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In this paper, we prove a Carleman estimate for a time-discrete parabolic equation in which the large parameter is connected to the time step of the discretization scheme. This estimate is then used to obtain a relaxed observability estimate that yields some controllability results for linear and semi-linear time-discrete parabolic equations. We also discuss the application of this Carleman estimate to the controllability of coupled systems.

Introduction 1.Null-controllability of the heat equation

Let Ω ⊂ R d , d ≥ 1 be a bounded open set with boundary ∂Ω regular enough. For given time T > 0, we denote Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ). Let ω be a nonempty subset of Ω. We consider the linear heat equation      ∂ty -∆y = 1ωv in Q, y = 0 on Σ, y(x, 0) = y0(x)

in Ω.

(1.1)

In (1.1), y = y(x, t) is the state, v = v(x, t) is the control function acting on the system on the control domain ω, and y0 is a given initial data. As usual, 1ω denotes the characteristic function of ω.

It is well-known that for any y0 ∈ L 2 (Ω) and v ∈ L 2 (ω × (0, T )), the corresponding solution to (1.1) is globally defined in [0, T ]. More precisely, one has y ∈ C([0, T ]; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)).

(1.2)

One of the key questions in control theory is to determine whether a system enjoys the so-called null controllability property. System (1.1) is said to be null-controllable at time T if, for any y0 ∈ L 2 (Ω), there exists a control v ∈ L 2 (ω × (0, T )) such that the corresponding solution satisfies y(•, T ) = 0 in Ω.

Observe that the regularity (1.2) justifies the definition we have introduced.

It is by now well-known that (1.1) is null-controllable for any T > 0 and for any nonempty open set ω ⊂ Ω. In fact, this problem was addressed independently in the 90's by Lebeau & Robbiano [15] and by Fursikov & Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF]. By a duality argument, the null-controllability of (1.1) is equivalent to the observability of the associated adjoint states. More precisely, for each qT ∈ L 2 (Ω), consider the adjoint system      -∂tq -∆q = 0 in Q, q = 0 on Σ, q(x, T ) = qT (x)

in Ω.

(1.3)

1
Then, (1.1) is null-controllable if and only if there exists C obs > 0 such that the following observability inequality holds

|q(0)| L 2 (Ω) ≤ C obs ω×(0,T ) |q| 2 dxdt 1 2
, ∀qT ∈ L 2 (Ω).

(1.4)

Time-discrete setting

In this paper, we shall use the notation a, b = [a, b] ∩ N, for any real numbers a < b.

We are interested in studying controllability and observability properties for the time-discrete counterparts to (1.1) and (1.3), but also for more general parabolic systems (see Sections 4 and 5). To be more precise, for any given M ∈ N * , we set t = T /M and introduce the following discretization for the time variable 0 = t0 < t1 < . . . < tM = T,

with tn = n t and n ∈ 0, M . We also introduce t n+ 1 2 = (tn+1 + tn)/2, for n ∈ 0, M -1 , see Figure 1.

For any time discrete control sequence v = {v n+ 1 2 } n∈ 0,M -1 ⊂ L 2 (Ω), consider the sequence y = {y n } n∈ 0,M ⊂ L 2 (Ω) verifying the recursive formula

         y n+1 -y n t -∆y n+1 = 1ωv n+ 1 2 , n ∈ 0, M -1 , y n+1 |∂Ω = 0, n ∈ 0, M -1 , y 0 = y0. (1.6) 
where y n (resp. v n+ 1 2 ) denotes an approximation of y (resp. v) at time tn (resp. t n+ 1 2

). Observe that (1.6) is precisely an implicit Euler discretization of the heat equation. Evidently, there exist many other methods to discretize (1.1), but we have chosen this method for the sake of simplicity.

As in the continuous case, we can introduce the notion of controllability for the discrete scheme, this is, system (1.6) is said to be null controllable if for any y0 ∈ L 2 (Ω) there exists a sequence {v n+ 1 2 } n∈ 0,M -1 such that the corresponding solution satisfies y M = 0.

(1.7)

Notice that for any fixed t and for each n ∈ 0, M -1 , (1.6) can be regarded as a system of controlled elliptic equations.

There are only a handful of works in the literature addressing the controllability of time-discrete systems such as (1.6). This may come from the fact that, as pointed out in [START_REF] Zheng | Controllability of the time discrete heat equation[END_REF]Theorem 1.1], system (1.6) is not even approximately controllable for any given t > 0, except for the trivial case when ω = Ω. In view of this negative result, it is natural to ask whether the controllability requirement (1.7) for system (1.6) can be relaxed. In this direction, in [START_REF] Zheng | Controllability of the time discrete heat equation[END_REF], the controllability for (1.6) is achieved by considering the projections of solutions over a suitable class of low frequency Fourier components. Using a time-discretized Lebeau-Robbiano strategy (see e.g. [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF]), the author proves a uniform controllability result (with respect to t) for the low frequency part of the solution.

In [START_REF] Ervedoza | On the observability of abstract time-discrete linear parabolic equations[END_REF], the authors prove in a quite general framework that any controllable parabolic equation (even if discretized in the space variable) is null controllable after time discretization by an appropriate filtering of the high-frequencies. In [START_REF] Boyer | Uniform null-controllability for space/time-discretized parabolic equations[END_REF], the authors study in a general setting the null-controllability of fullydiscrete approximations for parabolic equations and its convergence rate towards the semi-discrete (in space) case. There, the authors prove some relaxed observability estimates (uniform with respect to the discretization parameters) allowing to recover classical results for the continuous case. However, both of these works rely on spectral analysis tools and therefore the results are limited to autonomous linear control systems. We finally mention the works [START_REF] Ervedoza | On the observability of time-discrete conservative linear systems[END_REF][START_REF] Xu | On the Observability of Time Discrete Integro-differential Systems[END_REF][START_REF] Zhang | Time discrete wave equations: boundary observability and control[END_REF] which encompass the controllability of time discretization schemes for wave-like, Schrödinger and KdV equations.

Here, inspired in the strategy outlined in [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF] (see also [START_REF] Boyer | Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations[END_REF]) for the space discretization of parabolic equations, we derivate a Carleman estimate for time-discrete approximations of the parabolic operator -∂t -∆ and from there we deduce a relaxed observability inequality for a suitable adjoint system. We shall refer to it as a relaxed inequality due to the presence of an extra term on the right-hand side (as compared to (1.4)). This inequality, in turn, allows to obtain by duality a controllability result where a small target is reached and whose size goes to zero exponentially as t → 0, more precisely, we achieve

2 0 = t 0 t 1 t 2 t M -1 t M = T t 1 2 t 3 2 t M -1 2 t M + 1 2 P = (t n ) n∈ 0,M D = (t n+ 1 2 ) n∈ 0,M
|y M | L 2 (Ω) ≤ C obs φ( t)|y0| L 2 (Ω) ,
where C obs is a positive constant uniform with respect to t and t → φ( t) is a suitable function of the discretization parameter t. For this reason, in the spirit of [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF], we shall speak of a φ( t)-null controllability result.

The main goal and novelty of our approach are twofold. By deriving directly a Carleman estimate for the time-discrete operator, we can deduce controllability results for more general systems (e.g., equations with time-dependent coefficients, right-hand side terms, etc) since we are no longer restricted to spectral techniques (as in [START_REF] Ervedoza | On the observability of abstract time-discrete linear parabolic equations[END_REF][START_REF] Boyer | Uniform null-controllability for space/time-discretized parabolic equations[END_REF][START_REF] Zheng | Controllability of the time discrete heat equation[END_REF]). Moreover, our methodology can be readily adapted to derive the analogous counterpart of well-known controllability results in the continuous case, commonly relying on Carleman inequalities, such as the cases of semilinear systems, coupled equations, or non-standard problems as the insensitizing control.

Notations and functional framework

Before introducing our main results, we establish the framework of the discrete setting we shall work with. The notation introduced here allow us to use a formalism as close as possible to the continuous case and, in this way, most of the computations will be carried out in a very intuitive manner.

From the discretization points (1.5), we will denote by P := {tn : n ∈ 1, M } the (primal) set of points excluding the first one and we write P := P ∪ {t0}. To handle in an efficient way computations related to the approximation of the time derivatives, we will naturally work on another (dual) set of points lying at the middle points of P. More precisely, we define D := {t n+ 1 2 : n ∈ 0, M -1 }. It will be convenient to consider also an extra point t M + 1 2 which lies outside the interval [0, T ] (see Figure 1) and to write D := D ∪ {T M + 1 2 }. Observe that both P and D have a total number of M elements.

We denote by R P and R D the sets of real-valued discrete functions defined on P and D. If u P ∈ R P (resp. u D ∈ R D ), we denote by u n (resp. u n+ 1

2 ) its value corresponding to tn (resp. t n+ 1 2

). For u P ∈ R P we define the time-discrete integral

T 0 u P := M n=1 t u n , (1.8) 
and, analogously, for

u D ∈ R D we define - T 0 u D := M -1 n=0 t u n+ 1 2 .
(1.9)

Remark 1.1. To ease the notation and thanks to the introduction of two different integral symbols, in what follows we shall write u indistinctly to refer to functions u P or u D .

Let {X, | • |X } be a real Banach space. We denote by X P and X D the sets of vector-valued functions defined on P and D, respectively. Using the definitions (1.8) and (1.9) for the discrete integrals, we denote by L p P (0, T ; X) (resp. L p D (0, T ; X)), 1 ≤ p < ∞, the space X P (resp. X D ) endowed with the norm

u L p P (0,T ;X) := T 0 |u| p X 1/p resp. u L p D (0,T ;X) := - T 0 |u| p X 1/p .
We also define the space L ∞ P (0, T ; X) (resp. L ∞ D (0, T ; X)) by means of the norm

u L ∞ P (0,T ;X) := sup tn∈P |u n |X   resp. u L ∞ D (0,T ;X) := sup t n+ 1 2 ∈D |u n+ 1 2 |X   .
In the case where p = 2 and X is replaced by a Hilbert space {H, (•, •)H }, H P (resp. H D ) becomes a Hilbert space for the norm induced by the inner product

T 0 (u, v) H := M n=1 t (u n , v n )H resp. - T 0 (u, v) H := M -1 n=0 t (u n+ 1 2 , v n+ 1 2 )H .
Particularly, if H = L 2 (Ω) we shall use the notation

Q uv := T 0 (u, v) L 2 (Ω) resp. - Q uv := - T 0 (u, v) L 2 (Ω) .
Remark 1.2. For short and in accordance with the notation used in the continuous case, we will denote the spaces L 2 P (0, T ; L 2 (Ω)) as L 2 P (Q) and we use L ∞ P (Q) to indicate the space L ∞ P (0, T ; L ∞ (Ω)). The same notation holds for functions defined on the dual grid D.

To manipulate time-discrete functions, we define translation operators for indices t + : X P → X D and t -: X P → X D as follows:

(t + u) n+ 1 2 := u n+1 , (t -u) n+ 1 2 := u n , n ∈ 0, M -1 .
With this, we can define a difference operator Dt as the map from X P into X D given by (Dtu)

n+ 1 2 := u n+1 -u n t = 1 t t + -t -u n+ 1 2 , n ∈ 0, M -1 .
In the same manner, we can define the translation operators t+ : X D → X P and t-: X D → X P as follows:

( t+ u)

n := u n+ 1 2 , ( t-u) n = u n-1 2 , n ∈ 1, M , (1.10) 
as well as a difference operator Dt (mapping X D into X P ) given by

(Dtu) n := u n+ 1 2 -u n-1 2 t = 1 t t+ -t-u n , n ∈ 1, M .
These definitions, together with the integral symbols (1.8) and (1.9), allow us to obtain a series of results for handling in quite natural fashion the application of the derivatives Dt and Dt to functions either continuously defined or discrete. For convenience, we have summarized in Appendix B the main tools and estimates used along this document. As an example, for functions u ∈ [L 2 (Ω)] P and v ∈ [L 2 (Ω)] D , we have the following useful formula

- Q (Dtu)v = -(u 0 , v 1 2 ) L 2 (Ω) + (u M , v M + 1 2 ) L 2 (Ω) - Q (Dtv)u, (1.11) 
which resembles classical integration by parts. Expressions like (1.11) allow us to present and perform computations intuitively, facilitating also the presentation and reading of this paper.

Statement of the main results

Carleman estimate

Let us introduce several weight functions that will be useful in the remainder of this paper. We introduce a special function whose existence is guaranteed by the following result [ 

ψ(x) > 0 all x ∈ Ω, ψ| ∂Ω = 0, |∇ψ| > 0 for all x ∈ Ω\B0. Let K > ψ C(Ω) and set ϕ(x) = e λψ(x) -e λK < 0, φ(x) = e λψ(x) , (1.12) 
and

θ(t) = 1 (t + δT )(T + δT -t)
.

(1.13) for some 0 < δ < 1/2. The parameter δ is introduced to avoid singularities at time t = 0 and t = T (see Remark 1.5 below for further comments). We state our first result, a uniform Carleman estimate for the time-discrete backward parabolic operator formally defined on the dual grid as follows

(LDq) n := -(Dtq) n -∆( t-q) n , n ∈ 1, M , (1.14) 
for any q ∈ (H 2 (Ω)) D . The result is the following. 

