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1. Introduction

The present work is devoted to studying nonlinear dynamic systems subjected to polynomial nonlinearities. It is well
known that nonlinear systems may exhibit complex dynamics and, in particular, multiple steady-state solutions [1–3]. Some
nonlinear systems [1] can even have a countable infinity of periodic solutions, which makes the search for all solutions very
difficult, if not impossible. The goal of this paper is to propose a method based on the harmonic balance method (HBM),
Groebner bases and continuation methods that allow deriving multiple solutions of a nonlinear dynamic system (free or
forced). As the HBM introduce an approximation (truncation in the number of retained harmonics), only a finite number of
solution can be obtained, and here, “multiple solutions” are used in the sense “as many solutions as possible relative to the
HBM approximation”, or in other words ”all solutions of the HBM equations”.

The harmonic balance method (HBM) is widely used in finding approximation to periodic solutions of nonlinear
differential equations; the main HBM step consists of transforming the set of nonlinear differential equations into a set of
nonlinear algebraic equations, which in turn can be solved to yield the Fourier coefficients of a particular solution. The HBM
is a very efficient method and is capable of handling nearly all types of nonlinearities (polynomial [3], friction [4], contact
[5]) regardless of their amplitudes (strong or weak nonlinearities). The Newton–Raphson algorithm and continuation
methods are typically applied to the algebraic equations in order to track the solution as frequency varies [6] (note: by
rolet), fabrice.thouverez@ec-lyon.fr (F. Thouverez).
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frequency we meant excitation frequency (in the forced case), and natural frequency (in the unforced case)). With a change
in frequency, bifurcations may occur and several new branches of solutions can be computed from these bifurcation points
depending on the specific bifurcation type [6,3]. The locations of bifurcation points and tangent directions can be computed
using Newton–Raphson algorithms in a unique algebraic system (e.g. see [6]). Determining all bifurcation points however is
not a simple task as some points may be easily overlooked (e.g. when the continuation step length is too high or when the
determinant of the Jacobian matrix tends to zero but does not change sign). Moreover, if some branches of solutions are
disconnected (in the sense that they do not arise from bifurcation points of previous branches), then the continuation
algorithms would fail to detect them and new tools would be needed to solve the algebraic system of equations induced by
the HBM.

Several methods for finding multiple solutions of dynamic or algebraic systems have been proposed in the literature
[3,6–16]; their reviews and presentations will be provided in Section 3. We will specifically focus on the use of Groebner
bases for solving the polynomial system of equations generated from the HBM. A Groebner basis can be viewed as a
rewriting of the original polynomial system to be solved, yet with additional properties (e.g. in some cases in triangular
form) that facilitate the resolution step. The use of a Groebner basis in the field of structural mechanics has already been
proposed in a number of studies, including [17,18]. In [17], Groebner bases are used to determine multiple static equilibria of
geometrically nonlinear plates subjected to static forces. Before finding solutions, the structural system is reduced using
a few modal shapes and the Ritz method, thus leading to a polynomial system with a few degrees of freedom (5 max.)
describing the static solution of the structural system. The author then computes a (triangular) Groebner basis of
this reduced equation and solves the resulting (triangular) system by means of lifting. In [18], Groebner bases are used
to compute the solution of nonlinear free vibration of geometrically nonlinear composite plates. The author also reduces the
system using the Ritz method and moreover assumes a harmonic response of the structure, thereby transforming the
nonlinear differential equations into a set of polynomial algebraic equations (equivalent to an HBM with 1 harmonic). Once
again, Groebner bases are computed in triangular form and the system is solved by deriving an expression of the nonlinear
frequency vs. motion amplitude. In both studies, the author notes that their reduced model has been limited in size due to
the significant increase in Groebner basis computation time with the number of variables (e.g. see [17]: “…, it creates the
need for 11 unknown constants and this cannot be accomplished with the computer available for the current studies.”).

In this paper, we propose using Groebner bases [11] to solve the set of algebraic equations given by the HBM in order to
find multiple steady-state solutions. Unlike previous studies, this one will allow us to identify dynamic solutions of the
structural system in the forced case. In order to reduce the number of variables (and therefore the computation time) in
the search for multiple solutions, we will first search for solutions of the undamped problem, and then use a damping
continuation procedure to recover solutions of the damped system.

