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ABSTRACT
Being initially proposed for a Binary Symmetric Channel, we
adapt in this paper a blind frame synchronization method to a
Gaussian channel. This new method is based on the compu-
tation of the Logarithmic Likelihood Ratio (LLR) of the syn-
dromes elements. A comparison between the performance of
these two methods is done by synchronizing some Low Den-
sity Parity Check (LDPC) codes and Convolutional codes.
The simulated results are also compared to the theoretical
ones by finding the probabilities of false synchronization for
the two methods. The theoretical results may help us to de-
fine a synchronization threshold so that the calculation time
can be decreased.

1. INTRODUCTION
In digital communication systems, one important step is
Channel Coding. At the reception, we should be able to find
the beginning of each codeword, so that the decoder can work
properly. This is what we call Frame Synchronization.
Classical frame synchronization is realized by adding to the
transmitted sequence, some synchronization bits known by
the receiver.
The actual codes are very powerful and can decode se-
quences having several numbers of errors. To keep their
performance, traditional synchronization methods should in-
crease the length of the inserted training sequence, which re-
duces the spectral efficiency of the transmission. For this rea-
son, we are interested in developing blind methods of frame
synchronization. Note that when we say blind, we mean that
no additional sequence is added to the coded one.
We generalize in this paper a simple method of blind frame
synchronization, initially developed for a Binary Symmet-
ric Channel (Hard data), so it can work now on a Gaussian
Channel (Soft data).
The remaining part of this paper is organized as follows. Sec-
tion 2 presents the Hard and Soft techniques of our blind
frame synchronization method.
For each technique, we find the theoretical probability of
false synchronization, which is compared to our simulated
results in the third section. A comparison between the per-
formance of the two methods will also be done by synchro-
nizing some LDPC and convolutional codes. Finally, section
4 concludes the work.

2. BLIND FRAME SYNCHRONIZATION METHOD
In this paper, we consider that the transmitter is sending a bi-
nary sequence of codewords. Suppose that a Binary Phase
Shift Keying (BPSK) modulation is applied to codewords
bits and that the propagation channel is an Additive White
Gaussian Noise (AWGN) channel.

We will see later that our synchronization techniques are
based on the use of the parity check matrix of the code.
For a code of rate

R =
nc −nr

nc
,

it is often possible to find the corresponding parity check ma-
trix H of size nr × nc, where nc represents the length of a
codeword and nr the number of parity relations.
Let s(r) be the syndrome of a received codeword r:

s(r) = rHT = eHT ,

where e is the corresponding error vector.
At the synchronization position and in a noise free channel,
it is clear that the syndrome of a given codeword is equal to
zero. This is not the case when we are not synchronized. We
will see in the next sections that our synchronization tech-
niques are based on this simple idea.
Let us define now the ith received sample by:

x(i) = b(i− t0) + w(i), (1)

where t0 is a delay introduced by the propagation channel,
b(i) = ±1 a modulated coded bit and w(i) a white gaussian
noise.
The received sequence of N samples can be written as:

X = [x(1), . . . ,x(N)].

The main target of frame synchronization is to find the
position of a codeword in the received sequence. In other
words, we have to estimate the delay t0. Without loss of
generality, we assume that t0 is always lower than nc.

2.1 Hard Synchronization
The method initially proposed in [2] requires a binary se-
quence to work. Therefore, we should take hard decisions
before applying it.
Let

Z = [z(1), . . . ,z(N)]

with
z(k) =

sign(x(k)) + 1
2 ,

denote the hard decision values of the bits taken from the
received sequence X . And let Wd be an extracted sequence
of Z:

Wd = [z(d), . . . ,z(d + Knc −1)]T .

Wd is the synchronization window: It is a sliding window
of length Knc bits, where d represents its position on the re-
ceived sequence. Wd can also be divided into K blocks, each
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Figure 1: Blind frame synchronization principle

one of length nc.
For each block, let us calculate its corresponding syndrome,
then we form the vector of syndromes Sd:

Sd = [Sd(1), . . . ,Sd(Knr)]
T .

