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Abstract

Verification of ensemble forecasts for extreme events remains a challenging
question. The general public as well as the media naturely pay particu-
lar attention on extreme events and conclude about the global predictive
performance of ensembles, which are often unskillful when they are needed.
Ashing classical verification tools to focus on such events can lead to un-
expected behaviors. To square up these effects, thresholded and weighted
scoring rules have been developed. Most of them use derivations of the Con-
tinuous Ranked Probability Score (CRPS). However, some properties of the
CRPS for extreme events generate undesirable effects on the quality of veri-
fication. Using theoretical arguments and simulation examples, we illustrate
some pitfalls of conventional verification tools and propose a different di-
rection to assess ensemble forecasts using extreme value theory, considering
proper scores as random variables.

Keywords: Scoring rules; verification, ensemble forecasts; CRPS ; extreme
events ; calibration.

1. Introduction

In a pioneering paper on forecast verification, Murphy (1993) distin-
guished three types of forecast “goodness”: the quality that quantifies the
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adequacy with what actually happened, the consistency based on the fidelity
to an expert knowledge, and the value that describes how the forecast helps
the decision maker to proceed efficiently. The quality of a forecast is often
summarized by one scalar. For example, to identify the best forecast, one
classically takes the mean on a validation period of proper scoring rules (see,
e.g., Matheson and Winkler, 1976; Gneiting and Raftery, 2007; Schervish
et al., 2009; Tsyplakov, 2013). Proper scoring rules can be decomposed in
terms of reliability, uncertainty and resolution. Several examples of such de-
compositions can be found in Hersbach (2000) and Candille and Talagrand
(2005). Bröcker (2015) showed that resolution is strongly linked with dis-
crimination. Resolution and reliability can also be merged into the term
calibration, and Gneiting et al. (2007) suggested to maximize the sharpness
subject to calibration. Note that the sharpness is the spread of the forecast,
and it is a property of the forecast only. In ensemble forecasts’ verification,
the most popular scoring rule is the Continuous Ranked Probability Score
(CRPS) (see, e.g., Epstein, 1969; Hersbach, 2000; Bröcker, 2012) and it can
be defined as

CRPS(F, y) =

∫ ∞
−∞

(F (x)− 1{x ≥ y})2 dx,

= EF |X − y| −
1

2
EF |X −X ′|,

= y + 2F (y)EF (X − y|X > y)− 2EF (XF (X)). (1)

where y ∈ R, and X and X ′ are two independent random copies coming
from a given continuous cumulative distribution function (cdf) F . Hence,
the CRPS is a proper1 score that makes the link between the observed value
y and the forecast distribution F . The second line in Equality (1) highlights
the two terms of calibration and sharpness.

Regarding extremes verification, it is important to counteract some cog-
nitive biases bounding to discredit skillful forecasters (examples of cognitive
biases can be found in Kahneman and Tversky (1979); Morel (2014)). That
is what is called in Lerch et al. (2017) the “Forecaster’s dilemma”. Citing
these authors, “In the public, forecast evaluation often only takes place once
an extreme event has been observed, in particular, if forecasters have failed
to predict an event with high economic or societal impact”. Indeed, the

1A proper score like the CRPS satisfies: EY∼G(CRPS(G, Y )) ≤ EY∼G(CRPS(F, Y )).
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only remedy is to consider all available cases when evaluating predictive per-
formance. Proper weighted scoring rules (Gneiting and Ranjan, 2011; Diks
et al., 2011) attempt to emphasize predefined regions of interest. Following
the notation of Equation (1), the weighted CRPS can be defined as

wCRPS(F, y) =

∫ ∞
−∞

(F (x)− 1{x ≥ y})2w(x) dx, (2)

= EF |W (X)−W (y)| − 1

2
EF |W (X)−W (X ′)|,

where w(x) is a non negative function andW (x) =
∫ x
−∞w(t)dt. Alternatively,

the weighted CRPS can also be expressed as the following:

wCRPS(F, y) = W (y) + 2F (y)EF (W (X)−W (y)|X > y)

−2EF (W (X)F (X)) (3)

as soon as the weight function w(·) is continuous (see proof in Appendix 6.1).
Who among different users (e.g., forecast users and forecasters) should choose
this weight function remains a complex issue (see, e.g. Ehm et al., 2016;
Gneiting and Ranjan, 2011; Patton, 2014). Even in this case where w(x) can
be objectively chosen with respect to an application at hand, one can wonder
if the corresponding weighted CRPS captures well the extreme behavior of
the observational records, i.e discriminating between two competitive fore-
casts with respect to extreme events. This leads to the question of how to
model accurately the distributional features of the forecast and observational
vectors.

In this work, we move away from looking at averages like the properness
of a score. Instead we propose a different framework that considers the
observational vector, not as a realization, but as a random variable with a
specific extreme value behavior. This change of view with regards to scoring
rules brings us to study the distribution of the CRPS itself. It naturally
suggests to bridge the random variable CRPS with the field of Extreme Value
Theory (EVT).

The foundations of this theory are laid in De Haan (1970), see e.g. the
books of Embrechts et al. (1997); Beirlant et al. (2004); De Haan and Ferreira
(2007). EVT provides probabilistic models to represent the distributional
behavior of large values, i.e. excesses above a large threshold. Roughly
speaking, it is based on the survival function of the so-called Generalized
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Pareto (GP) distribution with shape parameter γ ∈ R defined by

Hγ(x/σ) =
(

1 +
γx

σ

)− 1
γ
,

for each x such that 1+γx/σ > 0 and σ > 0 represents a scale parameter. For
γ = 0, this can be viewed as the classical exponential tail. The fundamen-
tal property of this GP family is its stability with respect to thresholding
(see, e.g., Embrechts et al., 1997, Theorem 3.4.13 (c)). As pinpointed by
Friederichs and Thorarinsdottir (2012), it is possible to express explicitly the
CRPS(F, y) whenever F is a GP distribution and the real y is fixed. Start-
ing from this link between CRPS and extreme values, it would be of interest
to know what would be the behavior of CRPS(F, y) when the observational
vector y becomes a random variable that takes very large values.

This work is organized as follows. In Section 2 we point out some un-
desirable properties of the CRPS and its weighted counterpart. We derive
the non-tail equivalence of the wCRPS and highlight potential difficulties of
using the wCRPS for extreme weather evaluation. Section 3 sets the theo-
retical framework in which the temporal aspects in scoring rules are stressed.
Section 4 links the observational tail behavior with the CRPS tail behavior.
An index which captures some quality w.r.t. extremes forecast is introduced.
The work closes with a discussion in Section 5.