The paper will be organized as follows: Section 2 will describe the application of the harmonic balance method along
with the continuation methods. Section 3 will then focus on solving the polynomial system and display the resolution
method used in this paper. Lastly, Section 4 will present a numerical application on a simple example corresponding to an
8-dof cyclic structure with cubic nonlinearities. The set of all steady-state solutions will be computed by the proposed
method in conjunction with a stability analysis. Solutions will be compared to the results of temporal integrations, in
showing excellent agreement.
2. Harmonic balance method applied to a system with polynomial nonlinearities

In this section, we will present an application of the harmonic balance method [5,19,3] for solving a nonlinear dynamic
system along with the arc length continuation algorithms [6,5] introduced to follow the solution as frequency varies. In
addition, the continuation procedure on the damping parameter for transforming an undamped solution into a damped
solution will be presented.
2.1. Harmonic balance method

Let us consider an n dof nonlinear dynamic system given by the following equation:

M €uþC _uþKuþFnlðuÞ ¼ FðtÞ ð1Þ
where uðtÞ is a vector of unknown size n, M, C and K are respectively the mass, damping and stiffness matrices, FðtÞ is the
excitation force vector which is assumed to be periodic with period T ¼ 2π=ω, and finally FnlðuÞ is the vector of nonlinear
forces assumed to be conservative and polynomial, i.e.,

½Fnl�iðuÞ ¼ ∑
ðαÞASi

cðαÞuα ð2Þ

where Si �Nn is the support of polynomial ½Fnl�i. Such dynamic systems arise, for example, after the finite element modeling
of mechanical systems with geometric nonlinearity [3]. This paper focuses on the (possibly multiple) steady-state solutions
of equation (1) under harmonic excitation. In order to compute this solution, the harmonic balance method (HBM) [19,5] is
applied; this method consists of searching for the solution in the form of a truncated Fourier series up to the H harmonic, as
2



follows:

uðtÞ ¼ a0þ ∑
H

k ¼ 1
ak cos ðkωtÞþbk sin ðkωtÞ ð3Þ

where ak and bk represent the Fourier coefficients associated with harmonic k. Next, Eq. (3) is substituted into Eq. (1) and
the resulting equations are projected over the truncated Fourier basis TðtÞ ¼ ½1; cos ðωtÞ; sin ðωtÞ;…; cos ðHωtÞ; sin ðHωtÞ�
using the scalar product 〈f ; g〉¼ ð1=TÞ R T

0 f ðtÞgðtÞ dt. The final result is a set of nonlinear algebraic equations given by the
following equation:

ZðωÞxþ ~F nlðxÞ� ~F ¼ Pðx;ωÞ ¼ 0 ð4Þ
where x¼ ½aT

0;a
T
1 ;b

T
1 ;…;aT

H ;b
T
H �T is a vector of unknown size nh ¼ nð2Hþ1Þ, and Z is the matrix of dynamic stiffness

computed as Z¼ diagðK; ðZkÞ1rkrHÞ where Zk is given by

Zk ¼
K�ðkωÞ2M kωC

�kωC K�ðkωÞ2M

" #
ð5Þ

Moreover, ~F and ~F nlðxÞ correspond respectively to the excitation force and the nonlinear force in the frequency domain.
Since the nonlinear force in the time domain Fnl has been assumed to be polynomial, the resulting nonlinear force in the
frequency domain ~F nl is also in polynomial form, hence Eq. (4) is a system of nh polynomial equations. Fixing the frequency
ω (e.g. as the excitation frequency (forced case) or the natural frequency (unforced case)) and solving the algebraic system in
Eq. (4) then yields the possible steady states of the system for the particular frequency ω.

2.2. Continuation method

A common way to solve Eq. (4) is to introduce continuation methods [6,5]. Starting from an initial point ðx0;ω0Þ solution
of Eq. (4), a series of solutions ðxi;ωiÞ is derived through the use of a predictor/corrector scheme. The arc-length continuation
is selected herein so that the solutions are parameterized by s, which represents a curvilinear abscissa. Then, starting from
point ðxi;ωiÞ, the next solution ðxiþ1;ωiþ1Þ is computed in two steps, as indicated in Fig. 1.

A predicted solution ðxp;ωpÞ ¼ ðxiþΔx;ωiþΔωÞ is computed using a first-order Taylor expansion of Eq. (4) at point i:

½∂xPðxi;ωiÞ�Δxþ½∂ωPðxi;ωiÞ�Δω¼ 0 ð6Þ
This equation is then complemented with another equation setting the length of the prediction:

‖Δx‖2þjΔωj2 ¼ ds2 ð7Þ
where ds is the step size. Combining Eqs. (6) and (7) leads to the following expressions for Δx and Δω:

Δω¼ 7ds

ð1þ‖½∂xP��1∂ωP‖2Þ1=2
Δx¼ �½∂xP��1½∂ωP�Δω ð8Þ

The sign of Δω is chosen according to the continuation direction (either forward or backward), in order to pass through
turning points; Δω should change sign in order to follow the curve. This sign change can be performed by monitoring the
scalar product between two consecutive predictions: if it is negative, then Δω changes sign.

