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THE ENTRANCE LAW OF THE EXCURSION MEASURE OF THE
REFLECTED PROCESS FOR SOME CLASSES OF LÉVY PROCESSES

LOÏC CHAUMONT AND JACEK MAŁECKI

Abstract. We provide integral formulae for the Laplace transform of the entrance law
of the reflected excursions for symmetric Lévy processes in terms of their characteristic
exponent. For subordinate Brownian motions and stable processes we express the density
of the entrance law in terms of the generalized eigenfunctions for the semigroup of the
process killed when exiting the positive half-line. We use the formulae to study in-
depth properties of the density of the entrance law such as asymptotic behavior of its
derivatives in time variable.

1. Introduction

It follows from excursion theory that the trajectories of a Lévy process can be de-
composed using the excursions of the process reflected in its past infimum. This result
justifies the importance of knowing the excursion measure of the reflected process and
more particularly, the entrance law of this measure. There are also several interesting
applications of this entrance law. First it is directly related to the potential measure
of the time space ladder height process, see Lemma 1 in [3]. Moreover it provides a
useful expression of the distribution density of the supremum of the Lévy process before
fixed times, [3], [4]. More recently it has been involved in the study of the probability of
creeping through curves of Lévy processes, [6].

In this article we obtain integral representations of the densities and the Laplace trans-
forms of the entrance laws of the reflected excursions for two classes of real valued Lévy
processes. The first class consists of symmetric Lévy processes, with a particular emphasis
on subordinate Brownian motions, when the Lévy measure of the underlying subordina-
tor has a completely monotone density. The other class is that of stable processes. The
presented formulae for symmetric processes are given in terms of the corresponding Lévy-
Kchintchin exponent Ψ(ξ) and the related generalized eigenfunctions introduced by M.
Kwaśnicki in [14]. In the stable case, we based the calculations on the generalized eigen-
functions studied recently by A. Kuznetsov and M. Kwaśnicki in [13]. Then we used the
formulae obtained for the entrance law densities to derive corresponding integral repre-
sentations for supremum densities. Although the theory of Lévy processes is very rich
and abounds in numerous general relationships, as those coming from the Wiener-Hopf
factorizations, there are few examples where the explicit representations of the related
densities are available. Apart from Brownian motion and Cauchy process, some series
representations were recently found in [8], [12], [7] in the case of stable processes. A
different approach was presented in [16], where the theory of Kwaśnicki’s generalized
eigenfunctions were used to described the first passage time density through a barrier for
subordinate Brownian motions with regular Lévy measures. This concept was generalized
to non-symmetric stable processes in [13]. In the present paper we stay in this framework
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and show that a similar approach leads to integral representations of the entrance law
density, the supremum density or the density of joint distribution of the process itself and
its supremum. Then we apply the obtained formulae to study the asymptotic behavior of
the derivatives in time variable of the entrance law densities of the reflected excursions.
Let us finally mention that these formulae can be used to perform numerical simulations
and study in-depth properties of the process coupled with its past supremum.

2. Preliminaries

Let (X,P) be the real valued Lévy process whose characteristic exponent Ψ(ξ) is char-
acterized in terms of the Lévy triplet (a, σ2,Π) by the Lévy-Kchintchin formula

Ψ(ξ) = −aiξ +
1

2
σ2ξ2 −

∫
R\{0}

(
eiξx − 1− iξ1{|x|<1}

)
Π(dx), ξ ∈ R.

We write Px for the law of the process starting from x ∈ R. We denote by X∗ = −X the
dual process and P∗x stands for its law with respect to Px. The past supremum and past
infimum of X before a deterministic time t ≥ 0 are

X t = sup{Xs; 0 ≤ s ≤ t}, X t = inf{Xs; 0 ≤ s ≤ t}.

For given t > 0 we write ft(dx) = P(X t ∈ dx) for the corresponding distribution and
ft(x) stands for its density with respect to the Lebesgue measure on (0,∞) whenever
it exists. Recalling that the reflected processes X − X and X − X are Markovian, we
write Lt and L∗t for their local times at 0 respectively, where these are normalized in the
following way

E

(∫ ∞
0

e−tdLt

)
= E

(∫ ∞
0

e−tdL∗t

)
= 1.

We write n (and n∗) for the Itô measure of the excursions away from 0 of the reflected
process X−X (resp. X−X). Our main objects of studies are the corresponding entrance
laws defined by

qt(dx) = n(Xt ∈ dx, t < ζ), q∗t (dx) = n∗(Xt ∈ dx, t < ζ), t > 0,

where ζ is the life time of the generic excursion and qt(x), q∗t (x) denotes the densities on
(0,∞) of qt(dx) and q∗t (dx), whenever they exist. In this paper, it will always be assumed
that 0 is regular for both half-lines (−∞, 0) and (0,∞). In this case, the double Laplace
transform of qt(dx) is given by∫ ∞

0

∫ ∞
0

e−ξxe−zsqs(dx)ds =
1

κ(z, ξ)
, (2.1)

where κ(z, ξ) is the Laplace exponent of the ladder process (L−1
t , Ht), t < L(∞). Here

L−1
t denotes the right continuous inverse of Lt (ladder time process) and the ladder-height

process is defined by Ht = XL−1
t
. Analogous relations hold for q∗t (dx) and the Laplace

exponent κ∗(z, ξ) for the ladder process ((L∗t )
−1, H∗t ). Formula (2.1) actually shows that

qs(dx)ds is the potential measure of (L−1, H). We denote by h the renewal function of
the ladder height process H, that is

h(x) =

∫ ∞
0

P(Ht ≤ x) dt, x ≥ 0.