τ -1 Q t-(e 2τ θϕ θ -1 ) |Dtq| 2 + ∆( t-q) 2 + τ Q t-(e 2τ θϕ θ)|∇( t-q)| 2 + τ 3 Q t-(e 2τ θϕ θ 3 )( t-q) 2 ≤ C Q ( t-e 2τ θϕ )|LDq| 2 + τ 3 B×(0,T ) t-(e 2τ θϕ θ 3 )( t-q) 2 + C( t) -1
Ω (e τ θϕ q)

1 2 2 + Ω (e τ θϕ q) M + 1 2 2 + Ω (e τ θϕ ∇q) M + 1 2 2 , (1.15) 
for all τ ≥ τ0(T + T 2 ), and for all t > 0 and 0 < δ ≤ 1/2 satisfying the condition

τ 4 t δ 4 min{T 3 , T 6 } -1 ≤ ε0,
and q is any time discrete function in (H 2 (Ω) ∩ H 1 0 (Ω)) D . To prove the Carleman estimate, we proceed as close as possible to the continuous case and follow the procedure presented in [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF]. During the proof, we will clarify the main differences and difficulties introduced by time discretization. Remark 1.5. Some remarks are in order.

• One can readily recognize from (1.15) the classical structure of a Carleman inequality in the continuous setting (cf. [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF]Lemma 1.3]). The last three terms are, however, specific to the discrete case and arise during the proof. In fact, the presence of these terms is important: otherwise we could obtain a classical observability inequality (not relaxed) leading to a uniform controllability result (w.r.t t) for (1.6), which would be a contradiction with the known results (see [START_REF] Zheng | Controllability of the time discrete heat equation[END_REF]). Note that, despite the presence of a ( t) -1 factor, those three terms are actually exponentially small with respect to t since ϕ < 0 and θ is large (close to 1 δT 2 ) near t = 0 and t = T . • As compared to other discrete (in space) Carleman results (see [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF]), the last term corresponding to the gradient of the function q cannot be avoided. Actually, this term also appears during the proof of the estimate presented in [6, Theorem 1.3] but since the functions are discrete in the space variable, it is approximated as ∇q ≈ Ch -1 q, where h is the mesh step size. In our case, it is not clear how to remove this term and how to prove estimate (1.15) without the last term remains open.

• Even though it does not explicitly appear in our Carleman estimate since it is hidden in the definition (1.13) of θ, the parameter δ plays a key role in the proof. As mentioned before, the main interest is to avoid the singularity of the weight θ(t) at times t = 0 and t = T (these singularities, which correspond to the case δ = 0, are systematically exploited in the continuous setting, see e.g. [START_REF] Fursikov | Controllability of evolution equations[END_REF], but are rather difficult to handle in the discrete framework). Here, by taking δ > 0, we enable two different things: one one hand, we can define continuously the weight outside the time interval [0, T ], since functions on the dual mesh D have one extra point lying outside this interval (see Figure 1).

On the other, it allow us to estimate the derivative of θ (see Lemma B.4) and set a suitable change of variables (see eq. (2.1)), which is the starting point of the proof.

• If one considers instead of LD the following forward-in-time operator

( LDq) n := (Dtq) n -∆( t+ q) n , n ∈ 1, M ,
for any q ∈ (H2 (Ω) ∩ H 1 0 (Ω)) D , then a similar Carleman estimate can be obtained: it is just needed to replace all the toperators by t+ and the last term by Ω (e τ θϕ ∇q)

1 2 2 .
• Using the tools in Appendix B, Theorem 1.4 can be easily adapted to discrete parabolic operators acting on primal variables. For instance, we can consider the forward-in-time parabolic operator defined as follows

(LP y) n+ 1 2 = (Dty) n+ 1 2 -∆(t + y) n+ 1 2 , n ∈ 0, M -1 ,
for all y ∈ (H 2 (Ω) ∩ H 1 0 (Ω)) P . Then, under the same conditions of Theorem 1.4, we can prove the following estimate

τ -1 - Q t + (e 2τ θϕ θ -1 ) |Dty| 2 + ∆(t + y) 2 + τ - Q t + (e 2τ θϕ θ)|∇(t + y)| 2 + τ 3 - Q t + (e 2τ θϕ θ 3 )(t + y) 2 ≤ C - Q (t + e 2τ θϕ )|LP y| 2 + τ 3 - B×(0,T ) t + (e 2τ θϕ θ 3 )(t + y) 2 + C( t) -1
Ω (e τ θϕ y) 0 2 + Ω (e τ θϕ y) M 2 +

Ω (e τ θϕ ∇y) 0 2 , (1.16)

for any time discrete function y ∈ (H 2 (Ω) ∩ H 1 0 (Ω)) P . As in the previous remark, we can adapt the result to the associated backward-in-time operator

( LP y) n+ 1 2 = -(Dty) n+ 1 2 -∆(t -y) n+ 1 2 , n ∈ 0, M -1 .

Controllability results: the linear case

By considering a standard implicit Euler scheme for the time variable, the time-discrete homogeneous heat equation with potential a ∈ L ∞ P (Q) reads as follows

         y n+1 -y n t -∆y n+1 + a n+1 y n+1 = 0, n ∈ 0, M -1 , y n+1 |∂Ω = 0, n ∈ 0, M -1 , y 0 = y0.
(1.17)

With the notation introduced previously, we can rewrite system (1.17) as (Dty) n+ 1

Observe that the equation verified by y is written on the dual grid D. This motivates us to look for a time-discrete control v which is naturally attached to this grid (cf. equation (1.6)). Thus, we will consider controlled systems of the form (Dty)

n+ 1 2 -∆(t + y) n+ 1 2 + (t + ay) n+ 1 2 = 1ωv n+ 1 2 , n ∈ 0, M -1 , y 0 = y0.
(1.18)

Following the well-known Hilbert Uniqueness Method (see Proposition 3.3), we can build a control function by minimizing a quadratic functional defined for the solutions to the adjoint of (1.18), which in this case is given by

         q n-1 2 -q n+ 1 2 t -∆q n-1 2 + a n q n-1 2 = 0, n ∈ 1, M , q n-1 2 |∂Ω = 0, n ∈ 1, M , q M + 1 2 = qT .
( 

-(Dtq) n -∆( t-q) n + a n ( t-q) n = 0, n ∈ 1, M , q M + 1 2 = qT .
(1.20)

Applying the Carleman inequality (1.15) to (1.20) and after a series of steps, we will deduce an observability inequality of the form

|q 1 2 | L 2 (Ω) ≤ C obs - ω×(0,T ) |q| 2 + e - C 2 ( t) 1/4 |qT | 2 H 1 0 (Ω) 1 2 , (1.21) 
for some positive constants C obs and C2 only depending on T , ω and a ∞.

As mentioned before, this inequality has an extra term in the right-hand side as compared with the similar estimate in the continuous setting (1.4). This extra term is exponentially small which is actually an improvement compared to the similar inequality proved in [START_REF] Ervedoza | On the observability of abstract time-discrete linear parabolic equations[END_REF].

With this inequality we are able to prove that there exists a discrete control v ∈ L 2 D (0, T ; L 2 (ω)) with v L 2 D (0,T ;L 2 (ω)) ≤ C, uniformly with respect to t, such that the associated solution of (1.18) satisfies

|y M | H -1 (Ω) ≤ C φ( t)|y0| L 2 (Ω) (1.22)
where t → φ( t) is any given function of the discretization parameter such that lim inf t→0 φ( t) e -C 2 /( t) 1/4 > 0.

(1.23)

Actually, this means that we reach a small target y M whose size goes to zero as the time step t → 0, at the prescribed rate φ( t) with controls that remain uniformly bounded with respect to t. In practice, computing such a control can be done by a minimization algorithm for which one can choose the function φ in such a way that the error φ( t) on the target is comparable to the actual accuracy of the discretization scheme. We refer to [START_REF] Boyer | On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems[END_REF] for a more complete discussion on that point. The precise result is given by the following theorem.

Theorem 1.6. Let us consider T > 0 and a discretization parameter t sufficiently small. Then, for any y0 ∈ L 2 (Ω) and any function φ verifying (1.23), there exists a time

-discrete control v ∈ L 2 D (0, T ; L 2 (ω)) such that v L 2 D (0,T ;L 2 (ω)) ≤ C|y0| L 2 (Ω)
, and such that the associated solution y to (1.17) verifies (1.22), for a positive constant C only depending on φ, T and a ∞ as in (3.3).

Observe that Theorem 1.6 only yields a controllability result in H -1 . This is due to the presence of the term |qT | H 1 0 in the estimate (1.21) which in turn comes from the Carleman inequality (1.15) and is closely related to the selection of the weight function (1.12) (see Remarks 1.5 and 2.1). Using classical parabolic regularity results, we can actually obtain a controllability result in a L 2 -setting.

Theorem 1.7. Let us consider T > 0 and a discretization parameter t sufficiently small. Let 0 < C2 < C2. Then, for any y0 ∈ L 2 (Ω) and any function φ verifying

lim inf t→0 φ( t) e -C 2 ( t) 1/4 > 0, (1.24)
there exists a time-discrete control v such that

v L 2 D (0,T ;L 2 (ω)) ≤ C|y0| L 2 (Ω) ,
and the associated solution y to (1.18) verifies

|y M | L 2 (Ω) ≤ C φ( t)|y0| L 2 (Ω) , (1.25) 
where the positive constant C depends only on φ, T and a ∞ as in (3.3).

The methodology to prove Theorem 1.7 is to split the time interval in two parts. In the first (large) subinterval, we choose v such that y satisfies (1.22). In the second one, we set v = 0 and let evolve the uncontrolled system. Then, from an elliptic regularity result, we finally deduce (1.25).

Applications to the semilinear case

One of the main advantages of using Carleman estimates for proving controllability results is the possibility of addressing nonlinear problems. Unlike [START_REF] Ervedoza | On the observability of abstract time-discrete linear parabolic equations[END_REF] or [START_REF] Zheng | Controllability of the time discrete heat equation[END_REF], where spectral properties of the equations are needed (therefore restricted to the linear case), here we will study the controllability of the following implicit Euler scheme

         y n+1 -y n t -∆y n+1 + f (y n+1 ) = 1ωv n+ 1 2 , n ∈ 0, M -1 , y n+1 |∂Ω = 0, n ∈ 0, M -1 , y 0 = y0.
(1.26)

where f ∈ C 1 (R) is a globally Lipschitz function with f (0) = 0. The result is the following.

Theorem 1.8. Let us consider T > 0 and assume that t is small enough. Then, for any y0 ∈ L 2 (Ω) and any function verifying (1.23), there exists a uniformly bounded time-discrete control v ∈ L 2 D (0, T ; L 2 (ω)) such that the associated solution y to (1.26) verifies (1.22).

The proof of Theorem 1.8 follows other well-known controllability results for nonlinear systems (see, for instance, [START_REF] Fabre | Approximate controllability of the semilinear heat equation[END_REF][START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF][START_REF] De Teresa | Insensitizing controls for a semilinear heat equation[END_REF]). First, we prove the existence of a φ( t)-null control for a linearized version of (1.26) and then, after a careful analysis on the dependence of the constants appearing in (1.21) and using a fixed point argument, we deduce the result for the nonlinear case.

Outline

The rest of the paper is organized as follows. In section 2 we present the proof of Theorem 1.4. We have divided the proof in several steps to ease the reading. Section 3 is divided in two parts: in the first one, by employing the Carleman estimate (1.15), we obtain a relaxed observability inequality and then we use it to deduce the φ( t)-null controllability result stated in Theorem 1.6. In the second one, we prove the L 2 -null controllability result presented in Theorem 1.7. We devote Section 4 to prove the nonlinear result enunciated in Theorem 1.8. Finally, in Section 5 we present additional results and a brief discussion on the applicability of the Carleman estimate (1.15) for handling control problems for coupled systems.

Discrete-in-time Carleman estimate

In this section, we present the proof of Theorem 1.4. For the sake of clarity, we have divided the proof in several steps. The ideas presented here try to follow as close as possible the proofs presented in [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF] and [START_REF] Fursikov | Controllability of evolution equations[END_REF] for the continuous case.

As in other works devoted to Carleman estimates, we will keep track of the dependence of all constants with respect to the parameters λ, τ and T . In addition, due to the discrete nature of our problem, we will pay special attention in the dependence of the discrete parameters t and δ.

In order to ease the computations, we introduce the following instrumental functions

s(t) = τ θ(t), τ > 0, t ∈ (-δT, T + δT ), r(x, t) = e s(t)ϕ(x) , ρ(x, t) = (r(x, t)) -1 , x ∈ Ω, t ∈ (-δT, T + δT ).
We begin by assuming that q ∈ (C 2 (Ω) ∩ H 1 0 (Ω)) D , since we may then extend the result to functions in H 2 (Ω) by an usual density argument. We introduce the change of variables

z n+ 1 2 = r(., t n+1/2 )q n+ 1 2 , n ∈ 0, M , (2.1) 
and then we will look for the equation satisfied by z. From now on, we will simplify the notation in such formulas by simply writing z = rq which implicitely means that the (continuous) weight function r is evaluated on the same grid (primal or dual) and at the same time as the one attached to the discrete variables. This will not lead to any ambiguity. Since ψ ∈ C 2 (Ω) and q ∈ C 2 (Ω) D , we take the partial derivative with respect to the variable xi to obtain

∂iz = r∂iq + τ θλφ∂iψz (2.2)
where we have used that ∂iϕ = λφ∂iψ.