Next, correction iterations are performed on the predicted point using the Newton–Raphson algorithm to solve the
system in Eq. (9) for ðxiþ1;ωiþ1Þ starting with initial iterate ðxp;ωpÞ:

Pðxiþ1;ωiþ1Þ ¼ 0

‖xiþ1�xi‖2þjωiþ1�ωij2 ¼ ds2 ð9Þ
Fig. 1. Illustration of the arc length continuation procedure.
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The prediction/correction process is then applied to compute a desired number of points. The first point ðx0;ω0Þ is of
particular interest since it determines which solution will be followed. Initial iterates x0 can be computed by solving Eq. (4)
for a fixed frequency ω0 with the Newton–Raphson method using initial iterate xl, as given by the resolution of the linear
system at the same frequency.
2.3. Working on the undamped system

As seen in both the Introduction and Section 3, Groebner basis computation time increases exponentially with the
number of variables. Application of the HBM with H harmonics on a system with n dof results in nh ¼ nð2Hþ1Þ variables (or
nh ¼ 2Hn if a0 ¼ 0). This number of variables can quickly become unworkable for the search of a Groebner basis within a
reasonable time. To decrease the number of variables, we propose working on the undamped system, and search for in-
phase solutions by using only cosine terms in Eq. (3). This leads only to a subset of solutions (ie no travelling waves) but it
has the advantage of reducing the number of variables from nh ¼ ð2Hþ1Þn to nh ¼ ðHþ1Þn (or nh ¼ nH if a0 ¼ 0).

The in-phase solutions of the undamped problem will then be used as starting points for a damping continuation
procedure, allowing to recover in-phase solutions of the damped problem. The continuation procedure on the damping
parameter will be described hereafter.

In the undamped case, using only cosine terms, the HBM equation in Eq. (4) is reduced to the following equation:

ZðωÞaþ ~H ðaÞ� ~F ¼ Puða;ωÞ ¼ 0 ð10Þ

where Z¼ diagðK; ðK�ðkωÞ2MÞ1rkrHÞ. Let us now suppose that all solutions aðmÞ of the system in Eq. (10) have been found
for a given frequency ωm; these solutions will now be used as a starting point for a continuation on the damping parameter.
Replacing C by ϵC in Eq. (5) (where ϵ is a new parameter ranging from 0 to 1) results in the following form for Eq. (4):

Zðω; ϵÞxþ ~H ðxÞ� ~F ¼ Pðx;ω; ϵÞ ¼ 0 ð11Þ

Let us note that since the nonlinearity is conservative, when ϵ¼0 the system is undamped and the vector x0 ¼ ½aðmÞ;0� is a
solution of Eq. (11); when ϵ¼ 1, the system is fully damped with matrix C. A simple way to apply the continuation is to setω
at the fixed value ωm and then apply a continuation on parameter ϵ. However, as damping increases with ϵ, we are
not certain that a solution will always exist for this particular frequency (see, for example, Fig. 2 at f¼0.6 Hz, solutions for
ϵ¼0.046 exist, but not at ϵ¼0.096). To overcome this drawback, ω is also considered as a variable, and a continuation
process with two parameters ω and ϵ based on a predictor/corrector is applied.

The prediction direction ðxp;ωp; ϵpÞ ¼ ðxiþΔx;ωiþΔω; ϵiþΔϵÞ is given by solving the following equation:

½∂xPðxi;ωi; ϵiÞ�Δxþ½∂ωPðxi;ωi; ϵiÞ�Δωþ½∂ϵPðxi;ωi; ϵiÞ�Δϵ¼ 0 ð12Þ

This equation is underdetermined and should be complemented by two equations. The first equation imposes that the
predicted vector must belong to the normal plane of the curve Pðx;ω; ϵiÞ ¼ 0 at point ðxi;ωiÞ:

�ð½∂xPðxi;ωi; ϵiÞ��1½∂ωPðxi;ωi; ϵiÞ�ÞTΔxþΔω¼ 0 ð13Þ

The second equation sets the step length in the ϵ direction:

Δϵ¼ ϵp�ϵi ¼ ds ð14Þ
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Fig. 2. Illustration of the continuation method on the damping parameter for the simple 2-dof system shown in Fig. 3.
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Fig. 3. Illustration of the simple 2-dof system.
Eqs. (12)–(14) can be combined to give the following expressions:

Δx¼ �ð½∂xP��½∂ωP�ð½∂xP��1½∂ωP�ÞT Þ�1½∂ϵP�Δϵ
Δω¼ �ð½∂xP��1½∂ωP�ÞTΔx
Δϵ¼ ds ð15Þ

Correction iterates are then applied to the predicted vector for ϵ¼ ϵp. The Newton–Raphson method is used to solve the
following system with initial iterate ðxp;ωpÞ:

ϵiþ1�ϵp ¼ 0
Pðxiþ1;ωiþ1; ϵiþ1Þ ¼ 0

ð½∂xP��1½∂ωP�ÞT ðxiþ1�xiÞþðωiþ1�ωiÞ ¼ 0 ð16Þ
The last equation of the system in Eq. (16) corresponds to the fact that correction points should lie on the normal plane, as
defined in the prediction step (Eq. (13)).