In the light of Theorem 6 in [3], the entrance laws qt(dx) and q∗t (dx) seem to be basic
objects in the study of the supremum distributions. More precisely, under our assumption
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that 0 is regular for both negative and positive half-lines, the representation (4.4) from
[3] reads as

P(X t ∈ dx,X t −Xt ∈ dy) =

∫ t

0

q∗s(dx)qt−s(dy)ds, (2.2)

which, in particular, implies

ft(dx) =

∫ t

0

n(t− s < ζ) q∗s(dx). (2.3)

Finally, for x > 0, we denote by Q∗x the law of the processes killed when exiting the
positive half-line, i.e.

Q∗x(Λ, t < ζ) = Px(Λ, t < τ−0 ), Λ ∈ Ft,
where τ−0 = inf{t > 0 : Xt < 0}. The law Qx is defined in the same way, but with respect
to the dual process. The corresponding semigroups are defined as

Q∗tf(x) = Q∗xf(Xt), Qtf(x) = Qxf(Xt),

for non-negative Borel functions f . We also write q∗t (x, dy), qt(x, dy) and q∗t (x, y), qt(x, y)
for the corresponding transition probability measures and their densities whenever they
exist. Recall that whenever q∗t (x, ·) and qt(x, ·) are absolutely continuous, the duality
relation holds

q∗t (x, y) = qt(y, x).

3. Symmetric Lévy processes and subordinated Brownian motions

This section is devoted to symmetric Lévy processes with some addition regularity
assumptions on the Lévy-Kchintchin exponent Ψ(ξ) presented in details below. We also
exclude compound Poisson processes from our considerations. Note that the symmetry
assumptions simplify the general exposure presented in Preliminaries, where, roughly
speaking, we can remove the notation with ∗. Moreover, the ladder time process is the
1/2-stable subordinator for every symmetric Lévy process, which implies that

n(t < ζ) =
t−1/2

√
π
, t > 0. (3.1)

Finally, we recall the integral representation of the Laplace exponent of the ladder process

κ(z, ξ) =
√
z exp

(
1

π

ξ log(1 + Ψ(ζ)
z

)

ξ2 + ζ2
dζ

)
, z, ξ ≥ 0, (3.2)

where, in the symmetric case, Ψ(ξ) is a real-valued function.
Our first result gives the expression for the Laplace transform of qt(dx) (for fixed

t > 0) in the case of symmetric Lévy processes with increasing Lévy-Khintchin exponent.
This is an analogue of Theorem 4.1 in [15], where the corresponding formula for X t was
derived. Note that even though the formulae for the Laplace transforms of qt(dx) and
P(X t ∈ dx) seem to be similar, passing from one to the other by using (2.3) and (3.1) is
not straightforward.

Theorem 1. Let (X,P) be a symmetric Lévy process that is not a compound Poisson
process. Assume that the Lévy-Khintchin exponent Ψ(ξ) of (X,P) is increasing in ξ > 0.
Then∫ ∞

0

e−ξxqt(dx) =
1

π

∫ ∞
0

λΨ′(λ)

λ2 + ξ2
exp

(
1

π

∫ ∞
0

ξ log λ2−u2
Ψ(λ)−Ψ(u)

ξ2 + u2
du

)
e−tΨ(λ)dλ. (3.3)
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Proof. The proof is based on the same idea as in the proof of Theorem 4.1 in [15] with
a slight modification of the arguments. For the completeness of the exposure and the
convenience of the reader we present it below. We put ψ(ξ) = Ψ(

√
ξ) for ξ > 0 and

define

ϕ(ξ, z) = exp

(
− 1

π

∫ ∞
0

ξ log(1 + ψ(ζ2)
z

)

ξ2 + ζ2
dζ

)
,

which is
√
z(κ(z, ξ))−1 by (3.2). Obviously, for fixed ξ > 0, the function ϕ(ξ, z) is a holo-

morphic function of z, which is positive for z > 0. Note also that limz→0+ ϕ(ξ, z) = 0 (by
monotone convergence) and limz→∞ ϕ(ξ, z) = 1 (by dominated convergence). Moreover,
as it was shown in [15], that for Im z > 0 we have

Argϕ(ξ, z) = − 1

π

∫ ∞
0

ξArg(1 + ψ(ζ2)/z)

ξ2 + ζ2
dζ ∈ (0, π/2).