Figure 1 represents three different sequences of Wd corre-
sponding for d = 0, 1 and t0, where the size of Wd is fixed to
K = 3 blocks.
Having Sd, we evaluate φ(d), the sum of non-zero elements
in Sd:

φ(d) =
Knr

∑
k=1

Sd(k).

By repeating this procedure for nc consecutive values of d,
the frame synchronization instant is estimated as the value of
d minimizing φ :

t̂0 = argmin
d=0,...,nc−1

φ(d).

2.1.1 Theoretical probability of false synchronization
Let PF be the probability of false synchronization:

PF = Pr
[

φ(t0) > min
d=0,...,nc−1,d 6=t0

φ(d)
]

.

To be able to calculate this probability, we have to find the
probability laws followed by φ(t0) and φ(d).
At non-synchronized positions, the kth parity check equation
has a probability 1/2 to be verified and therefore Sd(k) is a
Bernoulli random variable of parameter 1/2.
On the other hand, at the synchronized position St0(k) fol-
lows a Bernoulli law of parameter pk where pk is the proba-
bility that St0 (k) is equal to 1. It is the probability of having
an odd number of errors in the uk bits verifying the kth parity
equation.

pk = Pr(St0(k) = 1)

=
b

uk−1
2 c

∑
l=0

(

uk
2l + 1

)

p2l+1
e (1− pe)

uk−2l−1, (2)

where uk is the number of ones in the kth line of H, pe the
error probability of the equivalent binary symmetric channel,
(n

k
)

the number of combinations of k elements from n and bnc
the nearest integer to n towards minus infinity.
Let us assume now that the elements of the syndrome are in-
dependent. By assuming that uk is constant for all the rows of
H, we have pk = p ∀k and therefore φ is a Binomial random
variable:

φ(d) ∝ B(Knr,1/2) d 6= t0
and φ(t0) ∝ B(Knr, p).

Finally, the probability of false synchronization is

PF = 1−
[Knr−1

∑
k=0

((

Knr
k

)

pk(1− p)Knr−k
Knr

∑
j=k+1

(

(Knr
j
)

2Knr

)

)]nc−1
.

Let us adapt now this method for a Gaussian Channel.

2.2 Soft Synchronization
The use of hard decision on the received sequence involves
a loss of information. Therefore, it is logical to try to bene-
fit from this information and the common way to do it is to
calculate the LLR of the received bits. In our case, we are
interested in the LLR of Sd(k) [3]. To simplify the notations,
let us assume that the length of the synchronization window
is nc bits.
Each element of the syndrome being the sum (modulo 2) of
uk bits:

Sd(k) = WdhT
k =

uk

∑
i=1

z(d + ki), (3)

where ki is the position of the ith non zero element in the kth

line of H.
The LLR of each element of the sum is:

L(z(d + ki)) =
2

σ2 x(d + ki), (4)

where σ 2 is the variance of the channel noise. An approxi-
mation of the LLR of a syndrome’s element is given by [1]:

L(Sd(k)) = (−1)uk+1
( uk

∏
j=1

sign(L(z(d + k j)))
)

β (5)



with
β = min

j=1,...,uk
|L(z(d + k j))|. (6)

The criterion that we consider now is:

φL(d) =
Knr

∑
k=1

L(Sd(k))

and the synchronization position is estimated by:

t̂0 = argmin
d=0,...,nc−1

φL(d).

Notice that L(z(k)) and x(k) are proportional. By assuming
that the variance of the noise is constant during a transmis-
sion, we can replace L(z(d + k j)) by x(d + k j) in (5) and (6),
so that we do not need to know the variance of the noise to
make our calculations.
L(Sd(k)) is estimated by:

L̂(Sd(k)) = (−1)uk+1
( uk

∏
j=1

sign(x(d +k j))
)

min
j=1,...,uk

|x(d +k j)|.