2. Tail equivalence, weighted CRPS and choice of a weight function

2.1. Tail equivalence and (weighted) CRPS

Focusing on the upper tail behavior study, it is convenient to recall the
definition of tail equivalence between two cdf F and G (see, e.g., Embrechts
et al., 1997, Section 3.3). They are said to be tail equivalent if they share
the same upper endpoint xF = xG and if their survival functions F = 1− F
and G satisfy limx→xF F/G = c ∈ (0,+∞). Another useful EVT concept
is the notion of domain of attraction: a distribution F is said to belong to
the domain of attraction of the GP distribution Hγ, denoted F ∈ D(Hγ), if
for some γ, some positive auxiliary function b, the rescaled survival function
converges as u tends to xF to a GP with shape parameter γ, i.e.

F (u+ zb(u))

F (u)
−→ Hγ(z), (4)
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for each z such that 1 +γz > 0. Even if the weighted CRPS is proper, there
is no guarantee of tail equivalence2. More precisely, for any positive ε, it is
always possible to construct a cdf F that is not tail equivalent to G such that

|EG(wCRPS(G, Y ))− EG(wCRPS(F, Y ))| ≤ ε. (5)

This result is proven in Appendix 6.2. The implication of (5) is that a fore-
cast F could have a misspecified tail (one which is not tail equivalent to the
“true” forecast G) and still score almost as well as the true forecast. To
illustrate the inability to distinguish among different tail behaviors, the up-
coming section investigates the case of a particular choice of weight function.
This choice will also be considered later in Section 3 in a forecasts comparison
perspective.

2.2. The quantile weight function

Since our interest concerns jointly the CRPS and the upper tail behavior,
the quantile weight function appears as a natural candidate to highlight
upper tail features. It is simply defined as wq(x) = 1{x ≥ q} for any real q.
The following lemma, see Appendix 6.3. for its proof, links the CRPS and
its weighted version.

Lemma 1. The weighted quantile CRPS defined by

wCRPS(F, y; q) =

∫ ∞
−∞

(F (x)− 1{x ≥ y})21{x ≥ q}, dx,

where q represents any real number can be written as

wCRPS(F, y; q) =

∫ ∞
q

F
2
(x)dx+

{
0, if q > y,
CRPS(F, y)− CRPS(F, q), if y ≥ q.

The following conditional equality in distribution holds for any random vari-
able Y :

[CRPS(F, Y )|Y ≥ q]
d
= [wCRPS(F, Y ; q)− cF (q)|Y ≥ q] , (6)

2It may explain the weakness in estimating the shape parameter of a GP distribution
via the CRPS based inference, see Friederichs and Thorarinsdottir (2012).
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where the constant

cF (q) = CRPS(F, q)−
∫ ∞
q

F
2
(x)dx

only depends on the forecast distribution F and the constant q.

In terms of extremes, Equation (6) tells that the distributional behavior
of this weighted CRPS above the threshold q is identical to the classical
CRPS conditional on Y ≥ q, up to the constant cF (q).

2.3. The CRPS for the Pareto case

When both the forecast (with cdf F ) and observational vectors (with cdf
G) are Pareto distributed, explicit computations of the CRPS can be made,
see the following lemma and its proof in Appendix 6.4.

Lemma 2. Assume that X
d
= Pareto(β, ξ) and Y

d
= Pareto(σ, γ) with 0 ≤

ξ < 1 and 0 ≤ γ < 1, with respective survival functions F (x) = (1+ξx/β)−1/ξ

and G(x) = (1 + γx/σ)−1/γ for any x > 0. If γ/σ = ξ/β, with γ 6= 0, then

EG [CRPS(F, Y )] =
σ

1− γ
+ 2β

[
1

2(2− ξ)
− γ

γ + ξ − γξ

]
.

This gives the minimum CRPS value for ξ = γ and σ = β,

EG [CRPS(G, Y )] =
σ

(2− γ)(1− γ)
.

In particular, this lemma tells us that if the GP forecast parameter is pro-
portional to the GP ideal parameter, i.e. β = aσ and ξ = aγ for some a > 0,
then we can study the effect of changing the forecast tail behavior captured
by ξ and the spread forecast encapsulated in β. In this case, the CRPS can
be written as a function of a, say

EG [CRPS(F, Y )] = φγ(a) =
σ

1− γ
+ 2aσ

[
1

2(2− aγ)
− 1

1 + a− aγ

]
. (7)

Figure 1 shows how this CRPS varies in function of a (x-axis) when we fix
σ = 1 and γ = 0.1 (left panel) or γ = 0.4 (right panel). The important point
is that no meaningful conclusions about the upper tail previsions from two
competing forecasters can be made within the blueish “cup” region. Inside
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Figure 1: Function φγ(a) defined by (7) computed between X
d
= Pareto(a, aγ) and Y

d
=

Pareto(1, γ) with γ = .1 (left panel) and γ = .4 (right panel). Whenever a > 1, the
forecaster overestimates the true upper tail behavior. The opposite can be said when
a < 1. The ideal forecast corresponds to a = 1. The blueish “cup” corresponds to the
region where a same value of EG [CRPS(F, Y )] (y-axis) provides an ambiguity, i.e. two
forecasters can issue two very different values of a (x-axis), either greater or lower than
one, for the same score value.

this ambiguous region, the same value of EG [CRPS(F, Y )], y-axis, can be
given by two different values of a. One a is greater than one, corresponding
to a forecaster prone to a risky strategy, while another a is smaller than one,
made by a forecaster risk averse. The spread of this region over a is not small,
and spans from a = 0 to a around 2. The left panel in Figure 1 implies that
two hypothetical forecasters, one multiplying by 2 the true extreme quantiles
and the other dividing them by two, cannot be differentiated, both have φγ(a)
around .7. In other words, the difference between two inaccurate forecasters
with opposite risk views have to be very pronounced to be correctly ranked
by the CRPS. To numerically assess this drawback, we can compute the area
of this ambiguous region. The area delimited by the blueish cup can be
written as

A(γ) = φ(0)× a0 −
∫ a0

0

φγ(a)da, with a0 =
3

1 + γ
and φ(a0) = φ(0),

= 2σ

[∫ a0

0

a

1 + a− aγ
da−

∫ a0

0

a

2(2− aγ)
da

]
,
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= 2σ

[
1

1− γ

∫ a0

0

(
1− 1

1 + (1− γ)a

)
da+

1

2γ

∫ a0

0

(
1− 2

(2− aγ)

)
da

]
,

= 2σ

[
a0(1 + γ)

2γ(1− γ)
− 1

(1− γ)2
log(1 + (1− γ)a0) +

1

γ2
log(1− a0γ/2)

]
.

By plotting this function (graph not shown here but available upon request),
one can notice that this integral varies from between .9 and 1 for γ ∈ [0, .5]
and σ = 1. So, despite that the blueish “cup” region appears smaller in the
right panel than in the left one, this impression is just due to the y-axis scale.
The area does not vary much and the problem aforementioned still remains
over a wide range of γ.