Thus Arg(
√
zϕ(ξ, z)) ∈ (0, π) for Im z > 0. This is equivalent to hξ(z) = ϕ(ξ, z)/

√
z

being a Stieltjes function (for fixed ξ). In general, a function g(z) is said to be a Stielties
function if

g(z) =
b1

z
+ b2 +

1

π

∫ ∞
0

1

z + ζ
ν(dζ), z ∈ C \ (−∞, 0], (3.4)

where b1, b2 ≥ 0 and ν(dζ) is a Radon measure on (0,∞) such that
∫

min(1, ζ−1)µ(dζ) <
∞. The constants and a measure appearing in the definitions of Stielties functions are
given by

b1 = lim
z→0+

zg(z), b2 = lim
z→∞

g(z), ν(dζ) = lim
ε→0+

Im(−g(−ζ + iε)dζ). (3.5)

Note that the last limit is understood in the sense of weak limit of measures. Since

lim
z→0+

zhξ(z) = lim
z→0+

√
zϕ(ξ, z) = 0, lim

z→0+
hξ(z) = lim

z→0+
ϕ(ξ, z)/

√
z = 0

the constants appearing in the representation (3.4) for Stielties function hξ(z) are zero.
Moreover, for z = ψ(λ2) we get

h+
ξ (−z) = lim

ε→0+
hξ(−z + iε)

=
i√
ψ(λ2)

λ(λ+ ξi)

λ2 + ξ2
exp

 1

π

∫ ∞
0

ξ log ψ(λ2)
λ2

λ2−u2
ψ(λ2)−ψ(u2)

ξ2 + u2
du


=

λi− ξ
λ2 + ξ2

exp

(
1

π

∫ ∞
0

ξ log λ2−u2
ψ(λ2)−ψ(u2)

ξ2 + u2
du

)
.

Therefore, by (3.5), for every z > 0 we have

ϕ(ξ, z)√
z

=
1

π

∫ ∞
0

Imh+
ξ (−ζ)

1

z + ζ
dζ

=
1

π

∫ ∞
0

2λψ′(λ2) Imh+
ξ (−ψ(λ2))

1

z + ψ(λ2)
dλ

=
2

π

∫ ∞
0

λψ′(λ2)
λ

λ2 + ξ2

1

z + ψ(λ2)
exp

(
1

π

∫ ∞
0

ξ log λ2−u2
ψ(λ2)−ψ(u2)

ξ2 + u2
du

)
dλ

=

∫ ∞
0

e−tz

(
1

π

∫ ∞
0

λΨ′(λ)

λ2 + ξ2
exp

(
1

π

∫ ∞
0

ξ log λ2−u2
Ψ(λ)−Ψ(u)

ξ2 + u2
du

)
e−tΨ(λ)dλ

)
dt.
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Thus, the Laplace transform of the right-hand side of (3.3) is equal to 1/κ(z, ξ) and the
theorem follows from uniqueness of the Laplace transform. �

From now on, for the rest of the section, we will follow the approach presented in
[16] and restrict our consideration to the case where (X,P) is a subordinate Brownian
motion whose underlying subordinator has a complete monotone density. The process
(X,P) has the latter form if and only if its characteristic exponent Ψ(ξ) can be written
as Ψ(ξ) = ψ(ξ2) for a complete Bernstein function ψ (see Proposition 2.3 in [14]). A
function ψ(ξ) is called a complete Bernstein function (CBF) if

ψ(z) = a1 + a2z +
1

π

∫ ∞
0

z

z + ζ

µ(dζ)

ζ
, z ∈ C \ (−∞, 0], (3.6)

where a1 ≥ 0, a2 ≥ 0 and µ(dζ) is a Radon measure on positive half-line such that∫
min(ζ−1, ζ−2)µ(dζ) is finite. As in the Stielties function representation, the above-given

constants and the measure µ are determined by suitable limits as follows

a1 = lim
z→0+

ψ(z), a2 = lim
z→∞

ψ(z)

z
, µ(dζ) = lim

ε→0+
Im(ψ(−ζ + iε)dζ). (3.7)

The spectral theory of subordinate Brownian motion on a half-line was developed by
M. Kwaśnicki in [14], where the generalized eigenfunctions Fλ(x) of the transition semi-
group Qt of the process (X,P) killed upon leaving the half-line [0,∞) were constructed.
Some additional properties of Fλ(x) were also studied in [16]. For a fixed CBF ψ and
λ > 0 the generalized eigenfunctions of Qt with eigenvalue e−tψ(λ2) are given by

Fλ(x) = sin(xλ+ ϑλ)−Gλ(x), x > 0 (3.8)

where the phase shift ϑλ belongs to [0, π/2) and is given by

ϑλ = − 1

π

∫ ∞
0

λ

λ2 − u2
log

ψ′(λ2)(λ2 − u2)

ψ(λ2)− ψ(u2)
du, λ > 0.

Recall the following upper-bounds (Proposition 4.3 and Proposition 4.5 in [16] respec-
tively)

ϑλ ≤
(

sup
ξ>0

ξ|ψ′′(ξ)|
ψ′(ξ)

)
π

4
. (3.9)

ϑλ ≤
π

2
− arcsin

√
λ2
ψ′(λ2)

ψ(λ2)
, λ > 0. (3.10)

The function Gλ is the Laplace transform of the finite measure

γλ(dξ) =
1

π

(
Im

λψ′(λ2)

ψ(λ2)− ψ+(ξ2)

)
exp

(
− 1

π

∫ ∞
0

ξ

ξ2 + u2
log

ψ′(λ2)(λ2 − u2)

ψ(λ2)− ψ(u2)
du

)
dξ.