(7)
Note that the term

(−1)uk+1
( uk

∏
j=1

sign(x(d + k j))
)

involved in (7) is the modulated value of Sd(k). An estima-
tion of φL(d) is also obtained by:

φ̂L(d) =
Knr

∑
k=1

L̂(Sd(k)) =
Knr

∑
k=1

(2Sd(k)−1)Yd(k),

where Yd(k) = min j=1,...,uk |x(d + k j)| represents the reliabil-
ity of Sd(k).

2.2.1 Theoretical probability of false synchronization
This time we have continuous variables instead of discrete
ones. By applying the Central Limit theorem, φ̂L(d) follows
a Gaussian law:

φ̂L(d) ∝ N (Knrmd ,Knrσ2
d ),

where md and σ 2
d represent respectively the mean and vari-

ance of L̂(Sd(k)).
For d 6= t0, we have:

Pr(Sd(k) = 0) = Pr(Sd(k) = 1) = 1/2,

whether we have noise or not and therefore Sd(k) and Yd(k)
are independent. This leads to:

md = 0
and σ 2

d = E[Yd(k)2].

Note that σ 2
d is estimated by simulations.

On the other hand, when d = t0, St0(k) and Yt0 (k) are
not independent anymore because in this case, the sign of

a syndrome depends only on the presence or not of an error.
Therefore, mt0 can be written as:

mt0 = Pr(St0 (k) = 0)E
[

L̂(St0 (k))/St0 (k)=0
]

+Pr(St0(k) = 1)E
[

L̂(St0(k))/St0 (k)=1
]

where Pr
(

St0(k) = 1
)

= p is the same one computed in (2).
Let us find now

E
[

L̂(St0 (k))/St0 (k)=1
]

= E
[

Yt0(k)/St0 (k)=1
]

.

Recall that a BPSK modulation is used (cf. (1)):

x(i) = b(i) + w(i)

where b(i) = ±1 is a modulated bit and w(i) the noise.
Saying St0(k) = 1 means that there is an odd number of errors
in the uk bits z(t0 + ki) involved in (3). And because

z(k) =
sign

(

b(k) + w(k)
)

+ 1
2 ,

we can say that among the uk elements, there is an odd num-
ber of elements w(k) that, once added to b(k), changes its
sign.
Notice that an error occurs when:

b(k) = +1 and w(k) < −1
or b(k) = −1 and w(k) > 1.

Furthermore, as

Pr(b(k) = 1) = Pr(b(k) = −1) = 1/2

and w(k) is a Gaussian variable of zero mean, we can say that

E[Yt0(k)/St0 (k)=1] = E[ min
j=1,...,uk

|1 + w(t0 + k j)|/B1 ],

where B1 is the event: {Among uk noise samples, an odd
number of these elements have them values lower than −1}.

Doing the same procedure for the case St0(k) = 0, we
have:

E
[

L̂(St0(k))/St0 (k)=0
]

= −E
[

Yt0(k)/St0 (k)=0
]

and

E[Yt0(k)/St0 (k)=0] = E[ min
j=1,...,uk

|1 + w(t0 + k j)|/B2 ],

where B2 is the event: {Among uk noise samples, none or an
even number of these elements have them values lower than
−1}.

Having this, the mean mt0 of L̂t0 (k) is then equal to:

mt0 = −(1− p)E
[

min
j=1,...,uk

|1 + w(t0 + k j)|/B2

]

+pE
[

min
j=1,...,uk

|1 + w(t0 + k j)|/B1

]

.

Concerning the variance, we can easily show that:

σ2
t0 = E[( min

j=1,...,uk
|x(t0 + k j)|)

2]−m2
t0 ,
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Figure 2: Hard synchronization of LDPC codes

which gives, assuming the independence of the syndromes
elements:

φ̂L(t0) ∝ N (Knrmt0 ,Knrσ2
t0 ).

Finally, the probability of false synchronization is :

PF = 1−
[

1− 1
2erfc

(

−Knrmt0
√

2Knr(σ 2
t0 + σ 2

d )

)

]nc−1

.