A further derivation yields

∂i (∂iz) =r∂ 2 i q + τ 2 θ 2 λ 2 (∂iψ) 2 φ 2 z + τ θλ 2 (∂iψ) 2 φz + 2τ θλ∂iψφr∂iq + τ θλ∂ 2 i ψφz (2.3) 
Replacing (2.2) on the fourth term in (2.3), we get

∂i (∂iz) =r∂ 2 i q -τ 2 θ 2 λ 2 (∂iψ) 2 φ 2 z + τ θλ 2 (∂iψ) 2 φz + 2τ θλ∂iψφ∂iz + τ θλ∂ 2
i ψφz Now, since r(x, t) and θ(t) are continuously defined for t ∈ (-δT, T + δT ), we can use the translation operator (1.10) to write the following equality on the primal grid P, 

∆( t-z) =( t-r)∆( t-q) -τ 2 ( t-θ 2 )λ 2 |∇ψ| 2 φ 2 ( t-z) + τ ( t-θ)λ 2 |∇ψ| 2 φ( t-z) + 2τ ( t-θ)λφ∇ψ • ∇( t-z) + τ ( t-θ)λ∆ψφ( t-z).
Dtz = ( t-r)(Dtq) + ( t+ q)(Dtr) = ( t-r)(Dtq) + τ ( t+ θ )φ + t τ δ 3 T 4 + τ 2 δ 4 T 6 O λ,κ (1) ( t+ z).
(2.5)

Observe that, unlike the continuous case, two additional terms corresponding to the time derivative Dtr appear. This will translate later into additional terms appearing on the right-hand side of the Carleman inequality. Now, putting together (2.4)-(2.5) and using (1.14), we have that z verifies, on the primal grid P, the equation

(Dtz) + ∆( t-z) = -( t-r)(LDq) -τ 2 ( t-θ 2 )λ 2 |∇ψ| 2 φ 2 ( t-z) + τ ( t-θ)λ 2 |∇ψ| 2 φ( t-z) + 2τ ( t-θ)λφ∇ψ • ∇( t-z) + τ ( t-θ)λ∆ψφ( t-z) + τ ( t+ θ )φ( t+ z) + t τ δ 3 T 4 + τ 2 δ 4 T 6 O λ,κ (1)( t+ z). (2.6)
Using the definition of the difference operator Dt, we can express the second last term in the above equation as

τ ( t+ θ )φ( t+ z) = τ ( t+ θ )φ( t-z) + τ t( t+ θ )φDtz. (2.7)
We conveniently rewrite (2.6)-(2.7) as follows

Az + Bz = g (2.8)
where

Az = A1z + A2z + A3z, Bz = B1z + B2z + B3z with g = -( t-r)LDq + τ ( t-θ)λ∆ψφ( t-z) -τ ( t-θ)λ 2 |∇ψ| 2 φ( t-z) + t τ δ 3 T 4 + τ 2 δ 4 T 6 O λ,κ (1)( t+ z) + τ t( t+ θ )φDtz (2.9) and A1z = -2τ ( t-θ)λ 2 |∇ψ| 2 φ( t-z), A2z = -2τ ( t-θ)λφ∇ψ • ∇( t-z), A3 = Dtz, B1z = τ 2 ( t-θ) 2 λ 2 |∇ψ| 2 φ 2 ( t-z), B2z = ∆( t-z), B3z = -τ φ( t+ θ )( t-z).
(2.10) With the notation introduced in Section 1.3, we can take the L 2 -norm in (2.8), which yields

Az 2 L 2 P (Q) + Bz 2 L 2 P (Q) + 2(Az, Bz) L 2 P (Q) = g 2 L 2 P (Q) . (2.11)
The rest of the proof will be dedicated to estimate the term (Az, Bz) L 2 P (Q) . For clarity, we have divided it in several steps. Developing the inner-product (Az, Bz)

L 2 P (Q) , we set Iij := (Aiz, Bjz) L 2 P (Q) .
Step 1. Estimates that do not involve the discrete operations

Here, we will obtain lower bounds for different terms that do not involve the time discrete derivative Dt.

They can be carried out as in the continuous case, that is with suitable integration by parts in space, with some minor modifications. For the sake of completeness, we include the computations.

Estimate of I11 + I21. First, it is clear that

I11 = -2τ 3 λ 4 Q ( t-θ) 3 |∇ψ| 4 φ 3 ( t-z) 2 .
On the other hand, we have

I21 = 3τ 3 λ 4 Q ( t-θ) 3 |∇ψ| 4 φ 3 ( t-z) 2 + τ 3 λ 3 Q ( t-θ) 3 |∇ψ| 2 ∆φ 3 ψ( t-z) 2 + 2τ 3 λ 3 N i,j=1 Q ( t-θ) 3 ∂iψ∂ijψ∂jψφ 3 ( t-z) 2 := I (1) 21 + I (2) 21 + I (3) 21 ,
where we have integrated by parts with respect to the space variable. Then, adding up I11 and I

(1

)
21 and taking into account the properties of the weight function ψ, it is not difficult to see that

I11 + I (1) 21 ≥ Cτ 3 λ 4 Q ( t-θ) 3 φ 3 ( t-z) 2 -Cτ 3 λ 4 ω×(0,T ) ( t-θ) 3 φ 3 ( t-z) 2 .
Since ψ ∈ C 2 (Ω), we can take the parameter λ sufficiently large to absorb I 

I11 + I21 ≥ Cτ 3 λ 4 Q ( t-θ) 3 φ 3 ( t-z) 2 -Cτ 3 λ 4 ω×(0,T ) ( t-θ) 3 φ 3 ( t-z) 2
(2.12)

for any λ ≥ C.

Estimate of I12 + I22. Integrating by parts with respect to the space variable we have

I12 = 2τ λ 2 Q ( t-θ)|∇ψ| 2 φ|∇( t-z)| 2 + 2τ λ 3 Q ( t-θ)|∇ψ| 2 φ∇ψ • ∇( t-z)(t + z) + 4τ λ 3 N i,j=1 Q ( t-θ)∂iψ∂ijψφ∂i( t-z)( t-z) := I (1)
12 + I

(2)

12 + I (3)
12 .

We will keep the term

I (1)
12 . For the other two terms, we can use Cauchy-Schwarz and Young inequalities, together with the properties of ψ, to obtain

I12 ≥ I (1) 12 -Cτ λ 4 Q ( t-θ)φ( t-z) 2 -Cτ Q ( t-θ)φ|∇( t-z)| 2 -Cτ 2 λ 4 Q ( t-θ) 2 φ(t + z) 2 -Cλ 2 Q |∇( t-z)| 2 .
Hence, taking τ ≥ CT 2 , we get

I12 ≥ I (1) 12 -C Q τ ( t-θ)φ + λ 2 |∇( t-z)| 2 -Cτ 2 λ 4 Q ( t-θ) 2 φ 2 ( t-z) 2 .
(2.13)

Now, let us estimate the term I22. Integrating by parts, we obtain

I22 = -2 Q τ ( t-θ)λφ∇ψ • ∇( t-z)∆( t-z) = -2τ λ ∂Ω×(0,T ) ( t-θ)φ ∂ψ ∂n ∂( t-z) ∂n 2 + 2τ λ 2 N i,j=1 Q ( t-θ)φ∂ijψ∂i( t-z)∂j( t-z) (2.14) + 2τ λ Q ( t-θ)φ ∇ψ • ∇( t-z) 2 + τ λ Q ( t-θ)φ∇ψ • ∇|∇( t-z)| 2 ,
where we have used the fact that ∇( tz)

• n = ∂(t -z) ∂n since z n+ 1 2 |∂Ω = 0 for any n ∈ 0, M -1 .
Integrating by parts in the fourth term of the above expression yields

τ λ Q ( t-θ)φ∇ψ • ∇|∇( t-z)| 2 = τ λ ∂Ω×(0,T ) (t + θ)φ ∂ψ ∂n ∂( t-z) ∂n 2 -τ λ Q ( t-θ)∆ψφ|∇( t-z)| 2 -τ λ 2 Q ( t-θ)|∇ψ| 2 φ|∇( t-θ)| 2 .
(2.15) Thus, putting together (2.14) and (2.15), we obtain

I22 = -τ λ ∂Ω×(0,T ) ( t-θ)φ ∂ψ ∂n ∂( t-z) ∂n 2 + 2τ λ 2 N i,j=1 Q ( t-θ)φ∂ijψ∂i( t-z)∂j( t-z) + 2τ λ Q ( t-θ)φ ∇ψ • ∇( t-z) 2 -τ λ Q ( t-θ)∆ψφ|∇( t-z)| 2 -τ λ 2 Q ( t-θ)|∇ψ| 2 φ|∇( t-θ)| 2 := 5 j=1 I (j) 22 .
From this expression, it is clear that

I (3)
22 is a positive term. Moreover, from the properties of the weight ψ, we also have that I

(1) 22 ≥ 0. Since ψ ∈ C 2 (Ω), we can bound from below the second and fourth terms in the above expression to obtain

I22 ≥ -τ λ 2 Q ( t-θ)|∇ψ| 2 φ|∇( t-θ)| 2 -Cτ λ Q ( t-θ)λφ|∇( t-z)| 2 .
(2.16)

Collecting estimates (2.13) and (2.16), and taking λ large enough, we get

I12 + I22 ≥ Cτ λ 2 Q ( t-θ)φ|∇( t-z)| 2 -Cτ λ 2 ω×(0,T ) ( t-θ)φ|∇( t-z)| 2 -Cτ 2 λ 4 Q ( t-θ) 2 φ 2 ( t-z) 2 .
(2.17)

Then, using estimates (2.12) and (2.17) in equation (2.11), our Carleman inequality reads momentarily as follows

Q τ 3 λ 4 ( t-θ) 3 φ 3 ( t-z) 2 + τ λ 2 ( t-θ)φ|∇( t-z)| 2 + Az 2 L 2 P (Q) + Bz 2 L 2 P (Q) + I31 + I32 + 3 j=1 Ij3 ≤ g 2 L 2 P (Q) + C ω 0 ×(0,T ) τ 3 λ 4 ( t-θ) 3 φ 3 ( t-z) 2 + τ λ 2 ( t-θ)φ|∇( t-z)| 2 (2.18) for λ ≥ C and τ ≥ CT 2 .
Step 2. Estimates involving discrete computations

In the second part of the proof, we will use the discrete calculus results presented in Appendix B. They will help us to handle the remainder terms that arise when integrating by parts with respect to the time variable.

Estimate of I31. Using formula (B.2) we have

I31 = τ 2 λ 2 Q ( t-θ) 2 φ 2 |∇ψ| 2 ( t-z)Dtz = 1 2 τ 2 λ 2 Q ( t-θ) 2 φ 2 |∇ψ| 2 Dt(|z| 2 ) - t 2 τ 2 λ 2 Q ( t-θ) 2 φ 2 |∇ψ| 2 Dtz 2 := I (1) 31 + I (2) 
31 .

Integrating by parts with respect to time in the first term of the above expression, that is using (B.7), we obtain

I (1) 31 = - 1 2 τ 2 λ 2 Ω (θ 1 2 ) 2 φ 2 |∇ψ| 2 (z 1 2 ) 2 + 1 2 τ 2 λ 2 Ω (θ M + 1 2 ) 2 φ 2 |∇ψ| 2 (z M + 1 2 ) 2 + 1 2 τ 2 λ 2 Q |∇ψ| 2 φ 2 Dt(θ 2 )( t+ z) 2 .
Using estimate (B.12) and shifting the indices with (B.4)-(B.5) in the last term of the above expression yields

1 2 τ 2 λ 2 Q |∇ψ| 2 φ 2 Dt(θ 2 )( t+ z) 2 ≤ Cτ 2 λ 2 Q |∇ψ| 2 φ 2 T ( t+ θ) 3 + t T 6 δ 4 ( t+ z) 2 = Cτ 2 λ 2 Q |∇ψ| 2 φ 2 T ( t-θ) 3 + t T 6 δ 4 ( t-z) 2 + Cτ 2 λ 2 Ω |∇ψ| 2 φ 2 T (θ M + 1 2 ) 3 + t T 6 δ 4 (z M + 1 2 ) 2 -Cτ 2 λ 2 Ω |∇ψ| 2 φ 2 T (θ 1 2 ) 3 + t T 6 δ 4 (z 1 2 ) 2 .
Hence, using that ψ ∈ C 2 (Ω), we get

I31 ≥ -Cτ 2 λ 2 T Q φ 2 ( t-θ) 3 ( t-z) 2 -C t τ 2 λ 2 Q ( t-θ) 2 φ 2 Dtz 2 -Cτ 2 λ 2 Q φ 2 t T 6 δ 4 ( t-z) 2 -W1, (2.19) 
where

W1 := Cτ 2 λ 2 Ω (θ 1 2 ) 2 φ 2 (z 1 2 ) 2 + Cτ 2 λ 2 Ω φ 2 T (θ M + 1 2 ) 3 + t T 6 δ 4 (z M + 1 2 ) 2 .
Estimate of I32. Integrating by parts in the space variable and using (B.3), we have

I32 = - 1 2 Q Dt |∇z| 2 + 1 2 t Q Dt∇z 2 ,
and then integrating in time

I32 = 1 2 Ω |∇z 1 2 | 2 - Ω |∇z M + 1 2 | 2 + t 2 Q |Dt(∇z)| 2 ≥ - 1 2 Ω |∇z M + 1 2 | 2 =: W2. (2.20) Remark 2.1.
Observe that in the continuous case the term I32 is equal to zero. Here, a new term depending on ∇z M + 1 2 appears and is related to the special structure of the function θ which prevents that the exponential weight vanishes at t = T .