3. Framework, examples and forecast comparison

3.1. Theoretical framework and examples

Our theoretical framework is the now classical prediction space already
introduced by Murphy and Winkler (1987); Gneiting et al. (2013); Ehm et al.
(2016). A probabilistic forecast for a real-valued outcome Y is identified with
its cdf F . The elements of the associated sample space Ω can be identified
with tuples of the form

(F1, . . . , Ft, Y )

where the predictive cdfs F1, . . . , Ft use information sets ∆1, . . . ,∆t ⊆ ∆,
respectively, where ∆ is a general set with nice theoretical properties3. See
e.g. Ehm et al. (2016, section 3.1) for details. As an illustration, if Y is
a weather variable of interest, with (unconditional) distribution function G,
∆t can for example depict the underlying atmospheric state at time t, see
e.g. tables 1 and 2 for two examples of conditioning. Following Gneiting
et al. (2007), the outcome Y can be viewed as a true data-generating process
coming from Gt := G|∆t for each time step t. The associated sequence of
probabilistic forecasts is Ft for each t, and a forecast Ft is ideal relative to
∆t if Ft = Gt.

The asymptotic compatibility between the data-generating process and
the predictive distributions can be divided in the three following modes of
calibration, where an arrow denotes almost sure convergence as T tends to

3More precisely, ∆ is a sigma-field on Ω.
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infinity:

(P) :
1

T

T∑
t=1

Gt ◦ F−1
t (p)→ p for all p ∈ (0, 1) .

(E) :
1

T

T∑
t=1

G−1
t ◦ Ft(x)→ x for all x ∈ R .

The third type of calibration (M) can be summed up by the existence of
the limit distributions F and G such as F = G. The existence of G is a
natural assumption in meteorology and corresponds to the existence of a
stable climate. Hence, (M) can be interpreted in terms of the equality of
observed and forecast climatology.4

For seek of illustration, let us now consider two different designs of expe-
riments. The first one is the design introduced by Gneiting et al. (2007), also
considered by Straehl and Ziegel (2017), and described here in Table 1. At
times t = 1, 2, ..., the cdf of the truth (observation) is modeled by a normal
distribution with mean ∆t and unit variance, where ∆t is a random draw
from the standard normal distribution. This model is denoted in the fol-
lowing by Model NN. The ideal forecaster provides a forecast of N (∆t, 1).
The climatological forecaster corresponds to the unconditional distribution,
i.e. a centered normal distribution with variance equal to 2. The unfocused
forecaster adds a Rademacher-type bias in his/her forecast. Finally, the ex-
tremist forecaster adds an additive bias in his forecast. The Bayesian reader
can notice that this design of experiments relies on the conjugate prior of
the normal distribution. For extreme events concerns, this example can be
limiting, since it involves light tails and exhibits a slow convergence of the
large values. As a consequence, we introduce a second design of experiment
in Table 2, based on Gamma-exponential mixtures and denoted by Model
GE. More precisely, suppose that [Yt|∆t] follows an exponential distribution
with mean 1/∆t, and ∆t follows a Gamma pdf f∆t(x) = βα

Γ(α)
xα−1 exp(−βx),

with x > 0, α > 0 and β > 0. As the Gamma Laplace transform can be

written as E [exp (−x∆t)] =
(

1 + x
β

)−α
= Hξ(x) whenever α = β = 1/ξ,

4In Gneiting et al. (2007), the sequence (Ft)t is then respectively said probabilistically
calibrated (in short, calibrated), exceedance calibrated, and marginally calibrated. Besides,
the sequence (Ft)t is said auto-calibrated when it is jointly probabilistically and marginally
calibrated.
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the unconditional Y has a GP tail with parameter ξ. Hence, the climatolog-
ical forecaster corresponds to the unconditional distribution, i.e. a Pareto
distribution, while the ideal forecaster should follow [Yt|∆t] an exponential
distribution with mean 1/∆t. The unfocused forecaster adds a uniform-type
bias in his forecast, whereas the extremist forecaster adds a multiplicative
bias in his forecast.

Table 1: Model NN (Normal-normal). Both samples (∆t)t and the (τt)t are mutually
independent of each other.

Truth Yt
d
= N (∆t, 1) where ∆t

d
= N (0, 1)

Forecasts Properties
Ideal forecaster N (∆t, 1) PEM

Climatological forecaster N (0, 2) PEM
Unfocused forecaster 1

2
(N (∆t, 1) +N (∆t + τt, 1)) PEM

with τt = ±2 with 1/2 probability each
Extremist forecaster N (∆t + 5/2, 1) PEM

Table 2: Model GE (Gamma-Exponential). Both samples (∆t)t and the (τt)t are mutually
independent of each other. For the unfocused forecaster, the P calibration gives p+ ε(p)
with |ε(p)| < 0.0051.

Truth Yt
d
= Exp(∆t) where ∆t

d
= Γ(4, 4)

Forecasts Properties
Ideal forecaster Exp(∆t) PEM

Climatological forecaster Pareto cdf with σ = 1 and γ = 1/4 PEM
Unfocused forecaster Exp(∆t/τt), with τt = 2/3 ∗ U1 + 1/3 ∗ U2 PEM

where U1
d
= U [1/2, 1] and U2

d
= U [1, 2]

Extremist forecaster Exp(∆t/1.5) PEM
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3.2. Comparing forecasts with expected weighted CRPS

This subsection compares with the quantile weight function different fore-
casts based on the two designs presented in tables 1 and 2, (see also, Diebold
et al., 1997; Dawid, 1984). In Figure 2, the expected weighted CRPS (at
log scale) for each model (model GE: top, model NN: bottom) is plotted for
each forecast according to q (left) and the corresponding ranking between
forecasts (right). Properness of the wCRPS ensures that the ideal forecaster
has the lowest score expectation. The dotted horizontal lines correspond to
the unweighted CRPS expectation. Concerning the latter, the CRPS(Ft, y)
for the ideal forecaster can be expressed explicitly (see, e.g., Friederichs and
Thorarinsdottir, 2012, and Equation (20) in Appendix 6.4) as

CRPS([G|∆t], y) = y+
2

∆t

exp(−∆ty)− 3

2∆t

, where [G|∆t]
d
= Exp(∆t), (8)

and for the climatological forecaster, as

CRPS(G, y) = y − 8

3
[1− (H0.25(y))0.75] +

4

7
. (9)

From Figure 2, two important features can be identified: (1) the loss of infor-
mation for large values, well-known by Brier score users and clearly pointed
out by Stephenson et al. (2008), and (2) the fact that forecast rankings can
switch order. A change in the forecast ranking is observed for the model
GE in Figure 2. This can, artificially, favor a forecaster over another one.
For example, the climatological forecaster could be tempted to only show
his/her results for a weight function with q > 0.96 in order to outperform
the extremist forecaster.