The prediction/correction process is then applied until ϵ¼1, providing a solution ðxðmÞ;ωðmÞÞ of the damped system.
Moreover, the continuation is repeated for all starting points x0 ¼ ½aðmÞ;0�.

Remarks. For some starting points, the solution may disappear as damping increases, thus leading to an unfinished
continuation. This fact is exemplified in Fig. 2, where the closed curve solution is seen to shrink as damping increases. As a
byproduct of this continuation method, the maximum damping coefficient ϵ is obtained in order for a solution to exist. For
instance, let us consider the 2 dof example depicted in Fig. 3. The motion equations are given by the following equations:

m €u1þc _u1þðkþkcÞu1�kcu2þknlu
3
1 ¼ f cos ðωtÞ

m €u2þc _u2þðkþkcÞu2�kcu1þknlu
3
2 ¼ f cos ðωtÞ ð17Þ

with k¼ kc ¼m¼ knl ¼ c¼ 1. We now introduce the damping continuation parameter ϵ by replacing c by ϵc¼ ϵ� 1¼ ϵ in
Eq. (17), so that the new damping coefficient is directly driven by ϵ. Fig. 2 shows that when ϵZ0:131, the closed curve
solution no longer exists; therefore, the maximum damping coefficient for this closed curve solution to exist is given by
ϵ¼0.131.

3. Multiple steady-state solutions of the dynamic system

Following a short review of existing methods for finding multiple solutions of nonlinear dynamic systems, this section
will focus on the use of Groebner bases for solving polynomial systems.

3.1. Review

The methods for identifying multiple steady-state solutions of a dynamic system can be classified into two categories:
methods in the time domain and methods in the frequency domain. Time domain methods, such as the cell mapping
method [20,21], directly deal with the system of differential equations. Most of the time, those methods give plenty of
information on the system (solutions, stability, basin of attraction, etc.), but they are often limited to very small systems due
to the computation times required.

Here, we will concentrate on frequency domain methods that first transform the set of differential equations in a set of
algebraic equations. In the case of polynomial nonlinearities, the search for multiple steady-state solutions is most of
the time reduced to finding multiple solutions of a multivariate polynomial system. Finding all solutions of a multivariate
polynomial system is a topic of considerable interest since systems of polynomial equations are encountered in many
research fields. In most instances, the system is solved by means of Newton–Raphson algorithms [6], which only yield one
solution depending on the initial iterate. The Newton–Raphson algorithm is typically coupled with continuation methods in
order to follow the solution [6] as frequency varies. In some cases, bifurcation occurs due to special values of the parameter
ω. Depending on the bifurcation type, new branches of solutions can be computed from the bifurcation points [6].

Homotopy methods offer an alternative that can actually compute all solutions of polynomial equation systems. Linear
homotopy [3] relies on linking the root of the system P to the roots of a simpler system Q via a regular path. The roots of
systems Q are known while the roots of system P are computed by following the paths given by Hðx; tÞ ¼ tPðxÞþð1�tÞQ ðxÞ
through continuation methods on parameter t. System Q generally contains more roots than system P, hence some paths
5



will diverge and their continuation will only result in a loss of time. Polyhedral homotopy [10] is aimed at solving this
problem by the use of the so-called “BKK bound” [8,9], which allows to construct an initial polynomial Q which has the
same number of roots as P (almost surely). The construction of the polyhedral homotopie relies however on probabilistic
arguments and many combinatorial problems, making it very complex and time consuming.

Algebraic methods such as Groebner basis [11], rational univariate representation [12,13] and multiplication matrix
[14–16] are another alternative for solving polynomial systems. These methods exploit the relationship between variables
derived by the set of polynomial equations, and they are mainly based on Groebner bases. As seen in the next section, the
choice to use a Groebner basis for solving multivariate polynomials is motivated by the fact that they allow finding multiple
solutions of multivariate polynomials in a relatively simple way: by either solving a univariate polynomial or computing
eigenvalues of special matrices.

3.2. Groebner basis and multivariate polynomial solutions

This section will present the use of Groebner basis to find all solutions of a multivariate polynomial system PðxÞ ¼ 0. But,
before introducing Groebner basis, we recall some definitions related to systems of multivariate polynomial equations.

We denote C½x� the ring of multivariate polynomials with complex coefficients defined by the following:

C½x� ¼ f jf ðxÞ ¼ ∑
αAS

cðαÞxα; cðαÞAC

� �
ð18Þ

S �Nn is called the support of polynomials f, xα ¼ xα1
1 …xαn

n is called a monomial of total degree jαj ¼∑iαi, and cðαÞAC is the
coefficient of monomial xα. As monomials can be seen as points in Nn, multiple monomial ordering can be defined. Two
kinds of ordering are generally used: (i) lexicographic ordering ðr lexÞ and (ii) graded reverse lexicographic ordering ðrgrevÞ.