Estimate of I13. A straightforward computation gives

I13 = -2τ 2 λ 2 Q |∇ψ| 2 ( t-θ)φ 2 ( t+ θ )( t-z) 2 ,
then using (B.13) and that ψ ∈ C 2 (Ω), we readily obtain

|I13| ≤ C τ 2 λ 2 T Q φ 2 ( t-θ) 3 ( t-z) 2 + τ 2 λ 2 Q φ 2 t T 4 δ 3 ( t-z) 2 .
(2.21)

Estimate of I23. Integration by parts in the space variable yields

I23 = -2τ 2 λ Q ( t-θ)φ 2 ( t+ θ )∇ψ • ∇( t-z)( t-z) = τ 2 λ Q ( t-θ)( t+ θ )φ 2 ∆ψ( t-z) 2 + 2τ 2 λ 2 Q ( t-θ)( t+ θ )φ 2 |∇ψ| 2 ( t-z) 2 .
From estimate (B.13) and since ψ ∈ C 2 ( Ω) is not difficult to see that for λ ≥ 1 we have

|I23| ≤ C τ 2 λ 2 T Q ( t-θ) 3 φ 2 ( t-z) 2 + τ 2 λ 2 Q ( t-θ)φ 2 t T 4 δ 3 ( t-z) 2 .
(2.22)

Estimate of I33. Using formula (B.3) we can write

I33 = -τ Q φ( t+ θ )Dtz( t-z) = - 1 2 τ Q φ( t+ θ )Dt(z 2 ) + 1 2 τ t Q φ( t+ θ )(Dtz) 2
and integrating by parts on the first term, with (B.7), we obtain

I33 = 1 2 τ Ω φ(θ ) 1 2 (z 1 2 ) 2 - 1 2 τ Ω φ(θ ) M + 1 2 (z M + 1 2 ) 2 + 1 2 τ Q φDt(θ )( t-z) 2 + 1 2 τ t Q φ( t+ θ )(Dtz) 2 .
From this expression and the definition of θ, it is clear that the first two terms are negative. Moreover, from (B.14) we observe that the third term is positive. A further computation using (B.13) yields

I33 ≥ -W3 -CT τ t Q φ( t-θ) 2 (Dtz) 2 -C τ ( t) 2 T 4 δ 3 Q φ(Dtz) 2 , (2.23) 
where ) are analogous to those appearing in the continuous case and they can be absorbed as soon as λ ≥ 1 and τ ≥ CT . The other terms contain parameters related to the time discretization (i.e., t or δ) and will be handled in a later step. Momentarily, we have

W3 := 1 2 τ Ω φ(θ ) M + 1 2 (z M + 1 2 ) 2 - 1 2 τ Ω φ(θ ) 1 2 (z 1 2 ) 2 .

Conclusion of

Q τ 3 λ 4 ( t-θ) 3 φ 3 ( t-z) 2 + τ λ 2 ( t-θ)φ|∇( t-z)| 2 + Az 2 L 2 P (Q) + Bz 2 L 2 P (Q) ≤ g 2 L 2 P (Q) + C ω 0 ×(0,T ) τ 3 λ 4 ( t-θ) 3 φ 3 ( t-z) 2 + τ λ 2 ( t-θ)φ|∇( t-z)| 2 + C (W + X + Y ) , (2.24) 
for any λ ≥ C and τ ≥ C(T + T 2 ) and where we have used the notation W = W1 + W2 + W3 and

X := τ 2 λ 2 Q ( t-θ)φ 2 t T 4 δ 3 ( t-z) 2 + τ 2 λ 2 Q φ 2 t T 6 δ 4 ( t-z) 2 + τ 2 λ 2 Q φ 2 t T 4 δ 3 ( t-z) 2 ,
(2.25)

Y := t τ 2 λ 2 Q ( t-θ) 2 φ 2 Dtz 2 + T τ t Q φ( t-θ) 2 (Dtz) 2 + τ ( t) 2 T 4 δ 3 Q φ(Dtz) 2 .
(2.26)

Step 3. Adding D t z and ∆( tz) in the left-hand side

In this step, we will add integrals containing the terms |Dtz| 2 and |∆( tz)| 2 to the left-hand side of (2.24). The former will help to absorb the terms in Y (see eq. (2.26)) and the latter will be useful to elimate the local term of ∇( tz).

Using the equation verified by Az (see eq. (2.10)), it is not difficult to see that

τ -1 Q ( t-θ) -1 φ -1 (Dtz) 2 ≤ C Az 2 L 2 P (Q) + τ λ 4 Q ( t-θ)φ( t-z) 2 + τ λ 2 Q ( t-θ)φ|∇( t-z)| 2 ,
(2.27) and, from (2.10) and (B.13), we deduce for τ ≥ CT 2 τ -1

Q ( t-θ) -1 φ -1 |∆( t-z)| 2 ≤ C Bz 2 L 2 P (Q) + τ 3 λ 4 Q ( t-θ) 3 φ 3 ( t-z) 2 + τ T 2 Q ( t-θ) 3 φ( t-z) 2 + ( t) 2 τ 2 T 8 δ 6 Q φ( t-z) 2 .
(2.28)

Combining estimates (2.24) and (2.27)-(2.28), we can absorb the lower order terms to obtain

τ -1 Q ( t-θ) -1 φ -1 (Dtz) 2 + |∆( t-z)| 2 + τ 3 λ 4 Q ( t-θ) 3 φ 3 ( t-z) 2 + τ λ 2 Q ( t-θ)φ|∇( t-z)| 2 ≤ g 2 L 2 P (Q) + C ω 0 ×(0,T ) τ 3 λ 4 ( t-θ) 3 φ 3 ( t-z) 2 + τ λ 2 ( t-θ)φ|∇( t-z)| 2 + C W + X + Y , (2.29) for λ ≥ 1 and τ ≥ CT 2 , with X = X + ( t) 2 τ 2 T 8 δ 6 Q φ( t-z) 2 .
Step 4. Local estimate of the ∇(t + z)

We are now ready to eliminate local term of ∇( tz) in (2.29). We will proceed as in [START_REF] Fernández-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF]. To this end, consider a cut-off function η = η(x), with

η ∈ C 2 c (ω), η ≡ 1 in ω0, 0 ≤ η ≤ 1.
Then, one can readily see that

τ λ 2 ω 0 ×(0,T ) ( t-θ)φ|∇( t-z)| 2 ≤ τ λ 2 ω×(0,T ) ( t-θ)φ|∇( t-z)| 2 η = -τ λ 2 ω×(0,T ) ( t-θ)φ∆( t-z)( t-z)η -τ λ 2 ω×(0,T ) ( t-θ)φ∇η • ∇( t-z)( t-z) -τ λ 3 ω×(0,T ) ( t-θ)φ∇ψ • ∇( t-z)( t-z),
and whence, employing Cauchy-Schwarz and Young inequalities, we get

τ λ 2 ω 0 ×(0,T ) ( t-θ)φ|∇( t-z)| 2 ≤ γ Q τ -1 (t + θ) -1 φ -1 |∆( t-z)| 2 + Cγ ω×(0,T ) τ 3 λ 4 ( t-θ) 3 φ 3 ( t-z) 2 + τ λ 4 ( t-θ)φ( t-z) 2
for γ >0 small enough and where we have used the fact that λ ≥ 1. This estimate together with (2.29) yield

τ -1 Q ( t-θ) -1 φ -1 (Dtz) 2 + |∆( t-z)| 2 + τ 3 λ 4 Q ( t-θ) 3 φ 3 ( t-z) 2 + τ λ 2 Q ( t-θ)φ|∇( t-z)| 2 ≤ g 2 L 2 P (Q) + C τ 3 λ 4 ω×(0,T ) ( t-θ) 3 φ 3 ( t-z) 2 + W + X + Y , (2.30) 
for λ ≥ C and τ ≥ C(T + T 2 ).

Step 5. Estimate of g and absorbing the remaining terms

In this step, we will absorb the reminder terms in the right-hand side of (2.30). This will be achieved by selecting in a specific order the parameters involved in the Carleman inequality. We recall that from Lemma B.4, the condition tτ ϕ ∞(T 3 δ 2 ) -1 ≤ κ should be fulfilled in order to take the time derivative of the Carleman weight. We will choose λ0 ≥ 1 sufficiently large and set λ = λ0 for the remainder of the proof. Hence, we may choose

tτ (T 3 δ 2 ) -1 ≤ ε, (2.31) 
for some positive constant ε = ε(λ0). We have the following Lemma 2.2. Provided condition (2.31) holds, we have

g 2 L 2 P (Q) ≤ C λ 0 Q ( t-r) 2 |LDq| 2 + τ 2 Q ( t-θ) 2 ( t-z) 2 + C λ 0 ( t) 2 τ 2 δ 6 T 8 + ( t) 2 τ 4 δ 8 T 12 Q ( t-z) 2 + Ω (z M + 1 2 ) 2 + C λ 0 τ 2 ( t) 2 T 2 Q ( t-θ) 4 (Dtz) 2 + ( t) 4 τ 2 T 8 δ 6 Q (Dtz) 2 .
(2.32) Lemma 2.2 follows from estimate (B.13) and a straightforward computation, so for brevity we omit the proof. Using (2.32) in the inequality (2.30), we deduce that the following inequality holds

τ -1 Q ( t-θ) -1 (Dtz) 2 + |∆( t-z)| 2 + τ 3 Q ( t-θ) 3 ( t-z) 2 + τ Q ( t-θ)|∇( t-z)| 2 ≤ C λ 0 Q ( t-r) 2 |LDq| 2 + τ 3 ω×(0,T ) ( t-θ) 3 ( t-z) 2 + W + X + Y , (2.33) 
for any τ ≥ τ0(T + T 2 ), where τ0 is a positive constant depending on λ0 and where we have grouped similar terms with the expressions of W , X and Y to obtain

W = τ 2 Ω (θ 1 2 ) 2 (z 1 2 ) 2 + τ 2 Ω T (θ M + 1 2 ) 3 + t T 6 δ 4 (z M + 1 2 ) 2 + Ω |∇z M + 1 2 | 2 + τ Ω (θ ) M + 1 2 (z M + 1 2 ) 2 -τ Ω (θ ) 1 2 (z 1 2 ) 2 + ( t) 2 τ 2 δ 6 T 8 + ( t) 2 τ 4 δ 8 T 12 Ω (z M + 1 2 ) 2 , X = τ 2 Q ( t-θ) t T 4 δ 3 ( t-z) 2 + τ 2 Q t T 6 δ 4 ( t-z) 2 + τ 2 Q t T 4 δ 3 ( t-z) 2 + ( t) 2 τ 2 T 8 δ 6 Q ( t-z) 2 + ( t) 2 τ 4 δ 8 T 12 Q ( t-z) 2 , Y = t τ 2 Q ( t-θ) 2 Dtz 2 + T τ t Q ( t-θ) 2 (Dtz) 2 + τ ( t) 2 T 4 δ 3 Q (Dtz) 2 + τ 2 ( t) 2 T 2 Q ( t-θ) 4 (Dtz) 2 + ( t) 4 τ 2 T 8 δ 6 Q (Dtz) 2 .
Notice that in the definitions of X and Y there are some terms containing powers of τ greater than their counterparts in the left-hand side of (2.33) and thus preventing us from absorbing them directly. Using the discretization parameters δ and t we will be able to do so. More precisely, we have Lemma 2.3. For any λ ≥ 1 and τ ≥ 1, there exists ε = ε(λ) such that for 0 < tτ 4 (min{T 3 , T 6 }δ 4 ) -1 ≤ ε, the following estimate holds

X + Y ≤ ε τ 3 Q ( t-θ) 3 ( t-z) 2 + ε τ -1 Q ( t-θ) -1 (Dtz) 2 ,
(2.34) for all τ ≥ τ1(T + T 2 ). We provide the proof of this result in Appendix A. By using Lemma 2.3 with ε0 = 1/2C λ 0 , where C λ 0 is the constant appearing in (2.33), we can absorb all of the terms in X and Y , whence

τ -1 Q ( t-θ) -1 (Dtz) 2 + |∆( t-z)| 2 + τ 3 Q ( t-θ) 3 ( t-z) 2 + τ Q ( t-θ)|∇( t-z)| 2 ≤ C λ 0 Q ( t-r) 2 |LDq| 2 + τ 3 ω×(0,T ) ( t-θ) 3 ( t-z) 2 + W .
(2.35)

As in other related works for the controllability of discretized systems (cf. [START_REF] Boyer | Teresa Insensitizing controls for a semilinear parabolic equation: A numerical approach Math[END_REF][START_REF] Boyer | Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations[END_REF][START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF]), the terms appearing in W cannot be removed and they can only be estimated. We have the following result Lemma 2.4. For any λ ≥ 1 and τ ≥ 1, there exists ε = ε(λ) such that for 0 < tτ 4 (min{T 3 , T 6 }δ 4 ) -1 ≤ ε, the following estimate holds

W ≤ ε( t) -1 Ω (z 1 2 ) 2 + Ω (z M + 1 2 ) 2 + Ω |∇z M + 1 2 | 2 .
(2.36)

Proof. Under the hypothesis of the lemma and recalling that δ ≤ 1/2, we may deduce that t ≤ δT /2 and therefore max

t∈[0,T + t] θ(t) ≤ 2 δT 2 and max t∈[0,T + t] |θ (t)| ≤ 2 δ 2 T 3 .
(2.37)

Then, inequality (2.36) follows from the above estimates and straightforward computations.