One can argue that the weight function should not be chosen by forecast
makers but rather by forecast users (see e.g. Ehm et al., 2016). This opin-
ion was also expressed by Gneiting and Ranjan (2011) who wrote that “the
scoring function [must] be specified ex ante” and relayed by Patton (2014)
“forecast consumers or survey designers should specify the single specific loss
function that will be used to evaluate forecasts”. This is a well-known fact
for decision makers in economics. In contrast, users of weather forecasts may
be less aware of potential negative impacts of poor forecasts. A recent survey
(Hagedorn, 2017) concludes that 81% of probabilistic information users relies
on heuristic/experience rather than on cost/loss models in order to take de-
cisions. Last but not least, given the proximity between the wCRPS values it

11
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Figure 2: Time-averaged values of log(1 + EGt
[CRPS(Ft, Yt)]) (dotted) and log(1 +

EGt
[wqCRPS(Ft, Yt)]) (plain) among with Wq(x) = x1{x ≥ q} as functions of quantiles q

(left). Time t varies between 1 and 107. Ranking of the different forecasts according to
the wqCRPS (right). The model GE is on top, the model NN is on bottom. The forecast
ranking can switch between very close weight functions. For high thresholds, it is not
possible to distinguish a clear forecast ranking among forecasters.

seems highly valuable to compute tests of equal predictive performance. For
example, Table 3 presents the two-sided pairwise Diebold-Mariano statistic
values on the wCRPS among forecasters of the model GE for 2 different quan-
tiles (0.875, 0.975). These quantiles are before and after the ranking switch
between two forecasters. Table 3 clearly shows that the ranking of Figure 2
can be challenged. From this section and Section 2.3, one can conclude that
weighting scoring rules have to be handled with care, especially for forecast
makers (Gilleland et al., 2018; Lerch et al., 2017).
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Table 3: Diebold-Mariano statistic values for two wCRPS functions among forecasters for
the model GE. The equal predictive performance is not rejected at the level 0.05 for the
values in bold. A positive value means that the row forecast is better than the column one.
For the quantile 0.975, the value between the climatological and the extremist forecasters
are in contradiction with Figure 2, but non significant. This Table is built from 105

observation/forecast pairs which are independent with those used for Figure 2.

Quantile 0.875
Ideal Climatological Unfocused Extremist

Ideal 44.7 36.9 48.3
Climatological -44.7 -23.1 -9.94

Unfocused -36.9 23.1 12.0
Extremist -48.3 9.94 -12.0

Quantile 0.975
Ideal Climatological Unfocused Extremist

Ideal 21.7 21.7 27.7
Climatological -21.7 -9.24 2.61

Unfocused -21.7 9.24 7.19
Extremist -27.7 -2.61 -7.19

4. A CRPS-based tool using extreme value theory

4.1. CRPS behavior and calibration-information diagram

Ferro (2007) proposed to link EVT with forecast verification of extreme
events by giving a theoretical framework to characterize the joint distribu-
tion of forecasts and rare events. This concerned deterministic forecasts and
other tools are needed, see the quote by Stephenson et al. (2008) “develop-
ment of verification methods for probability forecasts of extreme events is an
important area that clearly requires attention”. A difficulty is to summa-
rize forecast knowledge in an informative way in order to make meaningful
comparisons for extreme observations.

In sections 2 and 3, we saw that a single number as the mean of the
CRPS (or the mean of the weighted CRPS) has many drawbacks to compare
forecasts with extreme observations. Instead of focusing on one number, we
propose in this section to study the distribution generated by these CRPS
as random variables. To fix ideas, consider the model GE. From equations
(8) and (9), it is possible to view these ideal and climatological scores as
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random variables whenever Y is itself considered as a random variable. The
properness of the CRPS ensures here that for each t

E[G|∆t][CRPS([G|∆t], Yt)] ≤ E[G|∆t][CRPS(G, Yt)].

At this stage, it is important to recall what can be considered as observed
in applications. In practice, ∆t is not given to the forecaster at time t, we
just have access to one realization of yt, and we can compute CRPS(Ft, yt)
for each t. Under the assumption of the existence of G, we obtain that the
sample (y1, . . . , yt) is a mixture on the information sets, and so is a sample
of Y . The underlying distributions of Yt from where the yt are drawn are
unavailable in practice.

For any forecast Ft described in tables 1 and 2, two types of samples of
size T can be defined and then simulated :

S1 = {CRPS(Ft, yt)}t=1,...,T and S2 = {CRPS(Ft, yπ(t))}t=1,...,T , (10)

where the later is obtained by shuffling the observational vector {yt}t into
{yπ(t)}t with the random shuffling operator π(t). This shuffling breaks the
conditional dependence between yt and Ft produced by the hidden vari-
able ∆t. Let then consider two random variables, respectively denoted by
CRPS∇(F, Y ) and CRPS⊗(F, Y ), with respective cdf equal to the empirical
cdf associated to S1 and S2 respectively.

By sorting separately the values of each sample S1 and S2, a qq-plot type
can be obtained to compare the empirical distributions of these two samples.
The left panels of Figure 3 (top panel for the model GE and low panel for
the model NN) indicate that the climatological forecast (blue color) provides
the same distributional features for the two samples S1 and S2. The same
type of plots, see right panels, can be made at the uniform scale, see the
pp-plots. The important message from Figure 3 is that the ideal, unfocused
and extremes forecasts (black, red and green, respectively) move away from
the diagonal. This behavior is linked to the notion of auto-calibration5.

5The auto-calibration condition ensures a good interpretation of the discrepancy be-
tween distributions as a mean to evaluate the skill of the forecast. This is in accordance
with the recommendations on the extremal dependence indices (EDI) of Ferro and Stephen-
son (2011), quoting that the forecasts should be calibrated in order to get meaningful EDIs.
In the same vein, we corroborate the Gneiting et al. (2007) paradigm of maximizing the
sharpness subject to calibration by maximizing the information subject to auto-calibration.
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Besides the climatological forecaster, the samples S1 and S2 capture relevant
information about the discrepancy generated by the hidden conditioning, i.e.
the unobservable random variable ∆t.

Table 4: Availability status of the quantities of interest.

Object Definition Availability
in practice

Ft Distribution of the forecast for time t yes
yt Oberved realisation at time t yes
∆t Conditioning random variable no
Yt Conditional random variable generating yt no
Y Unconditional random variable of the observations yes

CRPS(Ft, yt) CRPS of the couple for time t yes
CRPS(Ft, Yt) Random variable associated to CRPS(Ft, yt) no
CRPS∇(F, Y ) Random variable generated by the (CRPS(Ft, yt))t yes
CRPS⊗(F, Y ) Random variable generated by the (CRPS(Ft, yπ(t)))t yes

One way to understand the difference in information between CRPS∇(F, Y )
and CRPS∇(G, Y ) is to study the integrated difference between the associ-
ated cdfs. Indeed, assuming auto-calibration, evaluating the general amount
of information brought by a forecast boils down to measure its expected
sharpness. This is also equivalent to evaluate its expected score, see Tsy-
plakov (2013, Section 2.3), where the “expected score” has to be understood
with our notation as E{CRPS∇(F, Y )}.