Here ψ+ denotes the holomorphic extension of ψ in the complex upper half-plane. The
Laplace transform of Fλ(x) is given by

LFλ(ξ) =
λ

λ2 + ξ2
exp

(
1

π

∫ ∞
0

z

z2 + u2
log

ψ′(λ2)(λ2 − u2)

ψ(λ2)− ψ(u2)
du

)
. (3.11)

Recall also the following estimates

|LFλ(ξ)| ≤
|λ+ ξ|
|λ2 + ξ2|

, x > 0,Re ξ > 0. (3.12)
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Proposition 5.4 in [16] states that for unbounded ψ such that lim supλ→0+ ϑλ < π/2 we
have the following limiting behavior

lim
λ→0+

Fλ(x)

λ
√
ψ′(λ2)

= h(x), x ≥ 0, (3.13)

and the convergence is locally uniform in x ≥ 0.
The functions Fλ(x) were used to find the integral representations for the density

function of τ−0 and its derivatives (see Theorem 1.5 in [16]). In the next Theorem we
show that an analogous representation can be obtained for the density of the entrance
law.

Theorem 2. Let (X,P) be a symmetric Lévy process whose Lévy-Khintchin exponent
Ψ(ξ) satisfies Ψ(ξ) = ψ(ξ2) for a complete Bernstein function ψ(ξ). If there exists t0 > 0
such that ∫ ∞

1

e−t0ψ(λ2)λ
√
ψ′(λ2)dλ <∞, (3.14)

then, for every t ≥ t0, qt(dx) has a density with respect to the Lebesgue measure given by
the formula

qt(x) =
2

π

∫ ∞
0

e−tψ(λ2)Fλ(x)λ
√
ψ′(λ2)dλ, x > 0. (3.15)

Proof. The definition (3.8) of Fλ(x) and the fact thatGλ(x) is a Laplace transform of finite
measure and Gλ(0) = sin(ϑλ) entail that |Fλ(x)| ≤ 2 for all x, λ > 0. The assumption
(3.14) together with the estimate∫ 1

0

e−tψ(λ2)λ
√
ψ′(λ2)dλ ≤ 1√

ψ′(1)

∫ 1

0

e−tψ(λ2)λψ′(λ2)dλ =
1− e−tψ(1)

2t
√
ψ′(1)

give that the function e−ξxe−tψ(λ2)|Fλ(x)|λ
√
ψ′(λ2) is jointly integrable on (λ, x) ∈ (0,∞)2

and consequently the Laplace transform of the integral appearing on the right-hand side
of (3.15) is given by∫ ∞

0

e−tψ(λ2)LFλ(ξ)λ
√
ψ′(λ2)dλ

=

∫ ∞
0

λ2ψ′(λ2)

λ2 + ξ2
exp

(
1

π

∫ ∞
0

ξ log λ2−u2
ψ(λ2)−ψ(u2)

ξ2 + u2
du

)
e−tψ(λ2)dλ.

This is just the right-hand side of (3.3) with Ψ(ξ) = ψ(ξ2) divided by 2/π. The uniqueness
of the Laplace transform ends the proof. �

It is very easy to see that if ψ is regularly varying at infinity with strictly positive order
then the exponential factor in (3.14) makes the integral convergent for every t > 0. Thus
we derive the following result.

Corollary 1. If ψ is CBF regularly varying at infinity with order α ∈ (0, 1], then the
measure qt(dx) has a density for every t > 0 and the formula (3.15) holds for every t > 0
and x > 0.

Remark 1. The condition (3.14) is satisfied for a large class of CBFs like ψ(ξ) = ξα/2,
α ∈ (0, 2) (symmetric stable), ψ(ξ) = ξα/2 + ξβ/2, α, β ∈ (0, 2) (sum o two independent
stable), ψ(ξ) = (m2 + ξ)α/2 − m, α ∈ (0, 2) (relativistic stable), ψ(ξ) = log(1 + ξα/2),
α ∈ (0, 2], t > 1/α (geometric stable)

Then we obtain the following straightforward consequence of the previous result.
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Theorem 3. Let (X,P) be a symmetric Lévy process whose Lévy-Khintchin exponent
Ψ(ξ) satisfies Ψ(ξ) = ψ(ξ2) for a complete Bernstein function ψ(ξ). If (3.14) holds, then
for every t > t0 the distribution of (X t, X t −Xt) is absolutely continuous with respect to
the Lebesgue measure on (0,∞)2 with density

4

π2

∫∫
(0,∞)2

e−tψ(λ2) − e−tψ(u2)

ψ(λ2)− ψ(u2)
Fλ(x)Fu(y)λu

√
ψ′(λ2)ψ(u2))du dλ.

Moreover, we have

ft(x) =
2

π3/2

∫ ∞
0

e−tψ(λ2)

(∫ tψ(λ2)

0

eudu√
u

)
Fλ(x)λ

√
ψ′(λ2) dλ,

for every t > t0.

Proof. The proofs of both formulae are direct consequences of the integral representation
(3.15), the relations (2.2), (2.3) and (3.1) together with the Fubini’s theorem, which can
be applied due to the integral condition (3.14). �

The representation (3.15) enables to compute the derivatives of qt(x) and examine its
behavior in two asymptotic regimes: as t goes to infinity and x goes to 0. It is described
in the following theorem.