Combining (2.35) with (2.36) we obtain

τ -1 Q ( t-θ) -1 (Dtz) 2 + |∆( t-z)| 2 + τ 3 Q ( t-θ) 3 ( t-z) 2 + τ Q ( t-θ)|∇( t-z)| 2 ≤ C λ 0 Q ( t-r) 2 |LDq| 2 + τ 3 ω×(0,T ) ( t-θ) 3 ( t-z) 2 + ( t) -1 Ω (z 1 2 ) 2 + Ω (z M + 1 2 ) 2 + Ω |∇z M + 1 2 | 2 , (2.38) 
for λ ≥ λ0, τ ≥ τ0(T + T 2 ) and tτ 4 (min{T 3 , T 6 }δ 4 ) -1 ≤ ε0.

Step 7. Returning to the original variable and conclusion

To conclude our proof, we will return to the original variable y. Recall that we have employed the change of variables z = rq. Thus, from (2.38), we readily obtain

τ -1 Q ( t-θ) -1 (Dtz) 2 + |∆( t-z)| 2 + Q t-(r 2 s 3 )( t-q) 2 + τ Q ( t-θ)|∇( t-z)| 2 ≤ C λ 0 Q ( t-r) 2 |LDq| 2 + ω×(0,T ) t-(r 2 s 3 )( t-q) 2 + ( t) -1
Ω (e sϕ q)

1 2 2 + Ω (e sϕ q) M + 1 2 2 + Ω (e sϕ ∇q) M + 1 2 2 , (2.39) 
where we recall that s(t) = τ θ(t) and where we have used formula (2.2) in the last term of (2.38). Using once again (2.2), it is not difficult to see that

Q t-(r 2 s)|∇( t-q)| 2 ≤ C λ 0 Q ( t-s)|∇( t-z)| 2 + C λ 0 Q t-(r 2 s 3 )( t-y) 2 .
Therefore, we can add the integral of |∇( tq)| to the left-hand side of (2.39), that is

τ -1 Q ( t-θ) -1 (Dtz) 2 + |∆( t-z)| 2 + Q t-(r 2 s 3 )( t-q) 2 + Q t-(r 2 s)|∇( t-q)| 2 ≤ C λ 0 Q ( t-r) 2 |LDq| 2 + ω×(0,T ) t-(r 2 s 3 )( t-q) 2 + C λ 0 ( t) -1 Ω (e s(t)ϕ q) 1 2 2 + Ω (e s(t)ϕ q) M + 1 2 2 + Ω (e s(t)ϕ ∇q) M + 1 2 2 .
(2.40)

Now, we use identity (2.3) and multiply both sides by t-(r 2 s -1 )∆( tq). Integrating in L 2 (Ω), summing over n, and using Hölder and Young inequalities yields

Q t-(r 2 s -1 )|∆( t-q)| 2 ≤ C λ 0 Q ( t-s) -1 |∆( t-z)| 2 + Q t-(r 2 s)( t-y) 2 + Q t-(r 2 s)|∇( t-y)| 2 + Q t-(r 2 s 3 )( t-y) 2 .
Since τ0 < τ0 (1/T + 1) ≤ τ θ(t) = s(t) for all 0 ≤ t ≤ T , we obtain from the above expression

Q t-(r 2 s -1 )|∆( t-q)| 2 ≤ C λ 0 ,τ 0 Q ( t-s) -1 |∆( t-z)| 2 + Q t-(r 2 s 3 )( t-y) 2 + Q t-(r 2 s)|∇( t-y)| 2 ,
and, consequently, we can add the term containing |∆( tq)| to the left-hand side of (2.40), that is,

τ -1 Q ( t-θ) -1 (Dtz) 2 + Q t-(r 2 s -1 )|∆( t-q)| 2 + Q t-(r 2 s 3 )( t-q) 2 + Q t-(r 2 s)|∇( t-q)| 2 ≤ C λ 0 ,τ 0 Q ( t-r) 2 |LDq| 2 + ω×(0,T ) t-(r 2 s 3 )( t-q) 2 + C λ 0 ,τ 0 ( t) -1 Ω (e s(t)ϕ q) 1 2 2 + Ω (e s(t)ϕ q) M + 1 2 2 + Ω (e s(t)ϕ ∇q) M + 1 2 2 .
(2.41)

Finally, we add the integral corresponding to |Dtq| to the left-hand side of (2.41). This simply follows from the fact that -Dtq = f + ∆( tq). Indeed, we have

Q t-(r 2 s -1 )|Dtq| 2 ≤ 2 Q t-(r 2 s -1 )|f | 2 + 2 Q t-(r 2 s -1 )|∆( t-q)| 2 .
(2.42)

Increasing, if necessary, the value of τ0 so (τ θ(t)) -1 ≤ 1 and (2.42) yields

Q t-(r 2 s -1 )(Dtq) 2 + Q t-(r 2 s -1 )|∆( t-q)| 2 + Q t-(r 2 s 3 )( t-q) 2 + Q t-(r 2 s)|∇( t-q)| 2 ≤ C λ 0 ,τ 0 Q ( t-r) 2 |LDq| 2 + ω×(0,T ) t-(r 2 s 3 )( t-q) 2 + C λ 0 ,τ 0 ( t) -1
Ω (e sϕ q)

1 2 2 + Ω (e sϕ q) M + 1 2 2 + Ω (e sϕ ∇q) M + 1 2 2 .
This concludes the proof.

φ( t)-null controllability: the linear case

In this section, we will use the Carleman estimate (1.15) for deducing control properties of linear parabolic systems. First, we prove Theorem 1.6 which gives a controllability result where we reach a small target in H -1 (Ω). Then, using this result and some regularity estimates, we present the strategy to obtain a controllability result in the L 2 -setting.

Proof of Theorem 1.6

Let us consider the following time-discrete parabolic problem with potential (Dty)

n+ 1 2 -∆(t + y) n+ 1 2 + (t + ay) n+ 1 2 = 1ωv n+ 1 2 , n ∈ 0, M -1 , y 0 = y0. (3.1)
To achieve a φ( t)-controllability result for (3.1), we begin by proving a relaxed observability estimate for the solutions to the associated adjoint system, which in this case is given by

-(Dtq) n -∆( t-q) n + a n ( t-q) n = 0, n ∈ 1, M , q M + 1 2 = qT . (3.2)
We have the following observability estimate:

Proposition 3.1. There exist positive constants C0, C1 and C2 such that for all 0 < T < 1, all potential functions a ∈ L ∞ P (Q) and t ≤ min t, (4 a ∞)

-

1
where

t = C0(T + T 2 + T 2 a 2/3 ∞ ) -3 T 6 , any solution to (3.2) with qT ∈ H 1 0 (Ω) satisfies |q 1 2 | L 2 (Ω) ≤ C obs - ω×(0,T ) |q| 2 + e - C 2 ( t) 1/4 |∇qT | 2 L 2 (Ω) 1 2 
, where

C obs = e C 1 (1+ 1 T + a 2/3 ∞ +T a ∞ ) . (3.3) Remark 3.2.
Without loss of generality and since we are mostly interested in controllability in small time, we consider that 0 < T < 1 so that we have min{T 3 , T 6 } = T 6 . For T ≥ 1, the procedure can be adapted straightforwardly.

Proof. Applying the Carleman estimate (1.15) to the solutions of (3.2), we have that

Q t-(e 2sϕ s 3 )( t-q) 2 ≤ C Q ( t-e 2sϕ )|a ( t-q)| 2 + ω×(0,T ) t-(e 2sϕ s 3 )( t-q) 2 + C( t) -1 (e sϕ q) 1 2 2 L 2 (Ω) + (e sϕ q) M + 1 2 2 L 2 (Ω)
+ (e sϕ ∇q)

M + 1 2 2 L 2 (Ω) (3.4)
for all τ ≥ τ0(T + T 2 ) and τ 4 t(δ 4 T 6 ) -1 ≤ ε0. Since 1 ≤ CθT 2 , the first term in the right-hand side of (3.5) can be absorbed as soon as τ ≥ CT 2 a 2/3 ∞ , more precisely, we obtain

Q t-(e 2sϕ s 3 )( t-q) 2 ≤ C ω×(0,T ) t-(e 2sϕ s 3 )( t-q) 2 + C( t) -1 (e sϕ q) 1 2 2 L 2 (Ω) + (e sϕ q) M + 1 2 2 L 2 (Ω)
+ (e sϕ ∇q)

M + 1 2 2 L 2 (Ω) (3.5)
for τ1 ≥ τ0 sufficiently large and τ ≥ τ1(T + T 2 + T 2 a 2/3 ∞ ). From (3.2), observe that q n-1 2 solves the equation

q n-1 2 -q n+ 1 2 -t∆q n-1 2 + ta n q n-1 2 = 0, n ∈ 1, M .
Multiplying this expression by q n-1 2 in L 2 (Ω) and integrating by parts, we readily obtain

1 2 |q n-1 2 | 2 L 2 (Ω) -|q n+ 1 2 | 2 L 2 (Ω) + 1 2 |q n-1 2 -q n+ 1 2 | 2 L 2 (Ω) + t Ω |∇q n-1 2 | 2 = -t Ω a n |q n-1 2 | 2 .
A further computation gives, as soon as 2 t a ∞ < 1,

|q n-1 2 | 2 L 2 (Ω) ≤ 1 1 -2 t a ∞ |q n+ 1 2 | 2 L 2 (Ω) , n ∈ 1, M . (3.6)
Using the well-known inequality e 2x > 1/(1 -x) for 0 < x < 1/2 and from estimate (3.6), we deduce that |q

1 2 | 2 L 2 (Ω) ≤ e CT a ∞ |q n+ 1 2 | 2 L 2 (Ω) , n ∈ 1, M , (3.7) 
provided t a ∞ < 1/4. Now, we will obtain a lower bound for the left-hand side of (3.5). Since we are adding positive terms, we can restrict to the indices n ∈ M/4, 3M/4 and hence

Q t-(e 2sϕ s 3 )( t-q) 2 ≥ n∈ M/4,3M/4 t τ 3 Ω (e 2τ θϕ ) n-1 2 (θ 3 ) n-1 2 |q n-1 2 | 2 .
Recalling that ϕ is negative and independent of time, we deduce that

(e 2τ θϕ ) n-1 2 ≥ e - 2 5 τ K 0 15T 2 , ∀n ∈ M/4, 3M/4 , (3.8) 
where K0 := max x∈Ω {-ϕ(x)}. Moreover, since θ ≥ 1/T 2 for all t ∈ [0, T ], we get

Q t-(e 2sϕ s 3 )( t-q) 2 ≥ n∈ M/4,3M/4 t τ 3 e - 2 5 τ K 0 15T 2 T -6 |q n-1 2 | 2 L 2 (Ω) .
Using estimate (3.7) in the above inequality and adding up, we get

Q t-(e 2sϕ s 3 )( t-q) 2 ≥ T 2 -t τ 3 e -Cτ T 2 -CT a ∞ T -6 |q 1 2 | 2 L 2 (Ω)
≥ CT e

-Cτ T 2 -CT a ∞ |q 1 2 | 2 L 2 (Ω) , (3.9) 
for some C > 0 only depending on Ω and ω and where we have used that τ ≥ τ1T 2 . From (2.37) and (3.7), we have that (e sϕ q)

1 2 2 L 2 (Ω) + (e sϕ q) M + 1 2 2 L 2 (Ω) ≤ e - 4k 0 τ δT 2 |q 1 2 | 2 + e - 4k 0 τ δT 2 |q M + 1 2 | 2 ≤ e -C τ δT 2 +CT a ∞ |q M + 1 2 | 2 , (3.10) 
where we have denoted k0 := min x∈Ω {-ϕ(x)}. Using Poincaré inequality and the above estimate, we see that the last three terms in (3.5) can be bounded as (e sϕ q)

1 2 2 L 2 (Ω) + (e sϕ q) M + 1 2 2 L 2 (Ω) + (e sϕ ∇q) M + 1 2 2 L 2 (Ω) ≤ e -C τ δT 2 +CT a ∞ |∇q M + 1 2 | 2 .
On the other hand, observe that the following estimate holds

e 2sϕ s 3 ≤ τ 3 2 6 T -6 exp - 2 3 k0τ T 2 ≤ C, ∀(x, t) ∈ Q, (3.11) 
uniformly for τ ≥ 3 8k 0 T 2 . This, together with (3.9)-(3.10) can be used in (3.5) to obtain

|q 1 2 | 2 L 2 (Ω) ≤ CT -1 e Cτ T 2 +CT a ∞ ω×(0,T ) ( t-q) 2 + C( t) -1 e τ T 2 (C-C δ )+CT a ∞ |∇q M + 1 2 | 2 L 2 (Ω)
for any τ ≥ τ2(T

+ T 2 + T 2 a 2/3
∞ ) with τ2 = max{τ1, 3/8k0}. For 0 < δ ≤ δ1 ≤ δ0, with δ1 small enough, we obtain

|q 1 2 | 2 L 2 (Ω) ≤ CT -1 e Cτ T 2 +CT a ∞ ω×(0,T ) ( t-q) 2 + C( t) -1 e -Cτ δT 2 +CT a ∞ |∇q M + 1 2 | 2 L 2 (Ω) . (3.12)
To conclude the proof, we recall the condition of Theorem (1.4)

τ 4 t δ 4 T 6 ≤ ε0,
which has to be fulfilled along 0 < δ ≤ δ1 and t a ∞ < 1/4. Let us fix τ = τ2(T + T 2 + T 2 a 2/3 ) and define

t := ε0 τ 4 2 δ 4 1 (T + T 2 + T 2 a 2/3 ∞ ) -3 T 6 .
whence τ 4 t δ 4 1 T 6 = ε0. Now, we choose t ≤ min{ t, 1/4 a ∞} and set δ = ( t) 1/4 δ 1 ( t) 1/4 ≤ δ1. We then find that

τ 4 t δ 4 T 6 = ε0.
Therefore, τ /(T 2 δ) = ε 1/4 T -1/2 /( t) 1/4 and from (3.12) we deduce

|q 1 2 | 2 L 2 (Ω) ≤ CT -1 e C(1+ 1 T + a 2/3 ∞ +T a ∞) ω×(0,T ) ( t-q) 2 + e - C 2 ( t) 1/4 +CT a ∞ |∇q M + 1 2 | 2 L 2 (Ω) .
Finally, shifting the indices in the integral term and grouping similar terms, we obtain

|q 1 2 | 2 L 2 (Ω) ≤ e C 1 (1+ 1 T + a 2/3 ∞ +T a ∞) - ω×(0,T ) |q| 2 + e - C 2 ( t) 1/4 |∇q M + 1 2 | 2 L 2 (Ω)
.