The lemma presented below shows that the amount of information brought
by an auto-calibrated forecast F is also related to the discrepancy d(F ), de-
fined as the L1-distance between the cdfs of CRPS∇(F, Y ) and CRPS∇(G, Y ):

d(F ) :=

∫ ∞
0

{
FCRPS∇(F,Y )(t)− FCRPS∇(G,Y )(t)

}
dt .

Note that this quantity is non negative. This follows from the fact that the
climatological forecast has the lowest sharpness, and d(G) = 0.

Lemma 3. Assume that G,F1, F2 are auto-calibrated forecasts, and that the
observation Y has cdf G; then the following statements hold:
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(i) CRPS(G, Y )
d
= CRPS⊗(G, Y )

d
= CRPS∇(G, Y ) in distribution;

(ii) E{CRPS∇(F1, Y )} ≤ E{CRPS∇(F2, Y )} ⇔ d(F1) ≥ d(F2).

The proof of this lemma is relegated to Appendix 6.5.
To summarize, see also Table 4, the available distributional objects are:

the empirical distribution function associated to the unconditional distribu-
tion of the observations; the forecasts’ distributions; and the empirical dis-
tribution made by the (CRPS(Ft, yt))t. This leaves the practitioners with
the three possible empirical distributions, one obtained from CRPS⊗(F, Y ),
the one from CRPS∇(F, Y ), and CRPS∇(G, Y ). The remaining question is
to determine if the empirical distributions associated with these samples can
bring relevant information concerning the extremal behavior.

Before addressing this question, we close this section by Figure 4 that
summarizes a calibration-information diagram about the trade-off between
calibration and information. Subject to auto-calibration, sharpness and in-
formation represent the same attributes of a forecast. This diagram can be
seen as a natural extension of the idea of Bentzien and Friederichs (2014).

4.2. CRPS behavior for extreme events

4.2.1. Pareto approximation of the CRPS

So far, our examples were based on very specific parametric forms, see
tables 1 and 2. In this section, we will see how the study of the upper tail
behavior of the CRPS can be moved from these specific examples towards
less stringent conditions based on EVT (see Appendix 6.6 for the proofs).

Let Xt and Yt be two random variables with absolutely continuous cdfs Ft
andGt, respectively. If these two cdfs have identical upper bounds, xFt = xGt ,
Gt belongs to D(Hγt) and cFt = 2EFt(XFt(X)) is finite, then conditionally
to ∆t, one has for s such that 1 + γts > 0, as u→ xGt ,

P
(

CRPS(Ft, Yt) + cFt − u
b(u)

> s|Yt > u,∆t

)
−→ (1 + γts)

−1/γt . (11)

Equation (11) tells us that, given ∆t and for large observational values, the
CRPS upper tail behavior is equivalent to the one provided by the observa-
tion. This generalises the ideas seen throughout the specific case of (8). It is
also interesting to point out that CRPS∇(G, Y ) has a different tail behavior.
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Figure 3: Distributional comparaison via qq-plots and pp-plots between the two samples
S1 and S2 defined in (10), with respect to the forecasters described in tables 1 and 2.

More precisely, if G belongs to D(Hγ) with γ > 0, then, for s such that
1 + γs > 0, as u→ xG:

P
(

CRPS∇(G, Y )− u
b(u)

> s|Y > u

)
−→ (1 + γs)−1/γ . (12)

The constant term in (11) vanishes in (12) due to the linear behavior of the
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Calibration

Information

Extremist forecaster

Ideal forecaster

Unfocused forecaster

Climatological forecaster

Auto-calibration

Figure 4: Theoretical calibration-information diagram. The positions of the different types
of forecasts are presented. The ideal forecast is calibrated and the most informative.

auxiliary function b(u) for γ > 0 (see, e.g. Von Mises, 1936; Embrechts et al.,
1997). The GE model in Table 2 illustrates this. Working with a dependent
couple (Ft, Yt) or with an independent (G, Y ) has an enormous impact on
the tail behavior of the respective CRPS. For the GE model, the limit in (11)
exhibits an exponential tail behavior, whereas the Pareto limit in (12) shows
a heavy-tailed behavior. The difference of tail behaviors could be beneficial
for partitioners.

4.2.2. Practical use of the CRPS Pareto tail behavior

To take advantage of the limiting behavior difference between (11) and (12),
one needs to have access to samples from these two distributions. At this
stage, we can use the convergence provided by (12) to write the following
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approximations (as u gets large)

CRPS∇(G, Y )|Y > u ∼ Y |Y > u ∼ Hγ,σu , (13)

where Hγ,σu represents the Generalized Pareto distribution with scale param-
eter σu and shape parameter γ. The two approximations in (13) lead us to
propose comparing, for extreme observations above u with u large, the empi-
rical cdf generated by the (CRPS(Ft, yt))t with the theoretical Pareto associ-
ated to CRPS∇(G, Y ). To make this comparison, we rely on the Cramér-von
Mises criterion (Cramér, 1928; Von Mises, 1928) :

ω2
u =

∫ +∞

−∞
[Ku,T (v)−Hγ,σu(v)]2dHγ,σu(v).

where Ku,T corresponds to the empirical distribution based on the sample
CRPS∇(F, Y ) for Yt above u. To compute this criterion, we order the
CRPS(Ft, yt) values (in increasing order) and called them v1, · · · , vm. The
integer m represents the number of observations above u. Then, the Cramér-
von Mises statistic6 becomes

Tu = m× ω̂2
u =

1

12m
+

m∑
i=1

[
2i− 1

2m
−Hγ,σu(vi)

]2

.

Given an auto-calibrated forecast, a large value of Tu indicates an added
value of this forecast for extremes.

4.2.3. An index for extremes skill subject to calibration

For large m and large u, under the null hypothesis the statistic Tu should
approximatively follow a Cramér-von Mises distribution. Hence, under this
distributional assumption, it is possible to compute the quantile (p-value)
associated with Tu. This number in [0, 1] is denoted pFu here. Note that
the auto-calibration condition is fundamental to avoid large type II error, as
Ferro and Stephenson (2011) already recommended for EDIs. In order to get
an asymmetric index, we propose to compute the following ratio

1− pFu
pclimu

. (14)

6A description of the algorithm calculating Tu is provided in Table 5
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This index ranges from zero to one7, and equals to zero for the climatological
forecast. The higher the better.

To see how this index behaves in practice, we revisit the experimental
design described in Table 2. For the GE model, 106 CRPS values were
computed for each type of forecast. In Figure 5, the index defined by (14)
is plotted against increasing quantiles, ranging from .75 to 1. The extremist
forecast (green curve) appears superior to the others, but being no calibrated,
it has to be discarded. Subject to auto-calibration, the perfect forecast (black
curve) with an exponential distribution, conditionally on the unobserved ∆t,
is the most rewarded. The climatological forecast, although heavy tailed, has
the lowest index.

Table 5: Computation of Cramér-von Mises’ statistic and p-value for a forecast F from T
couples forecast/observation.