Theorem 4. Let (X,P) be a symmetric Lévy process whose Lévy-Khintchin exponent
Ψ(ξ) satisfies Ψ(ξ) = ψ(ξ2) for a complete unbounded Bernstein function ψ(ξ). If there
exists t0 > 0 such that (3.14) holds, then

(−1)n
dn

dtn
qt(x) =

2

π

∫ ∞
0

e−tψ(λ2)Fλ(x)λ(ψ(λ2))n
√
ψ′(λ2)dλ, x > 0, (3.16)

for every t > t0 and n = 0, 1, 2, . . .. Moreover, if additionally
(a) ψ is increasing, regularly varying of order α0 ∈ (0, 1) at 0, then the following holds

lim
t→∞

tn+1√
ψ−1(1/t)

dn

dtn
qt(x) =

(−1)n

π
Γ

(
n+

1

2α0

− 1

)
h(x), x ≥ 0, (3.17)

where ψ−1 denotes the inverse of ψ, and the convergence is locally uniform in x.
This also holds for α0 = 1 with the additional assumption

sup
ξ>0

|ψ′′(ξ)|
ψ′(ξ)

< 2. (3.18)

(b) ψ is regularly varying at infinity with index α∞ ∈ [0, 1] and (3.18) holds, then

lim
x→0+

dn

dtn
qt(x) =

1

Γ(1 + α∞)

dn

dtn

(
pt(0)

t

)
, t > t0, (3.19)

where pt denotes the density of the transition semigroup of (X,P).

Proof. To justify (3.16) it is enough to show that we can interchange the derivative and
the integral in (3.15). However, taking any t > t0, where t0 is such that (3.14) holds, we
can find t1 ∈ (t0, t) and a constant c1 = c1(t0, t, n) such that

e−tψ(λ2)(ψ(λ2))nλ
√
ψ′(λ2) ≤ c1e

−t1ψ(λ2)λ
√
ψ′(λ2)

and the claim follows from dominated convergence. Assuming additionally, that ψ is
increasing and regularly varying at 0 with index α0 ∈ (0, 1], we get that ψ−1 is regularly
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varying (at 0) with index 1/α0 (see [2]). Thus, there exists a constant c2 = c2(α0) > 1
such that

1

c2

u1/(2α0) ≤ ψ(u/t)

ψ(1/t)
≤ c2u

2/α0 , u > 0 (3.20)

and t ∈ (0, 1). Recall also (3.13), which asserts that under the assumptions from point
(a) the function Fλ(x)/

√
λ2ψ′(λ2) extends to a continuous function for λ ∈ [0, 1]. Here

we use the upper-bound given in (3.10) for α0 ∈ (0, 1) and (3.9) in the case α0 = 1 to
show that limλ→0+ ϑλ < π/2, which is required to claim (3.13). Consider the measure

µt(dλ) =
tn+1√
ψ−1(1/t)

e−tψ(λ2)λ2(ψ(λ2))nψ′(λ2)1[0,1](λ)dλ

and note that it tends to a point-mass at 0 (as t→∞), as its density function tends to
0 uniformly on [ε, 1], for every ε > 0. The mass of µt can be calculated as follows

||µt|| =
tn+1√
ψ−1(1/t)

∫ 1

0

e−tψ(λ2)λ2(ψ(λ2))nψ′(λ2)dλ

=
1

2
√
ψ−1(1/t)

∫ tψ(1)

0

e−uun
√
ψ−1(u/t)du.

Since

lim
t→∞

√
ψ−1(u/t)

ψ−1(1/t)
= u1/(2α0),

using (3.20) and dominated convergence we obtain

lim
t→∞
||µt|| =

1

2
Γ

(
n+

1

2α0

− 1

)
.

Finally, the expression ∣∣∣∣∫ ∞
1

e−tψ(λ2)Fλ(x)λ(ψ(λ2))n
√
ψ′(λ2)dλ

∣∣∣∣
can by bounded for every t > t1 by

2e(t−t1)ψ(1)

∫ ∞
1

e−t1ψ(λ2)λ(ψ(λ2))n
√
ψ′(λ2)dλ ≤ c3e

(t−t1)ψ(1)

∫ ∞
1

e−t0ψ(λ2)λ
√
ψ′(λ2)dλ,

with some c3 = c3(n, t0, t1) > 0, which together with the regularity of ψ−1 at zero and
estimates (3.20) implies that

1√
ψ−1(1/t)

∫ ∞
1

e−tψ(λ2)Fλ(x)λ(ψ(λ2))n
√
ψ′(λ2)dλ

vanishes uniformly in x, as t→∞. Collecting all together we arrive at

lim
t→∞

(−1)n√
ψ−1(1/t)

dn

dtn
gt(x) =

1

π
Γ

(
n+

1

2α0

− 1

)
h(x), x ≥ 0.

Because the justification of the fact that under assumption from point (b) we have

lim
x→0+

√
ψ(1/x2)

dn

dtn
qt(x) =

(−1)n

πΓ(1 + α∞)

∫ ∞
0

e−tψ(λ2)(ψ(λ2))n λ2ψ′(λ2)dλ,

follows in the same way as in the proof of Theorem 1.7 in [16], we omit the proof. Note
that using (3.14) we can rewrite the last integral as

(−1)n
dn

dtn

(∫ ∞
0

e−tψ(λ2)λ2ψ′(λ2)dλ

)
= (−1)n

dn

dtn

(
1

t

∫ ∞
0

e−tψ(λ2)dλ

)
,
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where the last equality follows simply by integration by parts. Finally, the regular behav-
ior of ψ at infinity implies that e−tψ(λ2) is in L1(R, dλ), which in particular means that
the transition probability density is given by the inverse Fourier transform

pt(x) =
1

2π

∫ ∞
0

e−tψ(λ2)e−ixλdλ.