For ðα;βÞA ½Nn�2, they are respectively defined by

αr lexβ� ½αjrβj and αi ¼ βi for 1r ir jrn� ð19Þ

and

αrgrevβ� ½jαjr jβj� or ½αjZβj and αi ¼ βi for 1r jr i� ð20Þ

We denote I (or equivalently 〈P〉) the ideal of C½x� generated by the polynomial system P and defined by

I ¼ f AC½x�jf ðxÞ ¼ ∑
n

i ¼ 1
μiðxÞpiðxÞ; μiAC½x�

( )
ð21Þ

Finally, we denote -P the reduction operation modulo I (or equivalently modulo P) defined for f AC½x� by f-Pr (f
reduces to r modulo P) where rAC½x� is defined by the following relation:

f ðxÞ ¼ ∑
n

i ¼ 1
μiðxÞpiðxÞþrðxÞ ð22Þ

In other words r is the remainder in the division of f by each element of P. This remainder is generally not unique and
depends on the division order and on the monomial order.

Let us now consider a polynomial system PðxÞ generating an ideal I ¼ 〈P〉. The concept of Groebner basis for polynomial
ideals was introduced in the 1960s by Buchberger and Groebner [22]. A Groebner basis G for an ideal I relatively to a
monomial order can be defined as a polynomial system G that generates the ideal I (i.e I ¼ 〈G〉), and that make the
remainder unique in the reduction operation -G (for a fixed monomial order).

Formally, G¼ ½g1;…; gr � is a Groebner basis for I if the leading term of each element of I can be divided by the leading
term of a polynomial gi for a particular iAf1;‥; rg.

Buchberger proposed an algorithm for computing Groebner bases in his thesis [22] that has been improved several times
since, in particular by Faugère [23–25]. Note that the monomial ordering used in Groebner basis computations influences
both form of the basis G and computation time, and, in general, computation of Groebner basis using the grevlex ordering is
faster than with the lexicographic ordering.

3.2.1. Groebner basis with elimination order
The fact that a Groebner basis generates the same ideal as P implies that the system GðxÞ ¼ 0 has the same solutions as

the system PðxÞ ¼ 0. For some particular monomial ordering, the associated Groebner basis G can have a simpler form than
P, and thus can be solved more easily. Using the so-called “elimination order” (such as lexicographic ordering [26]) allows
computing a Groebner basis G with a special triangular form, as given in the following equation:

g1ðx1;…; xnÞ ¼ 0
⋮
gr�1ðxn�1; xnÞ ¼ 0
grðxnÞ ¼ 0

ð23Þ
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This particular form of Groebner basis can be directly used to find the zeros of P. The last equation is indeed a univariate
polynomial equation, which can be solved efficiently, yielding values for xn. The values of xn�1 are then computed using the
penultimate equation, and the lifting sequence continues until the values for x1 are computed.

To illustrate the special form of Groebner basis computed relative to an elimination order, let us consider a simple two-
variate polynomial system Pðx1; x2Þ derived from Eq. (4) for a 2-dof system depicted in Fig. 3 and given by the following
equation:

P x1; x2ð Þ ¼ 2�ω2 �1
�1 2�ω2

" #
x1
x2

" #
þ3
4

x31
x32

" #
� 1

1

� �
ð24Þ

where ω is a parameter and m¼ k¼ kc ¼ knl ¼ f ¼ 1.
Computing a Groebner basis Glex for the system in Eq. (24) relative to the lexicographic ordering with x14x2 results in

the following expression for Glex ¼ ½g1; g2�:

GðlexÞ
ex;1 ðx1; x2Þ ¼ �4�4x1þð8�4ω2Þx2þ3x32

GðlexÞ
ex;2 ðx2Þ ¼ h0ðωÞþh1ðωÞx2þh2ðωÞx22þh3ðωÞx32þh4ðωÞx42þh5ðωÞx52�h6ðωÞx62þh7ðωÞx72þ81x92 ð25Þ

where the functions hiðωÞ are univariate polynomials of maximum degree 4 (for this special case) with variable ω. For this
unique application, let us note that the second equation of the Groebner basis in Eq. (25) is always of degree 9 and therefore
has 9 complex solutions. Solving the last equation and substituting the results into the first equation leads to a final set of 9
complex solutions ðx1; x2Þ for Eq. (24).

