially obtained as a product of k factors along a chain (path), starting from the initial state of the search |0›. Each already selected state from the AS obtains a q index and a new state will be selected and added to the AS only if its calculated q index exceeds a limiting (small) value q 0 . In this way the preliminarily chosen value for the parameter q 0 is determining for the extent of the search, the dimensionality of the selected AS and hence for the degree of precision in the vibrational calculation. Arbitrarily diminishing the value of q 0 results in extended AS and improved precision of the calculated vibrational frequencies. A search procedure is completed when no new basis states can be detected in the search process, that satisfy the criterion for sufficiently strong involvement in the vibrational coupling to |0› and the already selected AS, according to the preliminarily chosen parameter of the search q 0 . During the progress of the search/selection procedure, the Hamiltonian matrix of the vibrational problem is simultaneously being composed, that consists of all coupling matrix elements between the selected basis states (nondiagonal matrix elements) and their energies (diagonal matrix elements). Upon completion of the search/selection procedure, the obtained Hamiltonian matrix is diagonalized iteratively, using a preliminary Lanczos tridiagonalization procedure. In this way we obtain the vibrational eigenvalues E i and first component X i of the relevant eigenvector i.

First component is representative of the extent of vibrational involvement of this eigenstate with the initial basis state |0›. This feature X i (it is more convenient to use the quantity I i = |X i |, which 7 we call intensity by analogy) is extremely helpful in recognizing the vibrational frequencies of interest, in a dense vibrational distribution I i (E i ) (which we call spectrum, for simplicity), which is the usual situation for a large molecule such as ethylene and especially at the higher excited vibrational energies.

Calculations on the vibrational frequencies of ethylene.

We have performed large scale vibrational calculations on ethylene C 2 H 4 both in the fundamental as well as in the higher excited vibrational range (first CH stretch overtone region, at ~6000 cm -1 ). We start with a very important issue for the convervence of the calculated vibrational frequencies, which is central to our work, namely, the calculation of the zeroth vibrational energy E 0 of C 2 H 4 . In Table II are presented the results from our calculations on E 0 at progressively increasing precision (and accordingly increasing dimensionality N of the selected AS).

TABLE II

Dependence of the calculated zeroth vibrational energy E 0 and the dimensionality N of the selected AS for ethylene C 2 H 4 on the chosen value for the cumulative coupling strength q 0 . As we see from the Table II, with increasing precision of the calculation (and increasing AS dimensionality) the calculated zeroth energy E 0 steadily decreases, converging towards 10942 cm -1 . We note, that both Avila and Carrington [10] and Carter et al. [11] found a value of E 0 ~11004 cm -1 , which is obtained in our calculation at very low accuracy of q 0 between 10 -2 and 10 -3 . This discrepancy of about 60 cm -1 is hard to explain, taking into account that we are using practically the same PES of MLTF [8], as these authors. We shall discuss this issue later in this work.

q 0 E 0 [cm -1 ] N 10 -
Next, in Table III are presented the converged fundamental frequencies of ethylene C 2 H 4 , computed in this work. For comparison, also the computed values by Avila and Carrington [10] and Carter et al. [11] and MLTF [8] (using second order perturbation theory), as well as the experimentally measured frequencies are also displayed. What are the most important conclusions from the results displayed in this Table ? In general, our results are significantly lower than the computed results of the other authors (which are more or less in agreement among themselves) as well as from the experimentally measured values. In particular, for the five stretching modes, our results are rather close to the results of the other workers. On the other hand, for the in-plane-bending modes, our results are consistently lower by ~10-12 cm -1 than earlier calculations, and for  12even by ~20 cm -1 . For the out-ofplane modes, the agreement is even worse, our results being by 15-25 cm -1 lower than the earlier calculations.

9

In order to provide justification for our results, we have performed careful convergence tests for a number of vibrational frequencies. In Table IV are presented the results from calculations on the frequencies of modes  1 ,  3 ,  6 and  10 , at increasing precision of the calculation.

TABLE IV

Dependence of the computed C 2 H 4 fundamentals  1 ,  3 ,  6 and  10 at increasing precision of calculation, determined by the diminishing q 0 value. It is noteworthy, that with increasing precision of the calculation (diminishing q 0 value), all fundamentals diminish, attaining at q 0 ~ 10 -6 the values, determined by previous calculations of other authors, but converging subsequently to substantially lower values ( 3 ,  6 and  10 ) upon further improving precision.

q 0  1  3  6  10
Next, in Table V is presented an analogous convergence test for the three out-of-olane modes,  4 ,  7 and  8 .