Combining all together we get (3.19), which ends the proof. �

In addition to numerical applications of our results, they can be used to obtain more
transparent representations as in the following example related to the Cauchy process.

Proposition 1. For the symmetric Cauchy process, i.e. ψ(ξ) =
√
ξ, we have

qt(x) =
1√
π

sin
(
π
8

+ 3
2

arctan
(
x
t

))
(t2 + x2)3/4

+
1

2π3/2

∫ ∞
0

y

(1 + y2)(xy + t)3/2
exp

(
− 1

π

∫ ∞
0

log(y + s)

1 + s2

)
dy,

where x, t > 0. Then the density ft(x) of the past supremum at time t of (X,P) can be
derived from the above expression together with (2.3) and (3.1).

Proof. Since ψ(ξ) = ξ1/2, ψ′(ξ) = 1/(2
√
ξ) the formula (3.15) reads as

qt(x) =

√
2

π

∫ ∞
0

e−tλFx(λ)
√
λdλ,

where we used the scaling property Fλ(x) = F1(λx) = Fx(λ). By the Plancherel’s theorem
we get, for fixed b ∈ (0, t), that

qt(x) =

∫ ∞
0

(
e−bλFx(λ)

)(
e−(t−b)λ

√
2λ

π

)
dλ

=
1

2π

∫ ∞
−∞
LFx(b+ is)Lf(t− b+ is)ds

=
1

2πi
LFx(b+ is)

∫ b+i∞

b−i∞
LFx(z)Lf(t− z)dz, (3.21)

where f(x) =
√

2x/π. The Laplace transform of f can easily be computed as follows

Lf(z) =

√
2

π

∫ ∞
0

e−zx
√
xdx =

1√
2π

1

z3/2
, Re(z) > 0.

Formula (3.11) gives

LFx(z) =
1√
2

x

x2 + z2
exp

(
1

π

∫ ∞
0

z log(1 + u/x)

z2 + u2
du

)
.

Substituting u = z/s in the last integral we get∫ ∞
0

z

z2 + u2
log(1 + u/x)du =

∫ ∞
0

log
(
1 + z

xs

)
1 + s2

ds =

∫ ∞
0

log(z/x+ s)

1 + s2
ds,

where the last equality follows from the fact that∫ ∞
0

log s ds

1 + s2
=

(∫ 1

0

+

∫ ∞
1

)
log s ds

1 + s2
=

∫ 1

0

log s ds

1 + s2
+

∫ 1

0

log(1/s) ds

1 + s2
= 0.
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Finally, the function

B(z) =
1

π

∫ ∞
0

log(z + u)

1 + u2
du, z ∈ C \ (−∞, 0],

studied in details in [11], is holomorphic in the region. We recall (see (3.13) in [11]) that

B(i) =
log 2

2
+ i

π

8
(3.22)

and (see (4.1) in [11]) that

eB(z) = (1− izσ(z))e−B(−z), (3.23)

where σ(z) = 1 for Im(z) > 0 and σ(z) = −1 for Im(z) < 0. Consequently, defining (for
fixed x) the function of complex variable z

Gx(z) =
x

x2 + z2

1

(t− z)3/2
exp

(
1

π

∫ ∞
0

log(z/x+ u)

1 + u2
du

)
=

x

x2 + z2

1

(t− z)3/2
eB(z/x),

it is easy to see that Gx(z) is a meromorphic function on {z ∈ C : Re(z) < t} \ (−∞, 0]
with single poles at ix and −ix. To evaluate the integral (3.21) we integrate Gx over the
(positively oriented) curve consisting of (see figure 3 below)

(i) four horizontal segments:
γ1 = {z : Im(z) = n,Re(z) ∈ [−n, b]},
γ2 = {z : Im(z) = −n,Re(z) ∈ [−n, b]},
γ3 = {z : Im(z) = 1/n,Re(z) ∈ [−n, 0]},
γ4 = {z : Im(z) = −1/n,Re(z) ∈ [−n, 0]};

(ii) three vertical segments:
γ5 = {z : Re(z) = −n, Im(z) ∈ [1/n, n]},
γ6 = {z : Re(z) = −n, Im(z) ∈ [−n,−1/n]},
Γ = {z : Im(z) = b,Re(z) ∈ [−n, n]}

(iii) a semi-circle: γ7 = {z : |z| = 1/n,<(z) ≥ 0}.

-

6

��
b

−in

in

−n

6

γ1

γ2

γ5

γ6

γ3

γ4

γ7

Γ

-

�

q

q

ix

−ix

q
t

Figure 1. The contour of integration.
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First we compute the residua of Gx at ix and −ix. By (3.22), we have

Res (Gx, ix) =
1

2i

√
2eiπ/8

(t− ix)3/2
, Res (Gx,−ix) = − 1

2i

√
2e−iπ/8

(t+ ix)3/2
.