Thus, the proof is complete.

With the result of Proposition 3.1, we are in position to prove the following φ( t)-null controllability result for (3.1). Proposition 3.3. Let us consider T > 0 and a discretization paramenter t chosen as in Proposition 3.1. There exists a continuous and linear map L t T ;a : L 2 (Ω) → L 2 D (0, T ; L 2 (ω)) such that for all initial data y0 ∈ L 2 (Ω), there exists a time-discrete control function v given by v = L t T ;a (y0) such that the solution to (3.1) satisfies

|y M | H -1 (Ω) ≤ C obs φ( t)|y0| L 2 (Ω) and v L 2 D (0,T ;L 2 (ω)) ≤ C obs |y0| L 2 (Ω) with C obs as given in Proposition 3.1.
Proof. Consider the adjoint system (3.2). From the relaxed observability of Proposition 3.1 we have

|q 1 2 | L 2 (Ω) ≤ C obs - ω×(0,T ) |q| 2 + φ( t)|qT | 2 H 1 0 (Ω) 1 2 , (3.13) 
where we have chosen

φ( t) = e - C 2 ( t) 1/4 . (3.14) 
We introduce the functional

J t (qT ) = 1 2 - ω×(0,T ) |q| 2 + φ( t) 2 |qT | 2 H 1 0 (Ω) + (y0, q 1 
2 ) L 2 (Ω) , ∀qT ∈ H 1 0 (Ω) (3.15) 
defined for the solutions to (3.2). It is clear that the functional J is continuous and strictly convex. Moreover, using Hölder and Young inequality in the last term of the above expression, we have

J t (qT ) ≥ 1 2 - ω×(0,T ) |q| 2 + φ( t) 2 |qT | 2 H 1 0 (Ω) - 1 4C obs |q 1 2 | 2 L 2 (Ω) -C obs |y0| 2 L 2 (Ω) .
Using inequality (3.13), we readily deduce that

J t (qT ) ≥ 1 4 - ω×(0,T ) |q| 2 + φ( t) 4 |qT | 2 H 1 0 (Ω) -C obs |y0| 2 L 2 (Ω)
and therefore we can conclude that J is coercive. This guarantees the existence of a unique minimizer that we denote qT . Now, consider q the solution to (3.2) with initial datum qT . The Euler-Lagrange equation associated with the minimization of functional (3.15) reads -ω×(0,T )

q q + φ( t) (∇ qT , ∇qT ) L 2 (Ω) + (y0, q 1 2 ) L 2 (Ω) = 0, ∀qT ∈ H 1 0 (Ω). (3.16) 
We set the control v = L t T ;a (y0) = (1ω q n+ 1 2 ) n∈ 0,M -1 and consider the solution y to the controlled problem (Dty)

n+ 1 2 -∆(t + y) n+ 1 2 + (t + ay) n+ 1 2 = 1ω q n+ 1 2 n ∈ 0, M -1 , y 0 = y0.
By multiplying this equation by q n+ 1 2 at each point of D, and integrating by parts, we deduce -ω×(0,T )

q q = y M , qT -1,1 -(y0, q 1 
2 ) L 2 (Ω) (3.17) 
where •, • -1,1 stands for the duality pairing between H -1 (Ω) and H 1 0 (Ω). With (3.16) and (3.17), we conclude that

y M = φ( t)∆ qT (3.18) 
By taking qT = qT in (3.16), we readily obtain

q 2 L 2 D (0,T ;L 2 (ω)) + φ( t)| qT | 2 H 1 0 (Ω) = -(y0, q 1 
2 ) L 2 (Ω) ≤ |y0| L 2 (Ω) | q 1 2 | L 2 (Ω)
and from the observability inequality (3.13) we have

| q 1 2 | 2 L 2 (Ω) ≤ C 2 obs - ω×(0,T ) | q| 2 + φ( t)| qT | 2 H 1 0 (Ω)
.

Combining the above expressions yields

v L 2 D (0,T ;L 2 (ω)) = q L 2 D (0,T ;L 2 (ω)) ≤ C obs |y0| L 2 (Ω)
and

φ( t)| qT | H 1 0 (Ω) ≤ C obs |y0| L 2 (Ω) (3.19) 
Hence, the linear map

L t T ;a : L 2 (Ω) → L 2 D (0, T ; L 2 (ω)) y0 → v
is well-defined and continuous. Finally, from the expressions (3.18)- (3.19) and the definition of the H -1 -norm, it is not difficult to see that

|y M | H -1 (Ω) ≤ C obs φ( t)|y0| L 2 (Ω) .
This finish the proof for φ as in (3.14). The claim immediately follows for any other function φ satisfying (1.23), changing the value of C obs if necessary.

Proof of Theorem 1.7

The proof of Theorem 1.7 relies on Proposition 3.3. We will deduce that system (3.1) is φ( t)-null controllable in L 2 (Ω) by driving the solution first to a small target in H -1 and then by letting the solution to evolve uncontrolled. In this way, by elliptic regularity, we will obtain a better estimate of the final target. Our strategy is as follows. Let φ satisfying (1.24) and let us set

φ( t) = t φ( t),
in such a way that φ satisfies (1.23).

Let us fix T > 0, the initial data y0 ∈ L 2 (Ω) and consider the time partition (1.5). We choose some (large) T0 < T and set M0 = T 0 t . From Proposition 3.3, we know that there exists a time-discrete control v0 = (v

n+ 1 2 0 ) n∈ 0,M 0 -1 with v L 2 D (0,T 0 ;L 2 (ω)) ≤ C T 0 obs |y0| L 2 (Ω)
such that y solution to

         y n+1 -y n t -∆y n+1 + a n+1 y n+1 = 1ωv n+ 1 2 0 , n ∈ 0, M0 -1 , y n+1 |∂Ω = 0, n ∈ 0, M0 -1 , y 0 = y0, (3.20) 
verifies |y M 0 | H -1 (Ω) ≤ C T 0 obs φ( t)|y0| L 2 (Ω) (3.21) 
where C T 0 obs is the observability constant corresponding to the time interval (0, T0). This defines the state y n for all n ∈ 0, M0 . Now, we set v n+ 1 2 = 0 for n ∈ M0, M -1 and consider the uncontrolled system

   y n+1 -y n t -∆y n+1 + a n+1 y n+1 = 0, n ∈ M0, M -1 , y n+1 |∂Ω = 0, n ∈ M0, M -1 , (3.22) 
with initial data y M 0 coming from the sequence (3.20). Observe that for n = M0, the equation verified for y M 0 +1 is given by -t ∆y M 0 +1 + 1 + a M 0 +1 y M 0 +1 = y n , in Ω, from which we obtained the classical elliptic energy estimate

- t |y M 0 +1 | H 1 0 (Ω) ≤ C(Ω, a ∞)|y M 0 | H -1 (Ω) .
This, together with estimate (3.21) and Poincaré's inequality yields

|y M 0 +1 | L 2 (Ω) ≤ C φ( t) t |y0| L 2 (Ω) ,
for some C > 0 only depending on Ω, T and a ∞. Arguing as in the proof of Proposition 3.1, we can iterate for indices n ∈ M0 + 1, M to deduce that

|y M | L 2 (Ω) ≤ C φ( t)|y0| L 2 (Ω) ,
where we have used the definition of φ. Therefore, we have constructed a sequence y = {y n } n∈ 0,M by means of the auxiliary problems (3.20) and (3.22) such that y M verifies a φ( t)-null controllability constraint in L 2 (Ω). This concludes the proof.

The nonlinear case

We devote this section to prove the existence of controls for the semi-linear scheme (1.26). The proof follows well-known results for the controllability of semi-linear systems (see, for instance, [START_REF] Fabre | Approximate controllability of the semilinear heat equation[END_REF][START_REF] Fernández-Cara | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF]) with some particularities due to the discrete nature of the problem.

Let us define

g(s) := f (s) s if s = 0, f (0) if s = 0.
The assumptions on f guarantees that g and f are well defined, continuous and bounded functions. For ζ ∈ L 2 P (Q), we consider the linear system

         y n+1 -y n t -∆y n+1 + g(ζ n+1 )y n+1 = 1ωv n+ 1 2 , n ∈ 0, M -1 , y n+1 |∂Ω = 0, n ∈ 0, M -1 , y 0 = y0. (4.1) 
We set a n ζ = g(ζ n ), so that we have

a ζ ∞ ≤ K, ∀ζ ∈ L 2 D (Q), (4.2) 
where K is the Lipschitz constant of f . In view of Propositions 3.1 and 3.3, for t chosen sufficiently small, i.e., t ≤ min( t, (4K) -1 ) (4.3)

with t = C(T + T 2 + T 2 K 2/3 ) -3 T 6
we can build a control v ζ = L t T ;a ζ (y0) and the associated controlled solution to (4.1) such that

|y M ζ | L 2 (Ω) ≤ Ce - C 2 ( t) -1/4 |y0| L 2 (Ω) , v ζ L 2 D (0,T ;L 2 (ω)) ≤ C|y0| L 2 (Ω) (4.4)
where C1 > 0 and C = exp C(1 + 1 T + K 2/3 + T K) are uniform with respect to ζ and the discretization parameter t. Notice that by selecting the parameter t as in (4.3) guarantees on one hand the existence of a solution to (4.1) and the stability of the discrete scheme, while on the other we ensure the uniformity with respect to ζ in the estimates (4.4) which is important in what follows.

Let us define the map Λ :

L 2 P (Q) → L 2 P (Q) ζ → y ζ
where y ζ is the solution to (4.1) associated to a n ζ = g(ζ n ), n ∈ 1, M , and control as in (4.4). Arguing as in the proof of Proposition 3.1, we can readily deduce the energy estimate

y ζ L 2 P (Q) ≤ e CT a ζ ∞ v ζ L 2 D (0,T ;L 2 (ω)) . (4.5) 
Taking into account (4.2)-(4.5), we deduce that the image of Λ is bounded, implying that there exists a closed convex set in L 2 P (Q) which is fixed by Λ. Moreover, it can be easily verified that Λ is a continuous map from L 2 P (Q) into itself, while the uniform estimate

y ζ L 2 P (0,T ;H 1 0 (Ω)) ≤ C |y0| L 2 (Ω)
for the solutions to (4.1) allows to conclude that Λ is a compact map since H 1 0 (Ω) → L 2 (Ω) with compact embedding All of the previous properties allow us to to apply Schauder fixed point theorem to deduce that there exists y ∈ L 2 P (Q) such that Λ(y) = y. Setting v = L t T ;ay (y0) we obtain

         y n+1 -y n t -∆y n+1 + f (y n+1 ) = 1ωv n+ 1 2 , n ∈ 0, M -1 , y n+1 |∂Ω = 0, n ∈ 0, M -1 , y 0 = y0,
which concludes the proof as we have found a control v that drives the solution of the semilinear semiimplicit parabolic system to a final state y M satisfying estimates (4.4).