TABLE V

Dependence of the computed C 2 H 4 out-of-plane modes  4 ,  7 and  8 at increasing precision of calculation, determined by the diminishing q 0 value. It is noteworthy that all fundamentals  4 ,  7 and  8 , attain at q 0 ~ 10 -2 -10 -3 the value, found by previous calculations, but upon increasing precision (at further diminishing q 0 ) all there frequencies proceed to decrease further, converging towards substantially lower values.

q 0  4  7  8 
Next, in order to demonstrate the capabilities of our method to calculate reliably higher excited vibrational levels in ethylene, we present some preliminary calculations on the vibrational structure in the range of the first CH stretch overtone, at ~ 6000 cm -1 . In this range of excess vibrational energy the vibrational level density is so high, that the ability of our method to ascribe coefficients of vibrational involvement to each calculated eigenstate E i (absolute square of the first eigenvector component X i or, as we call it for simplicity -intensity

I i = |X i |) is of vital
importance for distinguishing (recognizing) the required states (frequencies) of interest.

There are four components of A g symmetry, of the first CH stretch manifold: 2 1 , 2 5 , 2 9 , 2 11 (in normal mode notation). We have performed four separate calculations on these states, starting each search/selection procedure with one of the following symmetrized states (|0›):

|0› 1 = |2 1 ,0 2 ,…,0 12 |A g ›, |0› 2 = |1 1 ,1 2 ,…,0 12 |A g ›, |0› 3 = |1 1 ,0 2 ,1 3 ,..,0 12 |A g ›, |0› 4 =
|1 1 ,0 2 ,0 3 ,1 4 ,…,0 12 |A g ›. In all four calculations, a number of frequencies emerge repeatedly by their prevailing intensities (but with different relative intensities in the "spectral" distributions I i (E i ) in the four different calculations). These high intensity levels are superimposed on a dense background of low intensity levels. By analyzing comparatively these four spectral distributions, we arrive at the conclusion, that the four A g components of the first CH stretch manifold, in normal mode notation, have following frequencies: 2 1 = 6033 cm -1 , 2 5 = 6150 cm -1 , 2 9 = 6209 cm -1 , 2 11 = 5941 cm -1 . To be more convinced about the reliability of our calculations in this energy range, we performed convergence test calculations on the symmetrized state |0› 1 = |2 1 ,0 2 ,…,0 12 |A g ›, for the three frequencies 2 1 , 2 5 , and 2 11 , at successively increasing precision (diminishing search parameter q 0 ). Further large scale calculations on other components of the first CH stretch overtone at ~6000 cm -1 (of other symmetries) as well as other highly excited vibrational levels in the range 3000 -6000 cm -1 are in progress.

Discussion and conclusions

We have given a comprehensive description of our specific variational vibrational method, as applied to the calculation of the vibrational frequencies of ethylene C 2 H 4 . This is a substantially modified and elaborated version of our vibrational method, previously applied for vibrational calculations on formaldehyde [14][15][16] and thiophosgene [17]. Our method is essentially based on the employment of the exact molecular KEO in terms of curvilinear local bond-angle coordinates, a set of fully symmetrized direct product basis states and the ab initio quartic PES of MLTF [8], with a minor modification for the CH stretch part, to adapt for the application of variational treatment. Our vibrational method is based on a specific search/selection procedure, for selection from a huge primitive space, of an AS space of vibrational basis states (all of them belonging to the same symmetry species) that is both sufficiently complete and representative but also optimally reduced in dimensionality, to account for the significant vibrational couplings in the vibrational range of interest for the specific calculation. Using our vibrational variational method, we have performed converged calculations on the 12 fundamental vibrational modes of ethylene, as well as some preliminary large scale computations on the higher excited vibrational energy levels, in particular on the four vibrational components of A g symmetry, belonging to the first CH stretch manifold, in the range of 6000 cm -1 .

To our surprise, for many of the fundamentals we did not obtain very good agreement between our results and the results from previous calculationsboth variational [10][11][12] as well as perturbational [8], although all these authors worked with the same PES of MLTF [8]. As a general rule, our calculated frequencies are consistently lower (more or less) than the previously calculated values by the three different groups (that are in most cases in satisfactory agreement among themselves) and in addition they are also substantially lower than the experimentally measured frequencies (cf. A more serious disagreement with earlier calculations is found for the in-plane bending modes, of 10-12 cm -1 for the fundamentals  3 ,  6 ,  10 , and of even ~ 20 cm -1 for the  12 mode. An even stronger disagreement of our results with previous calculations is found for the three out-of-plane modes: by ~15 cm -1 lower for  7 ,  8 , and by ~25 cm -1 lower for  4 .

It must be pointed out that in most cases the previously calculated results are in much better agreement both among themselves as well as with the experimentally measured frequencies than our present results. This is mainly valid for  3 ,  4 ,  6 ,  7 ,  9 ,  12 . For  8 , our calculated frequency is much lower than the three previously calculated results, which are very close to each other, but the experimentally measured frequency is substantially higher than them.