0. CRPS estimates: - For the T couples forecast/observation,
compute their corresponding instantaneous
CRPS.

1. Estimation of γ: - Find a threshold u where the Pareto approx-
imation is acceptable and estimate the Pareto
shape parameter γ and σ .

2. For a threshold w ≥ u: - Compute the scale parameter σw = σ + γw.
3. Computation of Tu - Order the m CRPS values in increasing order

v1, . . . , vm.
For i ∈ [1,m] -Compute for each CRPS value vi, Hγ,σw(vi).

-Compute
[

2i−1
2m
−Hγ,σw(vi)

]2
.

End 3.
End 2.

As expected, we can see for the GE model in Figure 5 that excluding
the extremist forecaster which is not auto-calibrated, the index rewards the
perfect forecast.

7It can happen that the computation makes this quantity non-positive (ie. pFu > pclimu ),
this pathological outcome is the result of an uncalibrated forecast F and therefore a
meaningless quantity.
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Figure 5: Cramér-von Mises’ criterion-based index as a function of the order of the quantile
kept as threshold. Subject to auto-calibration, the index rewards the perfect forecast and
is information-sensitive.

Concerning the threshold choice, this is not an issue for the GE example
because both the exponential and Pareto distributions are threshold invari-
ant. This setup, by removing the threshold choice issue, is ideal to under-
stand our approach. But, it is not realistic in practice. A threshold choice
has to made and, many approaches could be used to handle this non-trivial
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decision (see, e.g., Naveau et al., 2016; Beirlant et al., 2004). Such decision
clearly depends on the application at hand. For example, the recent study
by Taillardat et al. (2019) proposed and compared different post processing
approaches to improve precipitation forecasts in France. As extreme rainfall
can be heavy tailed distributed, we expect that the forecasting approaches
coupled with EVT, referred as QRF EGP tail, EMOS GEV and EMOS EGP
in Figure 6, should perform better than other non-EVT based approaches
like Anologs, QF and QRF, see Taillardat et al. (2019) for a detailed descrip-
tion of each post-processing techniques. The behavior of our index (y-axis
in Figure 6) defined by (14), independently of the threshold choice, clearly
indicates the superiority of representing extremes for the forecasting methods
that included a specific EVT treatment of heavy rainfall. This confirms the
conclusions of Taillardat et al. (2019), especially in regards to their Figure 3.

5. Discussion

According to our analysis of the CRPS, the mean of the CRPS and its
weighted derivations seem to be unable to discriminate forecasts with differ-
ent tails behaviors, whatever the weighting scheme.

Coming back to the three types of “goodness” introduced by Murphy
(1993), the forecast value seems to be the most important for extreme events.
For example, severe weather warnings are still made by forecasters, and de-
spite of a possible inaccurate prediction quantitatively speaking, the fore-
caster has to take the decision according to a threshold of interest. This
approach is completely linked with the economic value of the forecast, or
equivalently with the ability of standing out from the climatology. For de-
terministic forecasts, such tools are well-known, see e.g. Richardson (2000);
Zhu et al. (2002). Other widely used scores based on the dependence be-
tween forecasts and observed events have been considered in Stephenson
et al. (2008); Ferro and Stephenson (2011). Recently, Ehm et al. (2016) have
introduced the so-called “Murphy diagrams” for deterministic forecasts. This
original approach allows to appreciate dominance among different forecasts
and anticipate their skill area. In the same vein, we show that, subject to
auto-calibration, relevant information about extremes can be represented by
the discrepancy between unconditional and conditional score’s distribution.
An open question remains: subject to auto-calibration, do the score’s distri-
bution can locally beat the perfect forecast or be beaten by the climatological
forecast ? We illustrate this conjecture in Figure 7.
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Figure 6: Cramér-von Mises’ based indexes as a function of the threshold for the 6-h
rainfall forecast.

Inspired by Friederichs (2010), our work consists of applying extreme
value theory on common verification measures itselves. We therefore con-
sider the score as a random variable. Relying on some properties of the
CRPS for large observed events we put a theoretical framework concerning
the score’s behavior for extremes. As a result, we obtain a bounded index in
[0, 1] to assess the nexus between forecasts and observations. One can view
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Figure 7: Illustration of the conjecture of the Discussion Section. On the left, we think
that subject to auto-calibration the distribution score’s are bounded by respectively the
best and the poorest auto-calibrated forecasts (grey areas can never be visited). In the
right, a pseudo-Murphy diagram (Ehm et al., 2016) is presented. In our conjcture, for a
given value of θ (corresponding to a quantile order of the observations) a ranking can be
made among forecasters.

this contribution as an additional step in bridging the gap in the field of
ensemble verification and extreme events, (see, e.g. Ferro, 2007; Friederichs
and Thorarinsdottir, 2012; Ferro and Stephenson, 2011). The ensemble fore-
cast information is kept by the use of the CRPS. The index introduced in
Section 4.2.3 can be considered as the probabilistic alternative to the deter-
ministic scores introduced by Ferro (2007) and Ferro and Stephenson (2011).
We would say that the paradigm of maximizing the sharpness subject to cal-
ibration can be associated with the paradigm of maximizing the information
for extreme events subject to auto-calibration. It would be convenient to
study the specific properties of this CRPS-based tool and its potential paths
and pitfalls. Another potentially interesting investigation could be to extend
this procedure to other scores like the mean absolute difference, the igno-
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rance8 score (Diks et al., 2011) or the Dawid-Sebastiani score (Dawid and
Sebastiani, 1999).

6. Appendix

6.1. Proof of the inequality (3)

Assume that the weight function w(.) is continuous. By integrating by

parts
∫ y
−∞ F

2(x)w(x) dx and
∫∞
y
F

2
(x)w(x) dx and usingW (x) =

∫ x
−∞w(z)dz,

the weighted CRPS defined by (2) can be rewritten as

wCRPS(F, y) = EF |W (X)−W (y)| − 1

2
EF |W (X)−W (X ′)|.

The equality |a− b| = 2 max(a, b)− (a+ b) gives

EF |W (X)−W (y)| = 2EF max(W (X),W (y))− EFW (X)−W (y),

= W (y)− EFW (X) + 2EF (W (X)−W (y)I[W (X) > W (y)]) ,

and

EF |W (X)−W (X ′)| = 2EF max(W (X),W (X ′))− 2EFW (X),

= 4E(W (X)FW (X)(W (X)))− 2EFW (X),

= 4E(W (X)F (X))− 2EFW (X) ,

where the last line follows from the fact that FW (X)(W (X)) and F (X) have
the same distribution, which is uniform on (0, 1). As W (x) is non-decreasing,
one has {W (X) > W (y)} = {X > y}, and it follows that

wCRPS(F, y) = W (y)− EFW (X) + 2EF (W (X)−W (y)I[W (X) > W (y)])

−2EF (W (X)F (X)) + EFW (X),

= W (y) + 2F (y)EF (W (X)−W (y)|X > y)− 2EF (W (X)F (X)) ,

as announced in (3).