Applications to controllability of coupled systems

Carleman estimate (1.15) can be used to study other controllability problems. We devote this section to study the controllability problem for a kind of coupled parabolic system. More precisely, we consider the 2 × 2 system

                 y n+1 1 -y n 1 t -∆y n+1 1 + a n+1 11 y n+1 1 + a n+1 12 y n+1 2 = 1ωv n+ 1 2 , n ∈ 0, M -1 y n+1 2 -y n 2 t -∆y n+1 2 + a n+1 21 y n+1 1 + a n+1 22 y n+1 2 = 0, n ∈ 0, M -1 y n+1 1 |∂Ω = y n+1 2 |∂Ω = 0, n ∈ 0, M -1 y 0 1 = y1,0, y 0 2 = y2,0, (5.1) 
for given initial data y1,0 and y2,0. with coupling coefficients ai,j ∈ L ∞ P (Q). The idea here is to steer the solution to zero by acting only on the first equation of the system. As before, the control problem can be reduced to prove an observability inequality for the adjoint system

                     q n-1 2 1 -q n+ 1 2 1 t -∆q n-1 2 1 + a n 11 q n-1 2 1 + a n 21 q n-1 2 2 = 0, n ∈ 1, M , q n-1 2 2 -q n+ 1 2 2 t -∆q n-1 2 2 + a n 12 q n-1 2 1 + a n 22 q n-1 2 2 = 0, n ∈ 1, M , q n-1 2 1 |∂Ω = q n-1 1 2 2 |∂Ω = 0, n ∈ 1, M , q M + 1 2 1 = q1,T , q M + 1 2 2 = q2,T . (5.2) 
This can be done by employing (1.15) on each equation of system (5.2) and using local energy estimates to eliminate the observation of the variable q2. The result is the following. Then, there exist positive constants C0, C1 and C2 such that for all 0 < T < 1, under the condition t ≤ min{ t, (8M) -1 } with t = C0(T + T 2 + T 2 M 2/3 ) -5 T 8 any solution to (5.2) satisfies |q

1 2 1 | 2 L 2 (Ω) + |q 1 2 2 | 2 L 2 (Ω) ≤ C 2 obs - ω×(0,T ) |q1| 2 + e - C 2 ( t) 1/5 |∇q M + 1 2 1 | 2 L 2 (Ω) + |∇q M + 1 2 2 | 2 L 2 (Ω)
,

with C obs = e C 1 (1+ 1 T +T M 2/3 +T M) and M = max 1≤i,j≤2 aij ∞.
This is an analogous result to the one presented in [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF] for the observability of m-coupled equations with one control force. Indeed, we will adapt their proof and take into account the differences introduced by the time discretization scheme. It is worth noting that we can also extend our theorem for the case of coupled systems in cascade form (see condition [START_REF] Boyer | Carleman estimates for semi-discrete parabolic operators and application to the controllability of semi-linear semi-discrete parabolic equations[END_REF] in [START_REF] González-Burgos | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF]) but for convenience we only present a simpler case. Finally, we shall mention that for brevity we only present the proof of the observability inequality of (5.2), the controllability result for (5.1) can be readily obtained by arguing as in the previous sections.

Proof of Theorem 5.1. For the sake of clarity, we have divided the proof in three steps. We will keep track of the dependences of the constants. As before, since we are interested in controllability in small time, we have min{T 3 , T 6 } = T 6 . We also recall that system (5.2) can be rewritten in the more convenient form

     -(Dtq1) n -∆( t-q1) n + a n 11 ( t-q1) n + a n 21 ( t-q2) n = 0, n ∈ 1, M , -(Dtq2) n -∆( t-q2) n + a n 12 ( t-q1) n + a n 22 ( t-q2) n = 0, n ∈ 1, M , q M + 1 2 1 = q1,T , q M + 1 2 = q2,T (5.4) 
Step 1. Given ω0 ⊂ ω, we choose ω ⊂⊂ ω0. We begin by applying the Carleman estimate (1.15) to each equation of (5.4). To abridge the notation, we have denoted by I(q) the left-hand side of (1.15), thus we have

I(q1) + I(q2) ≤ C 2 i=1 ω×(0,T ) t-(e 2sϕ s 3 )( t-qi) 2 + 2 i=1 2 j=1 aji 2 ∞ Q ( t-e 2sϕ )( t-qj) 2 + C( t) -1 2 i=1 
(e sϕ qi)

1 2 2 L 2 (Ω) + (e sϕ qi) M + 1 2 2 L 2 (Ω) + (e sϕ ∇qi) M + 1 2 2 L 2 (Ω)
for all τ ≥ τ0(T + T 2 ) and τ 4 t(δ 4 T 6 ) -1 ≤ ε0. As in the scalar case, all the lower order terms can be absorbed by taking τ large enough, this is

I(q1) + I(q2) ≤ C ω×(0,T ) t-(e 2sϕ s 3 )( t-q1) 2 + ω×(0,T ) t-(e 2sϕ s 3 )( t-q2) 2 + C( t) -1 2 i=1 (e sϕ qi) 1 2 2 L 2 (Ω) + (e sϕ qi) M + 1 2 2 L 2 (Ω) + (e sϕ ∇qi) M + 1 2 2 L 2 (Ω) (5.5) for all τ ≥ τ1(T + T 2 + T 2 max 1≤i,j≤2 aji 2/3 ∞ ).
(5.6)

Step 2. Now, we will see that thanks to hypothesis (5.3), we can eliminate from (5.5) the observation term corresponding to q2. To this end, consider two open sets Õ and O0 such that ω ⊂ Õ ⊂⊂ O0 ⊂ ω0, and a cut- Therefore,

off function ζ ∈ C ∞ 0 (Ω) verifying 0 ≤ ζ ≤ 1 in Ω, ζ ≡ 1 in Õ, supp ζ ⊂ O0 (5.7) ∆ζ ζ 1/2 ∈ L ∞ (Ω), ∇ζ ζ 1/2 ∈ L ∞ (Ω) d ( 
H2 = - Q ( t+ q1)( t+ q2)( t+ e 2sϕ )τ 3 (Dtθ 3 )ζ - Q ( t+ q1)( t+ q2)( t-s 3 )(Dte 2sϕ )ζ =: I1 + I2.
Using formula (B.12) with n = 3 on I1 yields

|I1| ≤ Q |( t+ q1)||( t+ q2)| t+ (e 2sϕ s 4 )ζ + Q |( t+ q1)||( t+ q2)| ( t+ e 2sϕ ) tτ 3 T 8 δ 5 ζ Provided tτ 3 T 8 δ 5 ≤ ε2 (5.14)
and using the properties of the function ζ, we get after applying Hölder and Young inequalities that

|I1| ≤ γ1 Q ( t+ q2) 2 ( t+ e 2sϕ s 3 ) + C γ1 O 0 ×(0,T ) ( t+ q1) 2 ( t+ e 2sϕ s 5 ) + γ1 Q ( t+ q2) 2 ( t+ e 2sϕ ) + C γ1 O 0 ×(0,T ) ( t+ q2) 2 ( t+ e 2sϕ )
for some positive constant C only depending on ε2. Modifying τ1, if necessary, so (τ θ(t)) -1 ≤ 1 for t ∈ [0, T ] and shifting the indices in the above expression, we get

|I1| ≤ 2γ1 Q ( t-q2) 2 t-(e 2sϕ s 3 ) + C γ1 O 0 ×(0,T ) ( t-q1) 2 t-(e 2sϕ s 5 ) + C t (e sϕ s 5/2 q1) M + 1 2 2 L 2 (Ω) + (e sϕ s 3/2 q2) M + 1 2 2 L 2 (Ω)
.

( Arguing as above and provided (5.14) holds, we have

|I2| ≤ 2γ1 Q ( t-q2) 2 t-(e 2sϕ s 3 ) + C γ1 O 0 ×(0,T ) ( t-q1) 2 t-(e 2sϕ s 7 ) + C t (e sϕ s 7/2 q1) M + 1 2 2 L 2 (Ω) + (e sϕ s 3/2 q2) M + 1 2 2 L 2 (Ω)
.

(5.16)

Combining estimates (5.11) and (5.15)-(5.16), we can bound the first term of (5.9) as

|K1| ≤ ε1 2 i=1 Q t-(e 2sϕ s -1 )(Dtqi) 2 + 5γ1 Q t-(e 2sϕ s 3 )( t-q2) 2 + C γ1 O 0 ×(0,T ) t-(e 2sϕ s 7 )( t-q1) 2 + C 2 i=1 (e sϕ s 3/2 qi) 1 2 2 L 2 (Ω) + (e sϕ s 3/2 qi) M + 1 2 2 L 2 (Ω) + C t (e sϕ s 7/2 q1) M + 1 2 2 L 2 (Ω) + (e sϕ s 3/2 q2) M + 1 2 2 L 2 (Ω)
.

(5.17)

For the term K2 in (5.9), we can integrate by parts in the space variable, thus

K2 = Q t-(e 2sϕ s 3 )ζ( t-q2)∆( t-q1) = - Q ∇ t-(e 2sϕ s 3 )ζ • ∇( t-q1)( t-q2) - Q t-(e 2sϕ s 3 )ζ∇( t-q1) • ∇( t-q2). Using (5.8) is not difficult to show that ∇ t-(e 2sϕ s 3 )ζ ≤ C t-(e 2sϕ s 4 )ζ 1/2
and therefore, using Hölder and Young inequalities, we get

|K2| ≤ γ1 Q t-(e 2sϕ s 3 )( t-q2) 2 + γ2 Q t-(e 2sϕ s)|∇( t-q2)| 2 + C 1 γ1 + 1 γ2 O 0 ×(0,T ) t-(e 2sϕ s 5 )|∇( t-q1)| 2
(5.18)

for any γ2 > 0.

For K3, we readily have

|K3| ≤ γ1 Q t-(e 2sϕ s 3 )( t-q2) 2 + C γ1 O 0 ×(0,T ) t-(e 2sϕ s 3 )( t-q1) 2 . (5.19)
Recalling that we have chosen τ1 large enough so that (τ θ(t)) -1 ≤ 1, we can combine (5.17)-(5.19) to obtain the local energy estimate

a0 Õ×(0,T ) t-(e 2sϕ s 3 )( t-q2) 2 ≤ ε1 2 i=1 Q t-(e 2sϕ s -1 )(Dtqi) 2 + 7γ1 Q t-(e 2sϕ s 3 )( t-q2) 2 + γ2 Q t-(e 2sϕ s)|∇( t-q2)| 2 + C γ1 O 0 ×(0,T ) t-(e 2sϕ s 7 )( t-q1) 2 + C 1 γ1 + 1 γ2 O 0 ×(0,T ) t-(e 2sϕ s 5 )|∇( t-q1)| 2 + C( t) -1 2 i=1 
(e sϕ qi)

1 2 2 L 2 (Ω) + (e sϕ qi) M + 1 2 2 L 2 (Ω) , (5.20) 
where we have used condition (5.14) to simplify the last term. Replacing (5.20) in (5.5), and taking γi small enough, we obtain

I(q1) + I(q2) ≤ C O 0 ×(0,T ) t-(e 2sϕ s 7 )( t-q1) 2 + O 0 ×(0,T ) t-(e 2sϕ s 5 )|∇( t-q1)| 2 + C( t) -1 2 i=1 (e sϕ qi) 1 2 2 L 2 (Ω) + (e sϕ qi) M + 1 2 2 L 2 (Ω) + (e sϕ ∇qi) M + 1 2 2 L 2 (Ω)
.

(5.21)

Step 3. To eliminate the local term corresponding to ∇( t-q1), we consider a function η ∈ C ∞ 0 (Ω) with properties analogous to (5.7)-(5.8) chosen for the sets O0 and ω0. In this way, we have

O 0 ×(0,T ) t-(e 2sϕ s 5 )|∇( t-q1)| 2 ≤ Q t-(e 2sϕ s 5 )|∇( t-q1)| 2 η = - Q t-(e 2sϕ s 5 )∆( t-q1)( t-q1)η - Q ∇ t-(e 2sϕ s 5 )η • ∇( t-q1)( t-q1),
where we have integrated by parts. Using that ∇ t-(e 2sϕ s 5 )η ≤ C t-(e 2sϕ s 6 )η 1/2 , we readily have

O 0 ×(0,T ) t-(e 2sϕ s 5 )|∇( t-q1)| 2 ≤ γ3 Q t-(e 2sϕ s -1 )|∆( t-q1)| 2 + γ4 Q t-(e sϕ s)|∇( t-q1)| 2 + C 1 γ3 + 1 γ4 ω 0 ×(0,T ) t-(e 2sϕ s 11 )( t-q1) 2 (5.22)
for any γ3, γ4 > 0. Using estimate (5.22) in (5.21) and taking the parameters γi small enough, we obtain

I(q1) + I(q2) ≤ C ω 0 ×(0,T ) t-(e 2sϕ s 11 )( t-q1) 2 + C( t) -1 2 i=1 (e sϕ qi) 1 2 2 L 2 (Ω) + (e sϕ qi) M + 1 2 2 L 2 (Ω) + (e sϕ ∇qi) M + 1 2 2 L 2 (Ω) (5.23) 
for all τ as in (5.6) and tτ 3 (T 8 δ 5 ) -1 ≤ ε2, with C > 0 only depending on Ω, ω and a0.

Step 4. Following the proof of Proposition 3.1, for t max 1≤i,j≤2 aij ∞ < 1/8, we can obtain the estimate

2 i=1 |q 1 2 i | 2 L 2 (Ω) ≤ e CT max 1≤i,j≤2 a ij ∞ 2 i=1 |q n+ 1 2 i | 2 L 2 (Ω) , ∀n ∈ 1, M . (5.24) 
Moreover, from (3.8) and (5.24), we get

2 i=1 Q t-(e 2sϕ s 3 )( t-qi) 2 ≥ CT e -Cτ T 2 -CT max 1≤i,j≤2 a ij ∞ 2 i=1 |q 1 2 i | 2 L 2 (Ω) .
(5.25)

Using Poincaré inequality and (5.24), we have that the last three terms of (5.23) can be bounded as follows (5.26)

On the other hand, observe that if τ ≥ 11 8k 0 T 2 , the weight function e 2sϕ s 11 is uniformly bounded for all (x, t) ∈ Q (cf. (3.11)). Therefore, from estimates (5.23) and (5.25)-(5.26), we obtain (5.27)

for any τ ≥ τ2(T + T 2 + T 2 max 1≤i.j≤2 aij ∞) with τ2 = max{τ1, 11/8k0} and any δ small enough. To conclude the proof, we have will fix the parameters involved. Recall that the condition tτ 5 T 8 δ 5 ≤ ε2 has to be fullfilled along 0 < δ ≤ δ1. We fix τ = τ2(T + T 2 + T 2 max 1≤i,j≤2 aij ∞) and define t := ε2 τ 5 2 δ 5 1 (T + T 2 + T 2 max 1≤i,j≤2 aij 2/3 ∞ ) -5 T 8

which gives τ 5 t δ 5 1 T 8 = ε2. Now, we choose t ≤ min{ t, 1/8M} and set δ = ( t) 1/5 δ 1 ( t) 1/5 ≤ δ1. We find then τ 5 t δ 5 T 8 = ε2.