2.3 Simulation results
In order to estimate the performance of our synchronization
algorithms, we estimated the probability of false synchro-
nization. The evaluation of this probability is realized by
Monte Carlo simulation: up to 1000000 realizations have
been performed, where, for each realization, the noise, in-
formation bits and the delay of the channel were randomly
chosen.
Consider two LDPC codes of length 511 bits and rate 0.7,
that differ only by the composition of their parity check ma-
trix: Code I (respectively II) has 4 (respectively 10) non zero
elements on each line of its parity check matrix.
By using a synchronization window of size 1 block (511
bits), we applied the two synchronization methods to these
codes. Fig. 2 shows the probability of false synchronization
versus the Signal to Noise Ratio (Eb/N0), for the Hard syn-
chronization method.
We notice on this figure that our theoretical and simulated re-
sults are almost the same. For code II, the theoretical results
are a little bit better than the simulated ones because having
10 non zero elements in each line of the parity check matrix
of this code decreases the number of independent syndrome
elements. However, in our theoretical computations we con-
sidered that all the elements of a syndrome are independent,
which explains this difference in performance.
Let us compare now the plotted curves for codes I and II. We
notice that the probability of false synchronization increases
when the number of non zero elements in the parity check
matrix increases.

Fig. 3 shows the theoretical and simulated results of Soft
synchronization method applied to the previous LDPC codes.
As in the case of Hard synchronization, the theoretical and
simulated curves are very close to each other.
Note that for Code I, for Eb/N0 greater than 1.5 dB, no error
was found in the 1000000 realizations.
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Figure 3: Soft synchronization of LDPC codes

Let us compare now the differences in performance between
Hard and Soft synchronizations: Comparing Fig. 2 and 3, it
is clear that Soft synchronization has the best performance:
For code I for example, there is a gap of around 0.62 dB
between the two methods at a probability of false synchro-
nization equals to 10−3.
Let us apply now our methods to convolutional codes. For
this type of codes, non zero elements in the parity check ma-
trix are placed in a “staircase” form. For example, the parity
check matrix of the convolutional code of generator polyno-
mials (5,7) can be written as [4]:

H =























1 1
0 1 1 1
1 1 0 1 1 1

1 1 0 1 1 1
1 1 0 1

1 1

. . . . . .























Therefore, for this code we might have:

Sd(k) = Sd−2n(k + n),

for k > 2 and n integer. This leads to a degradation in the
performance of our synchronization methods. One simple
solution to this problem is to interleave the bits in each code-
word using a pseudo-random interleaver of size nc bits.
The convolutional codes to which we applied our synchro-
nization methods have respectively the generator polynomi-
als (5,7), (23,35) and (561,753). These three codes have
the same length (512 bits), the same rate (1/2) and constraint
lengths equal to 3, 5 and 9 respectively.

Figure 4 shows a comparison between the performance of
the two methods after being applied to those convolutional
codes. The same behavior obtained with LDPC codes is
found here: Soft synchronization is always the best.
By comparing the curves plotted for code (5,7), for a proba-
bility of false synchronization equals to 2.10−2, we can see a
gap of 0.7 dB between the two methods.
Notice that when the constraint length of a code increases,
the number of non zero elements in the parity check matrix
increases also, which explains the degradation in the perfor-
mance of our synchronization methods, as explained in [2].
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Figure 4: Hard and Soft synchronizations for convolutional
codes

Note also that if those three convolutional codes were de-
coded using a Maximum A Posteriori (MAP) decoder, a
frame error rate of around 10−2 would correspond to a Eb/N0
between 5 and 6 dB. However, Fig. 4 shows that for Eb/N0
greater than 4 dB, synchronizing codes (5,7) and (23,35)
gave no error over the 1000000 realizations.
Thus, our synchronization method is well adapted for convo-
lutional codes.

2.4 Conclusion
In this paper, we have described a new method of blind frame
synchronization that is based on the calculation of the sum of
the LLR of a syndrome elements. Compared with the Hard
technique, our Soft approach gives the best results for any
Signal to Noise Ratio.
We have also estimated the theoretical probabilities of false
synchronization and the results were almost the same as the
simulated ones.
After these promising results, our target will be to apply this
blind frame synchronization method to other types of codes,
in particular turbo codes.
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