8Indeed, the Neyman-Pearson lemma described in Lerch et al. (2017) let us think that
this score could be a natural candidate.
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6.2. Proof of the inequality (5)

Let u be a positive real. Denote Z a non-negative random variable with
finite mean and cdf H. We introduce the new random variable

Y = X1{u ≥ X}+ (Z + u)1{X > u} (15)

with survival function G defined by

G(x) =

{
F (x), if x ≤ u
H(x− u)F (u), otherwise ,

(16)

where Z has the same end point than X, H(0) = 1 and

H(x− u) ≤ F (x)/F (u), for any x ≥ u. (17)

This latter condition implies that

G(x) ≤ F (x), for all x. (18)

Because of W (x) is strictly increasing, the equation (16) allows to write
almost surely that

E(W (X)1{X < x}) = E(W (Y )1{Y < x}) , for any x ≤ u. (19)

Equality (19) combined with the expression of the CRPS implies that

1

2
[wCRPS(G, x)− wCRPS(F, x)]

= EY [(W (Y )−W (x))1{Y > x}]− EX [(W (X)−W (x))1{X > x}]
+EX(W (X)F (X))− EY (W (Y )G(Y )),

= EY (W (Y )G(Y ))− EX(W (X)F (X))

−EY [(W (Y )−W (x))1{Y ≤ x}] + EX [(W (X)−W (x))1{X ≤ x}]

= EY (W (Y )G(Y ))− EX(W (X)F (X)) +

∫ xF

u

∆(x)dF (x),

where

∆(x) = EX [(W (X)−W (x))1{X ≤ x}]− EY [(W (Y )−W (x))1{Y ≤ x}].
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The stochastic ordering between Y and X implies that EY (W (Y )G(Y )) −
EX(W (X)F (X)) ≤ 0. This leads to

1

2
|EX [wCRPS(G,X)]− EX [wCRPS(F,X)]| ≤

∫ xF

u

∆(x)dF (x).

For x > u we can write that

∆(x)

= EX [(W (X)−W (x))1{u < X ≤ x}]− EY [(W (Y )−W (x))1{u < Y ≤ x}],
≤ EY [(W (x)−W (u))1{u < Y ≤ x}],

since W (X)−W (x) ≤ 0 and 0 ≤ W (x)−W (Y ) ≤ W (x)−W (u),

= (W (x)−W (u))[G(x)−G(u)],

≤ (W (x)−W (u))G(u),

= (W (x)−W (u))F (u).

Hence, we can write that

|EX [wCRPS(G,X)]− EX [wCRPS(F,X)]| ≤ 2F (u)

∫ xF

u

(W (x)−W (u))dF (x),

≤ 2F
2
(u)EX [W (X)−W (u)|X > u].

This inequality is true for any u and H. The right hand side of the last
inequality does not depend on H(x). Thus, the tail behavior of the random
variables X and Z can be completely different, although the CRPS of F and
G can be as closed as one wishes. The right hand side goes to 0 due to the
finite mean of W (X).

6.3. Proof of Lemma 1

As the weight function is discontinuous at x = z, (3) cannot be applied.
Instead, if z > y, the condition {x ≥ z} implies {x ≥ y}, and consequently

wCRPS(F, y; z) =

∫ ∞
z

F
2
(x) dx, if z > y.

If y ≥ z, then

wCRPS(F, y; z) =

∫ y

z

F 2(x)dx+

∫ ∞
y

F
2
(x)dx = CRPS(F, y)− cz
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where cz =
∫ z
−∞ F

2(x)dx. In summary, we write with the notation c∗z =∫∞
z
F

2
(x) dx,

wCRPS(F, y; z) =

{
c∗z, if z > y,
CRPS(F, y)− cz, if y ≥ z.

As CRPS(F, z) =
∫ z
−∞ F

2(x)dx +
∫∞
z
F

2
(x)dx = cz + c∗z, In addition, it

follows that

E [wCRPS(F, Y ; z)] = c∗zG(z) + E [CRPS(F, Y )1{Y ≥ z}]− czG(z),

=

∫ ∞
z

F
2
(x) dx+ E [CRPS(F, Y )|Y ≥ z]G(z)− CRPS(F, z)G(z).

6.4. Proof of Lemma 2

In order to simplify the notation, and since t > 0 is fixed, the depen-

dence in time t is omitted along the lines of this proof. Assume that X
d
=

Pareto(β, ξ) and Y
d
= Pareto(σ, γ) with 0 ≤ ξ < 1 and 0 ≤ γ < 1, i.e. with re-

spective survival functions F (x) = (1+ξx/β)−1/ξ and G(x) = (1+γx/σ)−1/γ

for any x > 0. Applying (3) with W (y) = y, and making use of classical prop-
erties of the Pareto distribution (see e.g. (Embrechts et al., 1997, Theorem
3.4.13)), one gets

CRPS(F, y) = y + 2(1 + ξy/β)−1/ξ β + ξy

1− ξ
− 2β

(
1

1− ξ
− 1

2(2− ξ)

)
. (20)

It follows that

E [CRPS(F, Y )] =
σ

1− γ
+2

β

1− ξ
m0 +2

ξ

1− ξ
m1−2β

(
1

1− ξ
− 1

2(2− ξ)

)
,

with

m0 = E

[(
1 +

ξ

β
Y

)−1/ξ
]
, and m1 = E

[
Y

(
1 +

ξ

β
Y

)−1/ξ
]
.

Since (
1 +

ξ

β
y

)−1/ξ

= G
s
(cy) , with c =

ξσ

βγ
and s =

γ

ξ
,

one can write
mr = E

[
Y rG

s
(cY )

]
for r = 0, 1.
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Besides, as G−1(v) = σ
γ

(
(1− v)−γ − 1

)
, one can thus rewrite, denoting by U

a random variable uniformly distributed on (0, 1),

mr = E
[
G−1(U)rG

s (
cG−1(U)

)]
,

= E

[(
σ

γ

(
(1− U)−γ − 1

))r (
1 +

γ

σ

(
c
σ

γ

(
(1− U)−γ − 1

)))−s/γ]
,

=

(
σ

γ

)r
E
[(
U−γ − 1

)r (
(1− c) + cU−γ

)−s/γ]
,

=

(
σ

γ

)r
E

[(
B

1−B

)r (
1− (1− c)B

1−B

)−s/γ]
, with B = 1− Uγ

=

(
σ

γ

)r
E
[
Br(1−B)−r+s/γ (1− (1− c)B)−s/γ

]
, with B ∼ Beta(1, 1/γ)

=

(
σ

γ

)r
E
[
Br(1−B)−r+1/ξ (1− (1− c)B)−1/ξ

]
, because s/γ = 1/ξ.