Since (t± ix)3/2 = (t2 + x2)3/4e±3i/2 arctan(x/t), we arrive at

Res (Gx, ix) + Res (Gx,−ix) =

√
2 sin

(
π/8 + 3

2
arctan(x/t)

)
(t2 + x2)3/4

. (3.24)

Using the relation (3.23) we obtain(∫
γ3

+

∫
γ4

)
Gx(z)dz

n→∞−→
∫ 0

−∞

x((1− iu/x)− (1 + iu/x))e−B(−u/x)

(x2 + u2)(t− u)3/2
du,

where the last integral, after substituting y = −xu, is equal to

−2i

∫ ∞
0

y

1 + y2

1

(t+ yx)3/2
exp

(
− 1

π

∫ ∞
0

log(y + u)

1 + u2
du

)
dy. (3.25)

Using the bounds (3.12) we can write

|Gx(z)| = 2
√
π|LFx(z)Lf(t− z)| ≤ c1

|x+ z|
|x2 + z2|

1

|t− z|3/2
≤ c2 (Im z)−5/2.

It implies that the integrals of Gx(z) over γ1, γ2, γ5 and γ6 vanish as n goes to infinity.
Since Gx(z) is bounded in the neighborhood of 0 (Re(z) > 0), the same holds for the
integral over the semi-circle γ7. Now we can finish the computations by applying the
residue theorem in order to get

1

2πi
lim
n→∞

∫ n

−n
Gx(z)dz = Res (hx, ix) + Res (Gx,−ix)− lim

n→∞

(∫
γ3

+

∫
γ4

)
Gx(z)dz.

Taking into account (3.25) and (3.24) and dividing both sides by 2
√
π lead to the result.

�

Remark 2. It is also possible to find similar formula for the entrance law density of the
symmetric α-stable process with index α ∈ (0, 1). Using the scaling property Fλ(x) =
F1(λx) and writing

e−tλ
α

=

∫ ∞
0

e−uλg
(α)
t (u)du, t > 0,

where g(α)
t (u) is the density of the α-stable subordinator we obtain

qt(x) =

√
2α

π

∫ ∞
0

(∫ ∞
0

e−uλFx(λ)λα/2dλ

)
g

(α)
t (u)du.

The inner integral can be evaluated similarly as in Proposition 1.

4. Stable processes

For the rest of the paper we focus on stable processes and use the theory of the cor-
responding generalized eigenfunctions developed in [13]. We assume that X is a stable
process with characteristic exponent

Ψ(ξ) = |ξ|αeπiα(1/2−ρ)sign(ξ), ξ ∈ R.

We exclude spectrally one-sided processes from our considerations, i.e. we assume that
α ∈ (0, 1] and ρ ∈ (0, 1) or α ∈ (1, 2], but then we assume that ρ ∈ (1 − 1/α, 1/α). We
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write ρ∗ = 1 − ρ and define non-symmetric analogous of F1(x) defined in Section 3 for
stable processes as follows

F (x) = eπ cos(πρ) sin(x sin(πρ) + πρ(1− ρ∗)/2) +

√
α

4π
S2(−αρ∗)G(x), (4.1)

where

G(x) =

∫ ∞
0

e−zxzαρ/2−1/2|S2(1 + α + αρ∗/2 + iα ln(z)/(2π))|2dz. (4.2)

The function S2(z) = S2(z;α) is the double sine function uniquely determined by the
following functional equations

S2(z + 1) =
S2(z)

2 sin(πz/α)
, S2(z + α) =

S2(z)

2 sin(πz)

together with the normalizing condition S2((1 + α)/2) = 1 (see [9], [10] and Appendix A
in [13] for equivalent definitions and further properties). We define F ∗(x) and G∗(x) by
the same formulae as in (4.1) and (4.2) but with ρ replaced by ρ∗ (and consequently ρ∗
replaced by (ρ∗)∗ = ρ). Note that whenever ρ > 1/2 the oscillations of F coming from the
sine function are multiplied by the exponentially decreasing factor, but then F ∗ oscillates
exponentially, when x→∞ and the situation is reversed for ρ < 1/2. The behaviour of
F at zero is described by (see the proof of Lemma 2.8 in [13])

F (x) =

√
α

2

S2(αρ)

Γ(1 + αρ∗)
· xαρ∗(1 + o(1)), x→ 0+. (4.3)

Although the constant
√
α

2
S2(αρ)

Γ(1+αρ∗)
was not specified in [13], using (1.10) and (1.19) from

[13], we obtain that∫ ∞
0

e−zxF (x)dx =

√
α

2
S2(αρ)z−1−αρ∗(1 + o(1)), z →∞.

Consequently, using the Karamata’s Tauberian theorem and the Monotone Density The-
orem we obtain (4.3). Moreover, if ρ > 1/2 then

F (x) = G(x) = O(x−α−1), F ∗(x) = O(ex cos(πρ∗)), x→∞. (4.4)

Even though the functions F and F ∗ do not simultaneously belong to L2(0,∞) (for
ρ 6= 1/2), they can be understood as the generalized eigenfunctions of the semigroups Q∗t
and Qt, respectively (see Theorem 1.3 in [13]). Moreover, using Theorem 1.1 in [13] the
transition probability density of the process X killed when exiting the positive half-line
is given by

q∗t (x, y) =
2

π

∫ ∞
0

e−tλ
α

F (λx)F ∗(λy)dλ, x, y, t > 0, (4.5)

whenever α > 1. Note that the restriction on α ensures that the exponential oscillations
of F (or F ∗) are suppressed by the factor e−tλα , which makes the integral convergent.
The formula (4.5) is the analogue of the integral representation for subordinate Brownian
motions presented in [14]. Note also that assuming ρ = 1/2 we have F (x) = F ∗(x) =
F1(x), where Fλ(x) is the generalized eigenfunction defined in Section 3 for symmetric
α-stable process.