The main drawback of computing a Groebner basis with an elimination order is the exponential increase in computation
time with the number of variables. To overcome this drawback, it is possible to compute a Groebner basis Glex in less time by
using another order, such as the graded reverse lexicographic ordering (grevlex), which seems to offer the least computation
time [27], and then recasting the basis Ggrev into a triangular one Glex using the FGLM algorithm [23]. However, the
computation time of FGLM algorithms increases considerably with the number of variables. To overcome these drawbacks,
we propose introducing a method that directly outputs the solution of the polynomial system by means of an eigenvector
computation.

3.2.2. Multiplication matrix method
Another particular feature of Groebner basis is the fact that the remainder r in the reduction of f modulo I ðf-GrÞ is

unique. This allows to extend the concept of Euclidean division for multivariate polynomials and allows calculating in the
quotient space Q¼C½x�=I . Q contains all remainders r (also called normal forms) that may appear in a reduction modulo I ,
and for q1; q2AQ we define the equivalence relation:

½q1 ¼ q2� � ½q1�q2AI � ð26Þ
In the case where the polynomial system PðxÞ ¼ 0 has only a finite number of solutions (say D solutions), it can be shown

[14–16] that Q is a vectorial space of finite dimension D. Groebner basis can be used to compute a (monomial) basis B for Q
as a vectorial space on C (the basis B is also called a normal set). The normal set B may be viewed as the set of all monomials
capable of appearing in a remainder r in the reduction modulo I (i.e each r can be decomposed as rðxÞ ¼∑D

j ¼ 1cjBjðxÞ; cjAC),
and it can be formally defined as follows:

B¼ fxαjxα =2〈LTðGÞ〉g ð27Þ
where 〈LTðGÞ〉 is the ideal generated by the leading terms of G.

Since the quotient space Q is a vector space of finite dimension, all linear applications can be represented by a matrix
relative to basis B. A particular linear application set is the application “mf: multiplication by polynomial f AC½x�” defined as

mf :C½x�=I-C½x�=I
h↦mf ðhÞ ¼ fh ð28Þ

The matrices Mf associated with applications mf relative to basis B are called multiplication matrices, and they can be
characterize by the following relation (modulo I Þ:

fB¼MfB ð29Þ
or equivalently

fBi ¼ ∑
D

j ¼ 1
Mf

i;jBj ð30Þ

For particular choices of f ¼ xi, i¼ 1;‥;n, it can be shown [14–16] that the eigenvalues of the multiplication matrices Mxi
are related to the zeros of the polynomial system. Indeed, the values xðkÞi of variables xi for solution k are given by the
eigenvalues of Mxi associated with common eigenvector Vk. Component xðkÞi of solution k can then be obtained directly by
reading the eigenvector Vk at location j, where j is the location of monomial xi in the quotient space basis B (note: the
eigenvectors should be normalized so that their first component [associated with monomial x0 ¼ 1] equals one).
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To avoid computing the eigenvectors of all multiplication matrices Mxi i¼ 1;‥;n, we only consider the multiplication
matrix associated with the linear combination f ¼∑n

i ¼ 1cixi, where ci are rational numbers chosen such that the values f ðxðkÞÞ
are different at each solutions points xðkÞ, k¼ 1;‥;D. Generally, random choices for coefficients ci are sufficient to ensure
these properties almost surely [28]. The eigenvalues and eigenvectors of Mf are then computed and the component of the
solutions can be read in the eigenvector, as previously described.

In general, the computation of basis B and the construction of multiplication matrices require greater amounts of time as
the number of variables increases. Some symbolic computation software already feature packages relative to Groebner basis
computations, such as the ’Groebner’ package of the Maple software. However, for certain special cases of polynomial
systems, the Groebner basis G and monomial basis B can be quickly determined (e.g. see Section 4).

In sum, the resolution process used in the multiplication matrix method to solve a polynomial system P is the following:
�
 Compute a Groebner basis G relative to the grevlex order (fastest order).

�
 Use this Groebner basis G to compute a normal set B for the quotient space Q (use of the reduction operation).

�
 Choose f ¼∑cixi and build the multiplication matrix Mf relative to basis B.

�
 Compute and normalize the eigenvectors of the multiplication matrix.

�
 Read the solution components xðkÞi , i¼ 1;‥;n in the eigenvector Vk, for k¼ 1;‥;D.
As an application, we computed a normal set B for the quotient space Q induced by the polynomial system in Eq. (24).
We began by computing a Groebner basis GðgrevÞ relative to the graded reverse lexicographic ordering (grevlex). It turns out
that the system in Eq. (24) is already in Groebner basis form for the grevlex ordering, hence GðgrevÞ ¼ P. The ideal generated
by the leading terms of the Groebner basis is given by 〈LTðGðgrevÞÞ〉¼ 〈x31; x

3
2〉 and therefore basis B¼ fxα;αA ½0;2�2g (see

definition in Eq. (27)) which leads to

B¼ ½1; x1; x2; x21; x1x2; x22; x21x2; x1x22; x21x22� ð31Þ
Let us note that in this special case, basis B contains 9 elements and thereforeQ is of dimension 9, and the system in Eq. (24)
has 9 solutions.