If c = ξσ
βγ

= 1, then this simplifies to

mr =

(
σ

γ

)r
1

γ

∫ 1

0

ur(1− u)−r+1/ξ+1/γ−1du =

(
σ

γ

)r
1

γ
B(r + 1,−r + 1/ξ + 1/γ),

=

(
σ

γ

)r
1

γ

Γ(r + 1)Γ(−r + 1/ξ + 1/γ)

Γ(1 + 1/ξ + 1/γ)
.

In particular, m0 = 1
γ
B(1, 1/ξ + 1/γ) =

(
1 + γ

ξ

)−1

and

m1 =
σ

γ

(
1 +

γ

ξ

)−1(
1

ξ
+

1

γ
− 1

)−1

.

It follows that, if γ
σ

= ξ
β
, then we have

E [CRPS(F, Y )] =
σ

1− γ
+ 2β

[
1

2(2− ξ)
− γ

γ + ξ − γξ

]
.

This gives the minimum CRPS value for ξ = γ and σ = β,

E [CRPS(G, Y )] =
σ

(2− γ)(1− γ)
.
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6.5. Proof of Lemma 3

(i) The first equality on law follows from the definition of auto-calibration.The
second equality in law comes from the fact that the data are invariant by
shuffling when the forecast is the climatology. This has been in particular
illustrated on Figure 3, see comments following (10).

(ii) Consider two forecasts F1 and F2, and assume that F1 contains more
information than F2, that is to say

E{CRPS∇(F1, Y )} ≤ E{CRPS∇(F2, Y )} .

Since the latter random variables are non negative, this is equivalent to∫ ∞
0

{1− FCRPS∇(F1,Y )(t)}dt ≤
∫ ∞

0

{1− FCRPS∇(F2,Y )(t)}dt . (21)

Noticing that∫ ∞
0

{1− FCRPS∇(G,Y )(t)}dt =

∫ ∞
0

{1− FCRPS(G,Y )(t)}dt

= E{CRPS∇(G, Y )} ,
one gets that (21) is equivalent to∫ ∞
0

{FCRPS∇(F1,Y )−FCRPS∇(G,Y )}(t)dt ≥
∫ ∞

0

{FCRPS∇(F2,Y )−FCRPS∇(G,Y )}(t)dt ,

which gives the expected result.

6.6. Proof of the convergences (11) and (12)

The proof of (11) and (12) is similar, so that we will focus on proving
(12). The following lemma will help to get the result, and is presented first
with its proof. In what follows, the mean excess function of any random
variable X with finite mean and with cdf F will be denoted by M(F, u), so
that M(F, u) = EF (X − u|X > u).

Lemma : Consider a random variable X with finite mean that belongs to
domain of attraction D(Hγ) for γ < 1. There exist real positive numbers α
and β such that for large u tending to → xF ,

0 ≤ 2EF (X − u|X > u) ≤ αu+ β . (22)

Proof of the lemma: Let decompose the proof depending on the sign of γ :
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1. First case : F belongs to D(Hγ) with 0 < γ < 1 :
In this case, Embrechts et al. (1997) (Section 3.4) show that M(F, u) ∼
γu/(1− γ) as u tends to xF , and we can conclude directly.

2. Second case : F belongs to D(Hγ) with γ < 0 :
In this case, the result also follows easily from Embrechts et al. (1997)
since when u tends to xF , M(F, u) ∼ γ(xF − u)/(γ − 1).

3. Third case : F belongs to D(H0) :
When F is in the Gumbel domain of attraction, Theorem 3.9 in Ghosh
and Resnick (2010) ensures that M(F, u)/u→ 0 as u tends to xF .

Proof of (12):
According to the formula (1) of the CRPS, we can write that

CRPS(F, Y )
a.s.
= Y − cF + 2F (Y )EF (X − Y |X > Y ),

in terms of cF = 2EF (XF (X)). Fix a large u conditionally to Y , one gets
thanks to the previous lemma:

Y ≤ CRPS(F, Y ) + cF ≤ (1 + αF (Y ))Y + βF (Y ) a.s.

So that

0 ≤ P
(

CRPS(F, Y ) + cF − u
b(u)

> t|Y > u

)
− P

(
Y − u
b(u)

> t|Y > u

)
≤ P([1 + αF (Y )]Y + βF (Y ) > tb(u) + u|Y > u)− P(Y > tb(u) + u|Y > u)

≤ P
(
Y >

tb(u) + u− βF (u)

1 + αF (u)
|Y > u

)
− P(Y > tb(u) + u|Y > u).

We recognize the probability for Y to be in an interval denoted by [δu,∆u] :

1

F (u)
P
(
Y ∈

[
tb(u) + u− βF (u)

1 + αF (u)
, tb(u) + u

])
=

P(Y ∈ [δu,∆u])

F (u)
.

Note then that

P(Y ∈ [δu,∆u])

F (u)
≤ supv∈[δu,∆u]g(v)

∆u − δu
F (u)

= supv∈[δu,∆u]g(v)
α(tb(u) + u) + β

1 + αF (u)

= O(ug(u)) −→ 0 as u→ xF .
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The dominance in ug(u) is provided by the sublinear/linear behavior of b
(Von Mises condition in Von Mises (1936)). Indeed, Von Mises (1936) noticed
that a possible choice for b(u) can be the mean excess function of Y which
is (sub)linear. The limit to 0 is due to the finite first moment of the random
variable Y , because in this case ug(u) ∼ 1−G(u)→ 0 as u→ xF .
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Bröcker, J., 2015. Resolution and discrimination–two sides of the same coin.
Quarterly Journal of the Royal Meteorological Society 141 (689), 1277–
1282.

Candille, G., Talagrand, O., 2005. Evaluation of probabilistic prediction sys-
tems for a scalar variable. Quarterly Journal of the Royal Meteorological
Society: A journal of the atmospheric sciences, applied meteorology and
physical oceanography 131 (609), 2131–2150.

Cramér, H., 1928. On the composition of elementary errors: First paper:
Mathematical deductions. Scandinavian Actuarial Journal 1928 (1), 13–
74.

Dawid, A. P., 1984. Present position and potential developments: Some per-
sonal views: Statistical theory: The prequential approach. Journal of the
Royal Statistical Society. Series A (General), 278–292.

Dawid, A. P., Sebastiani, P., 1999. Coherent dispersion criteria for optimal
experimental design. Annals of Statistics, 65–81.

De Haan, L., Ferreira, A., 2007. Extreme value theory: an introduction.
Springer Science & Business Media.

32



De Haan, L. F. M., 1970. On regular variation and its application to the
weak convergence of sample extremes.

Diebold, F. X., Gunther, T. A., Tay, A. S., 1997. Evaluating density forecasts.

Diks, C., Panchenko, V., Van Dijk, D., 2011. Likelihood-based scoring rules
for comparing density forecasts in tails. Journal of Econometrics 163 (2),
215–230.

Ehm, W., Gneiting, T., Jordan, A., Krüger, F., 2016. Of quantiles and ex-
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