In the next theorem we present a relation between the entrance laws densities q∗t (x),
qt(x) and the functions F , F ∗.
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Theorem 5. Let (X,P) be a stable process with parameter α > 1 and ρ ∈ (1− 1/α, 1/α)
or ρ = 1/2. Then

qt(x) =

√
α

π
S2(αρ∗)

∫ ∞
0

e−tλ
α

F (λx)λαρdλ, q∗t (x) =

√
α

π
S2(αρ)

∫ ∞
0

e−tλ
α

F ∗(λx)λαρ
∗
dλ,

for every x, t > 0.

Proof. We will exploit formula (4.5) together with the relation (see Proposition 1 in [4])

lim
x→0+

q∗t (x, y)

h∗(x)
= q∗t (y), y, t > 0, (4.6)

where the renewal function h∗(x) of the ladder height process H∗ is defined, in general,
by h∗(x) =

∫∞
0

P(Ht ≤ x)dt. In the stable case H∗t is the αρ∗ stable subordinator and

h∗(x) = EH−αρ
∗

1 · xαρ∗ =
xαρ

∗

Γ(1 + αρ∗)
, x ≥ 0.

Choosing c > 0 small enough and using (4.3) we can write

1{λx<c}e
−tλαF (λx)

xαρ∗
F ∗(λy) ≤ c1e

−tλαλαρ
∗
F ∗(λy),

where the latter function is integrable over (0,∞) (for fixed t and y) by (4.4). Thus, by
the Lebesgue dominated convergence theorem and (4.3) we arrive at

lim
x→0+

1

xαρ∗

∫ c/x

0

e−tλ
αF (λx)

xαρ∗
F ∗(λy)dλ =

√
α

2

S2(αρ)

Γ(1 + αρ∗)

∫ ∞
0

e−tλ
α

F ∗(λy)λαρ
∗
dλ.

Moreover, by (4.4), we can write for x < 1 that∫ ∞
c1/x

e−tλ
α |F (λx)F ∗(λy)|dλ ≤

∫ ∞
c1/x

e−tλ
α

eλ(x∨y) cos(π(ρ∨ρ∗))dλ

≤ exp

(
− tc

α
1

2xα

)∫ ∞
c1

e−tλ
α/2eλ(1∨y) cos(π(ρ∨ρ∗))dλ,

where the last integral is convergent according to our assumption α > 1. It shows that

lim
x→0+

1

xαρ∗

∫ ∞
c1/x

e−tλ
α

F (λx)F ∗(λy)dλ = 0

and consequently, by (4.6), we obtain

q∗t (y) =
2Γ(1 + αρ∗)

π
lim
x→0+

(
1

xαρ∗

∫ ∞
0

e−tλ
α

F (λx)F ∗(λy)dλ

)
,

=

√
α

π
S2(αρ)

∫ ∞
0

e−tλ
α

F ∗(λy)λαρ
∗
dλ, y, t > 0.

By duality, we have the corresponding integral representation for qt(x) with F ∗(x) and
ρ∗ replaced by F (x) and ρ. �

The analogue of Theorem 3 can now be proved.

Theorem 6. Let (X,P) be a stable process with parameter α > 1 and ρ ∈ (1− 1/α, 1/α)
or ρ = 1/2. The density of (X t, X t −Xt) with respect to the Lebesgue measure dxdy on
(0,∞)2 is given by

2α sin(πρ∗)

π2

∫∫
(0,∞)2

e−tλ
α − e−tuα

λα − uα
F (uy)F ∗(λx)λαρuαρ

∗
du dλ.



14 LOÏC CHAUMONT AND JACEK MAŁECKI

Moreover, we have

ft(x) =

√
α

π

S2(αρ)

Γ(ρ)

∫ ∞
0

e−tλ
α

(∫ tλα

0

eudu

uρ∗

)
F ∗(λx) dλ,

for every t, x > 0.

Proof. As previously, the result follows from the integral representations for qt(x) and
q∗t (x), the relations (2.2), (2.3) and Fubini’s theorem. However, since the ladder time
process (L∗t )

−1 is ρ∗-stable subordinator and n∗(t < ζ) = π∗(t,∞), where π∗ is the Lévy
measure of (L∗t )

−1 we have

n(t < ζ) =
1

Γ(1− ρ∗)tρ∗
, t > 0,

which gives the representations for ft(x). To find the constant in the other formula we
use the relations S2(z)S2(1 +α− z) = 1 and 2 sin(πz/2)S2(z + 1) = S2(z) (see (A.7) and
(1.9) in [13]). �

Recall that spectrally one sided Lévy processes are excluded in Theorem 6. However let
us note that in this case, some expressions of the law of (X t, X t − Xt) in terms of the
density of Xt are given in Theorem 3.1 in [5].
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