Now that we have a basis forQ, we can compute the multiplication matrix associated to f ¼ x1þ2
3 x2 relative to basis B. To

illustrate the process, we show how to compute the first and the last line of the multiplication matrix. The first line is
associated with the product fB1 which can be developed as

fB1 ¼ x1þ2
3 x2

� �� 1¼ 1|{z}
Mf

1;2

� B2þ
2
3|{z}

Mf
1;3

� B3 ð32Þ

Using this last equation we can see that the product fB1 can directly be expressed in terms of elements of B, so that the first
line of the multiplication matrix is directly identified and will contain a 1 in position (1, 2), a 2

3 in position (1, 3) and zeros
elsewhere. The last line of the matrix is associated with the product fB9 which can be developed as

fB9 ¼ x1þ2
3 x2

� �� x21x
2
2 ¼ x31x

2
2þ2

3 x
2
1x

3
2 ð33Þ

Here we can see that the product fB9 contains terms of degree 5, whereas the basis B has term of degree at most 4. In this
case we have to compute the normal form of fB9 using the reduction operation relative to Groebner basis Ggrev computed
previously. In this case the reduction operation gives fB9-Ggrevr with

r¼ 80
27|{z}
M9;1

þ 4
27 �4þ8ω2� �|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Mf
9;2

x1þ 4
27 �16þ12ω2� �|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mf
9;3

x2þ 4
27 �12þ6ω2� �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mf
9;7

x21x2þ 4
27 �18þ9ω2� �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mf
9;8

x22x1 ð34Þ

Using the same procedure for all products fBi, i¼ 1;‥;D, results in the following expression for Mf :

Mf ¼

0 1 2
3 0 0 0 0 0 0

0 0 0 1 2
3 0 0 0 0

0 0 0 0 1 2
3 0 0 0

4
3 �8

3 þ4
3ω

2 4
3 0 0 0 2

3 0 0

0 0 0 0 0 0 1 2
3 0

8
9

8
9 �16

9 þ8
9ω

2 0 0 0 0 1 0

0 0 0 0 �8
3 þ4

3ω
2 4

3 0 0 2
3

0 0 0 8
9 �16

9 þ8
9ω

2 0 0 0 1
80
27 �16

27 þ32
27ω

2 �64
27 þ16

9 ω
2 0 0 0 �16

9 þ8
9ω

2 �8
3 þ4

3ω
2 0

2
6666666666666666664

3
7777777777777777775

ð35Þ

After computing the (normalized) eigenvectors of matrix Mf the solution ðx1; x2ÞðkÞ of Pðx1; x2Þ ¼ 0 will be read as ðV ðkÞ
2 ;V ðkÞ

3 Þ
(where V ðkÞ

i is the i-th component of eigenvector V ðkÞ).
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4. Application to a numerical example

4.1. Simple 2 dof system

As a first application, we consider a simple undamped, unforced 2-dof nonlinear system depicted in Fig. 3. The goal of
this example is to illustrate the search for multiple solutions using the multiplication matrix method, and to see the
convergence of the solution as the number of retained harmonics increases. The motion equation for such a system can be
given by the following equation:

m €u1þðkþkcÞu1�kcu2þknlu
3
1 ¼ 0

m €u2þðkþkcÞu2�kcu1þknlu
3
2 ¼ 0 ð36Þ

In the numerical application we will set m¼ k¼ kc ¼ knl ¼ 1.
In order to compute an approximated solution of system (36), the harmonic balance is used. As no static forces act on the

system and as the nonlinearity is purely cubic, no continuous component will be retrained in the HBM development (i.e
a0 ¼ 0). In addition, a maximum of 3 harmonics will be used, so that the solutions u1ðtÞ and u2ðtÞ will be expressed as

u1ðtÞ ¼ ∑
H

k ¼ 1
xi cos ðkωtÞ

u2ðtÞ ¼ ∑
H

k ¼ 1
yi cos ðkωtÞ ð37Þ

In order to evaluate the convergence of the solutions with the number of retained harmonics H, three different levels of
truncation will be considered, going from H¼1 to H¼3. The nonlinear algebraic system arising from application of the HBM
with H¼3 harmonics (nH¼6) can be written as follows:

2�ω2� �
x1�y1þ3

2 x1 x22þx23
� �þ3

4 x31þx21x3þx22x3
� �¼ 0

2�ω2� �
y1�x1þ3

2 y1 y22þy23
� �þ3

4 y31þy21y3þy22y3
� �¼ 0

2�4ω2� �
x2�y2þ3

2 x2 x21þx23þx1x3
� �þ3

4 x
3
2 ¼ 0

2�4ω2� �
y2�x2þ3

2 y2 y21þy23þy1y3
� �þ3

4 y
3
2 ¼ 0

2�9ω2� �
x3�y3þ3

2 x3 x22þx21
� �þ3

4 x33þx1x22
� �¼ 0

2�9ω2� �
y3�x3þ3

2 y3 y22þy21
� �þ3

4 y33þy1y
2
2

� �¼ 0 ð38Þ

The system for H¼1 [resp. H¼2] can be obtained by setting x2 ¼ y2 ¼ x3 ¼ y3 ¼ 0 [resp. x3 ¼ y3 ¼ 0] and by retaining only the
two [resp. the four] first equations.