Therefore, τ /(T 2 δ) = (ε2T -2 ) 1/5 /( t) 1/5 and from (5.27) we get .

This concludes the proof.

In the same way, it is not difficult to see that

X (2) ≤ ε2 Q ( t-s) 3 ( t-z) 2 ,
for some ε2 > 0 sufficiently small such that τ 2 t T 6 δ 4 ≤ ε2.

(A.3) Moreover, we have

X (3) ≤ ε3 Q ( t-s) 3 ( t-z) 2
for some ε3 > 0 such that τ 2 t T 4 δ 3 ≤ ε3.

(A.4)

Using the expressions verified by (A.2) and (A.3), the last two terms of X can be bounded as

X (4) + X (5) ≤ ε 2 1 Q ( t-s) 3 ( t-z) 2 + ε 2 2 ( t-s) 3 ( t-z) 2
Reasoning as above, we can also deduce bounds for the terms in Y . Using a similar notation and from the fact that max t∈[0,T ] θ ≤ (δT 2 ) -1 , we get

Y (1) = tτ 2 Q ( t-θ) 2 (Dtz) 2 = tτ 3 Q ( t-θ) 3 (Dtz) 2 ( t-s) -1 ≤ ε4 Q ( t-s) -1 (Dtz) 2 ,
where the condition tτ 3 T 6 δ 3 ≤ ε4 (A.5) holds for some ε4 > 0 small enough.

In the same spirit, we get

Y (2) = T τ t Q ( t-θ) 2 (Dtz) 2 = T τ 2 t Q ( t-θ) 3 (Dtz) 2 ( t-s) -1 ≤ ε5 Q ( t-s) -1 (Dtz) 2
provided the following condition τ 2 t δ 3 T 5 ≤ ε5. (A.6)

A straightforward computation yields

Y (3) ≤ ε 2 6 Q ( t-s) -1 (Dtz) 2 .
for some ε6 verifying τ t δ 2 T 3 ≤ ε6.

(A.7)

For the fourth term of Y , we may use (A.1) to write Observe that in this formulas, the integrals are taken over the same discrete points. These will be particularly useful during the derivation of the Carleman estimates (1.15) and (1.16).

Y (4) = τ 2 ( t) 2 T 2 Q ( t-θ) 4 (Dtz) 2 ≤ τ 4 ( t)
We present here some technical results of discrete operations performed on the Carleman weights. These are of particular interest in the demonstration of Theorem 1.4 and for dealing with coupled parabolic problems as in Section 5. To be consistent with Section 1.4, we set r = e sϕ and ρ = r -1 . We highlight the dependence on τ , δ, t and λ in the following estimates. (1 -σ)∂ 2 t e s(•+σ t)ϕ dσ.

Taking the second derivative of the weight function and factorizing the term e s(t)ϕ , we obtain e s(t+ t)ϕ -e s(t)ϕ t = τ θ (t)ϕ + t 1 0

(1 -σ)e τ θ(t+σ t)ϕ-τ θ(t)ϕ τ θ (t + σ t)ϕ dσ

+ t 1 0
(1 -σ)e τ θ(t+σ t)ϕ-τ θ(t)ϕ τ 2 (θ ) 2 (t + σ t)ϕ 2 dσ e τ θ(t)ϕ .

This expression, together with fact that ϕ C(Ω) = O λ (1) and max t∈[0,T ] θ (j) ≤ 1 δ j+1 T j+2 , j = 0, 1, . . . Remark B.6. Some remarks are in order. 
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 2210137 ( tθ)6 (Dtz) 2 ( ts) -1 . Proposition B.2. Let {H, (•, •)H } be a real Hilbert space and consider u ∈ H P and v ∈ H D . We have the following:--u, v H = t(u 0 , v )H -t(u M , v M + 1 2 )H + T 0 u, t+ v H . (B.5)Moreover, combining the above identities, we have the following discrete integration by parts formula-T Dtu, v) H = -(u 0 , v )H + (u M , v M + 12 )H -If we consider two functions f, g ∈ H D , we can combine (B.4) and (B.6) to obtain the formula Analogously, for f, g ∈ H P , the following holds-T Dtf, t + g H = -(f 0 , g 0 )H + (f M , g M )H --T 0 t -f, Dtg H . (B.8)

Lemma B. 4 (y n 1 0( 1 -

 411 Derivative of the Carleman weight). Provided tτ (T 3 δ 2 ) -1 ≤ κ, we havet -(ρ)Dtr = τ t -(θ )φ + t τ δ 3 T 4 + τ 2 δ 4 T 6 O λ,κ (1). (B.9)Proof. The result follows from the Taylor formulaf (t + y) = σ) n-1 (n -1)! f (n) (t +σy)dσ (B.10) at order n = 2. Applying formula (B.10) with f = e sϕ and y = t, we have e s(t+ t)ϕ -e s(t)ϕ t = τ θ (t)ϕe s(t)ϕ + t 1 0

(B. 11 )

 11 yield formula (B.9) by choosing tτ (T 3 δ 2 ) -1 ≤ κ.

Lemma B. 5 (

 5 Discrete operations on the weight θ).There exists a universal constant C > 0 uniform with respect to t, δ and T such that|Dt(θ )| ≤ T t -(θ +1 ) + C t δ +2 T 2 +2 , = 1, 2, . . . (B.12) |t + (θ )| ≤ T t -(θ) 2 + C t δ 3 T 4 (B.13) 0 ≤ Dt(θ ) ≤ CT 2 t -(θ 3 ) + C t δ 4 T 5 (B.14)Proof. The proof of (B.12) follows from Taylor formula (B.10) at order n = 2 and the estimate maxt∈[0,T ] ∂ 2 t (θ ) ≤ C δ +2 T 2 +2 , =1, 2, . . . . Inequality (B.13) can be readily deduced from (B.10) at order n = 1 and using that ∂tθ = (2t -T )θ. Finally, estimate (B.14) is consequence of Taylor formula at order n = 2, estimate (B.11) and the fact ∂ 2 t θ ≤ CT 2 θ 3 .

  Step 2. We will use inequalities(2.19)-(2.23) to estimate the left-hand side of (2.18). Notice that the first term of estimates (2.19), (2.21), and (2.22

•

  We can directly use Lemmas B.4 and B.5 to obtain estimates for the discrete operators Dt and t ± applied to the Carleman weights. Since r(x, t) and θ(t) are continuously defined for t ∈ [-t, T + t] with t small enough, formulas (B.9) and (B.12)-(B.14) are equally valid if we sample them at the discrete points D, thus providing estimates for operators Dt and t± .• As it be of interest during the proof of Theorem 1.4, expression (B.9) and the estimates (B.12) and (B.14) are also valid (for a possible different constant C > 0 but still uniform) if we replace t -by t + everywhere.

-∆(t + y) n+ 1 2 + (t + ay) n+ 1 2 = 0, n ∈ 0, M -1 , y 0 = y0.where, for convenience, we shall not explicitly write the homogeneous Dirichlet boundary conditions in such compact formulas since we will not deal with other boundary conditions in this paper.

By assumption, the coefficient a21 satisfies (5.3) and, for convenience, we suppose that a n 21 ≥ a0 for all x ∈ Ω and n ∈ 1, M . From (5.4), we multiply the equation satisfied by q1 by t-(e 2sϕ s 3 ) n ( t-q2) n ζ in L 2 (Ω) and sum over n. We get a0 Õ×(0,T ) t-(e 2sϕ s 3 )( t-q2) 2 ≤ Q a21 t-(e 2sϕ s 3 )( t-q2) 2 ζ = Q t-(e 2sϕ s 3 )( t-q2) Dtq1 + ∆( t-q1) -a11( t-q1) ζ =:

Ki.

(5.9)

We proceed to estimate each Ki, 1 ≤ i ≤ 3. Integrating by parts using formula (B.7) in the first term we obtain

1 .

(5.10)

The first two terms can be easily bounded by using Hölder and Young inequalities, i.e.,

|K

.

(5.11)

By using formula (B.1) in the last term of (5.10), we obtain

From the fact that ( t+ q1) = tDtq1 + ( t-q1) and properties (5.7), we can use Hölder and Young inequalities to obtain

for any γ1 > 0. Now, let us choose ε1 small enough such that ε1 ≤ min{ε0, a0/2C} where C is the constant appearing in (5.5) and verifying tτ 4 δ 4 T 8 ≤ ε1.

(5.12)

Then, we have

(5.13) Estimating the term H2 follows after a straightforward but long calculation since it involves the time derivative of the Carleman weight. Using formula (B.1), we have Dt(e 2sϕ θ 3 ) = ( t+ e 2sϕ )(Dtθ 3 ) + ( tθ 3 )(Dte 2sϕ ).

Remark 5.2. The approach presented here can be used to address other well-known control problems for coupled systems in the discrete setting. To fix ideas, let O ⊂ Ω be an observation subset and consider the functional

and the control system

where y0 ∈ L 2 (Ω) and ξ ∈ L 2 D (Q) are given functions and the data of equation (5.28) is incomplete in the following sense: w0 ∈ L 2 (Ω) is unknown with |w0| L 2 (Ω) = 1 and σ ∈ R is unknown and small enough.

The idea is to look for a control v = (v n+ 1

2 ) n∈ 0,M -1 such that

This is the so-called insensitizing problem (see the seminal work [START_REF] Lions | Quelques notions dans l'analyse et le contrôle de systèmes à données incomplètes[END_REF]) and has been thoroughly studied in different contexts, see, for instance, [START_REF] Bodart | Insensitizing controls for a heat equation with a nonlinear term involving the state and the gradient[END_REF][START_REF] Gueye | Insensitizing controls for the Navier-Stokes equations[END_REF][START_REF] Lissy | Insensitizing control for linear and semi-linear heat equations with partially unknown domain[END_REF][START_REF] De Teresa | Insensitizing controls for a semilinear heat equation[END_REF][START_REF] De Teresa | Identification of the class of initial data for the insensitizing control of the heat equation[END_REF].

As classical in this framework, the insensitizing control problem is equivalent to study the nullcontrollability of a cascade system of parabolic PDEs (see, e.g., [START_REF] De Teresa | Insensitizing controls for a semilinear heat equation[END_REF]Theorem 1]). At the discrete level, (5.29) translates into finding a control v such that

where q = (q n+ 1 2 ) n∈ 0,M -1 can be found from the following forward-backward cascade system

However, as discussed in Section 1, we cannot expect to obtain such kind of result for (5.28) but rather to obtain a relaxed condition. In view of previous results for discrete-in-space insensitizing problems (see [START_REF] Boyer | Teresa Insensitizing controls for a semilinear parabolic equation: A numerical approach Math[END_REF]Theorem 1.4]), the Carleman inequalities (1.15) and (1.16) and the procedure developed in this section, we can expect that a relaxed notion of φ( t)-insensitizing control also holds for (5.28).

A Proof of Lemma 2.3

Proof of Lemma 2.3. We begin by increasing the value of τ1, if necessary, so that τ1 ≥ 1 and τ ≥ 1. Notice that

holds with ε1 > 0 small enough and from (A.1), we have

Hence, if condition (A.6) holds, we have

For the last term of Y , using again (A.1) and arguing as above, we obtain

whenever (2.31) holds.

Recall that δ ≤ 1/2 and τ ≥ 1, then conditions (A.2)-(A.7) can be simplified into a general one verifying tτ 4 min {T 3 , T 6 } δ 4 ≤ ε for some ε = ε(λ0) small enough. Collecting the estimates for X (i) and Y (i) , i = 1, . . . , 5, we obtain the desired inequality (2.34). This concludes the proof.

B Some technical lemmas

The goal of this appendix is to summarize a series of tools that allow to manipulate the discrete operators Dt and Dt and provide estimates for the application of such operators on the weight functions.

To avoid introducing additional notation, we introduce the following continuous difference operator. For a function f defined on R, we set

In this way, discrete versions of the results given below will be natural. With the notation given in the introduction, for a function f continuosly defined on R, the discrete function Dtf is in fact Dtf evaluated at the mesh points P and Dtf amounts to evaluate Dtf at the points D. This can be readily seen just by considering the change of variables t → t -t 2 . Lemma B.1. Let the functions f1 and f2 be continuously defined over R. We have Dt(f1f2) = t + f1 Dtf2 + Dtf1 t -f2.

The same holds for

Dt(f1f2) = t -f1 Dtf2 + Dtf1 t + f2.

From the above formulas, if f1 = f2 = f , we have the useful identities

The translation of the result to discrete functions f, g1, g2 Of course, the above identities also hold for functions f, g1, g2 ∈ H P and their respective translation operators and difference operator t ± and Dt.

The following result cover discrete integration by parts and some useful related formulas.