A similar situation is valid for  10 .

How can this serious disagreement between the results from our present calculations and those of previous authors be explained and justified? We can think of two major factors that could lead to this discrepancy. First is the employment in our calculations of curvilinear local bond-angle vibrational coordinates and an exact KEO in terms of these coordinates, instead of normal coordinates as used by all other workers. All previous calculations used the Watson KEO in terms of NM coordinates, which necessarily introduces certain approximations in the calculations. On the other hand, the PES of MLTF [8] employed in all calculations, was also expressed in terms of these local curvilinear coordinates. Another source of disagreement between the present and previous calculations might be the pruning procedure employed by previous authors to determine the AS of basis states for the vibrational calculation. In our view this pruning procedure might lead to preliminary exclusion of certain basis states that could prove important contribution to the vibrational mixing picture. While, our search selection procedure is designed to select from a vast primitive space the important basis states to be included in the AS, without setting any preliminary conditions and restrictions. Indeed, we have found, that in most of our vibrational calculations some highly excited (high quantum numbers) basis states are included to participate in the AS by search/selection procedure, that would have certainly been excluded by any preliminary pruning process.

Finally, as a result of our very careful convergence tests we believe, that our present calculated results give an essentially correct picture of ethylene vibrational frequencies, that exactly corresponds to the input PES of MLTF [8]. To have a reliable correspondence between a given PES for a molecule and a set of vibrational frequencies is of crucial importance for both 13 the realistic assessment of the quality of the PES as well as for its eventual adjustment, to fully match the experimentally measured vibrational frequencies of this molecule. 
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 1 Figure 1. Schematic representation of ethylene and vibrational curvilinear bond-angle coordinates.

TABLE VI

 VI Results for the three frequencies 2 1 , 2 5 , and 2 11 , from three calculations on the symmetrized state |0› 1 = |2 1 ,0 2 ,…,0 12 |A g ›, at successively increasing precision (diminishing search parameter q 0 ); N(AS) is the dimensionality of the selected active space of basis vectors.

	q 0	N(AS) 2 1	2 5	2 11
	10 -6 16979 6036 6162 5948
	10 -7 38199 6036 6162 5944
	10 -8 92192 6033 6150 5941

  TableIII). Nevertheless, for the four CH stretch fundamentals  1 ,  5 , 12  9 ,  11 and the CC stretch mode  2 , we obtained a comparatively good coincidence with previous data, although the frequencies  9 (B 2u ) and  11 (B 3u ) are still by about 7-10 cm -1 on the lower side.

TABLE I

 I Expression of the vibrational kinetic energy operator for ethylene (or ethylene-like molecules), in terms of curvilinear local coordinates specified in ig.1. ll terms have to be multiplied by ħ 2 /2 and by the partial derivative, that is indicated in front; m H and m C are the atomic masses of hydrogen and carbon, respectively; (1/m H + 1/m C ) = g s ; 1/m H = g H ; 1/m C = g C ;

	∂ 2 /∂r i 2 :	g s	(i=1,2,3,4)					
	∂ 2 /∂r 1 ∂r 2 :		⌈	√	√		√	⌉	
	∂ 2 /∂r 3 ∂r 4 :		⌈	√	√		√	⌉	
	∂ 2 /∂r 5 2 : 2 g C							
	∂ 2 /∂r i ∂r 5 :			(i=1,2,3,4)					
	∂ 2 /∂u i 2 :	(	)	(	)	(	)	(i=1,2,3,4)	
	∂ 2 /∂u 1 ∂u 2 :	√	√		√	(		)	(	)(	)
	∂ 2 /∂u 3 ∂u 4 :	√	√		√	(		)	(	)(	)
	∂ 2 /∂u 1 ∂u 3 :		√	√		√	(	)	
	∂ 2 /∂u 2 ∂u 4 :		√	√		√	(	)
	∂ 2 /∂u 1 ∂u 4 :		√	√		√	(	)	
	∂ 2 /∂u 2 ∂u 3 :		√	√		√	(	)	
	∂ 2 /∂r 5 ∂u i :					(i=1,2,3,4)		
	∂ 2 /∂r 1 ∂u 2 :		√	√		√	(	)	(	)
	∂ 2 /∂r 2 ∂u 1 :		√	√		√	(	)	(	)
	∂ 2 /∂r 3 ∂u 4 :		√	√		√	(	)	(	)

Electronic mail: rashev@issp.bas.bg.

√ √ √ √

√ ∂/∂r 4 : √ √ √ ∂/∂r 5 :

√ √ √ √

√ √ √ √ ) √

√ √ √ √ ())