At first, we set ω¼ 25
10 and we solve Eq. (38) with the multiplication matrix method for H¼1, 2, 3. The results are

summarized in Table 1 and solutions are depicted in Figs. 4–6. In order to simplify the analysis, we sorted the solution by
family by using the symmetry of the algebraic system (38). Indeed, it can be seen that this system is invariant under
the application T c: ðxi; yiÞ↦ðyi; xiÞ; i¼ 1;2;3 (change of coordinate), and T s: ðxi; yiÞ↦ð�xi; �yiÞ; i¼ 1;2;3 (change of sign).
Therefore, two solutions s1 and s2 will be part of the same family if s1 ¼ T ðs2Þ, where T ¼ T s or T ¼ T c.

For H¼1 harmonics, only 3 families of solution (þ1 trivial solution) are obtained (Fig. 4). They correspond respectively to
the first NNM (NNM1, form ½a; a�, in phase), the second NNM (NNM2, form ½b; �b� out of phase) and a bifurcation of the
second mode which corresponds to a localized solution (NNMloc, form ½c; �d�, out of phase). When we increase the number
of harmonics, these 3 families of solution remain, and we observe the apparition of new solutions: (i) subharmonic
oscillations and (ii) internal resonances. For H¼2 we detect 3 families of solution corresponding to subharmonic oscillations
of order 2 (directly related to the NNMs), and two internal resonances of type 1:2 (one coordinate vibrate atω and the other
at 2ω, Fig. 4). For H¼3, subharmonics of order 3 are observed along with 4 internal resonances: 2 of type 1:3 and 2 of type
2:3, Fig. 6. We can see that each internal resonances can either be in a mode 1 fashion (each amplitude is positive) or in a
mode 2 fashion (one amplitude positive and one negative).

For H¼3 harmonics, we use the computed solutions as starting points for an arc-length continuation. Results are
depicted in Fig. 7 showing NNM1, NNM2, NNMloc and their subharmonic oscillations. Fig. 8 shows the internal resonances
curves. The subharmonic oscillations can directly be obtained from mode 1, mode 2 and the localized mode simply by
dividing the frequency by 2 (order 2) or by 3 (order 3).

This example shows that even extremely simple systems can exhibit a very complex dynamic behavior. The use of the
HBM in addition with the multiplication matrix method allows to find a great number of solutions which can be sorted by
family. When increasing the number of retained harmonics, all previously computed solutions remain, and some more
solutions are detected such as subharmonic oscillations or internal resonances.

This first example was very simple and considered undamped. We will now turn to the case of a more complex structure
possessing cyclic symmetry, in order to apply the multiplication matrix method in addition with the damping continuation
method presented in Section 2.3.
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Table 1
Results of the multiplication matrix method applied to systems (38) for H ¼ 1, 2, 3 harmonics.

Number of harm. H 1 2 3

Number of sol. D 9 81 729
Number of real sol. 9 25 49
Number of family 3 (þ1) 8 (þ1) 15 (þ1)
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4.2. Cyclic system

In this section, we will apply our method for finding multiple steady states of a dynamic equation to a simple n dof cyclic
system, as depicted in Fig. 9. This kind of system arises, for example, when modeling a bladed disk with blades subjected to
geometric nonlinearities [3]. The motion equation for such a system is defined as follows:

m €uiþc _uiþðkþ2kcÞui�kcui�1�kcuiþ1þknlu
3
i ¼ FiðtÞ ð39Þ

for i¼ 1…n with convention unþ1 ¼ u1. Parameters m, c, k are respectively the mass, damping and stiffness coefficients, kc
and knl are the coupling stiffness and nonlinear stiffness coefficients respectively and finally Fi(t) is the excitation force,
which is assumed to be in the following form: FiðtÞ ¼ f cos ðωtÞ, i.e. all dofs are forced with the same force amplitude f.

In the first part of the application, n will be considered as variable and several elements of information on undamped
solutions will be given. The particular case of n¼8 will then be considered, and the damped solutions will be computed and
displayed.

The numerical values used throughout this example are as follows:

m¼ 1; c¼ 0:1; k¼ 1; kc ¼ 1; knl ¼ 1; f ¼ �1: ð40Þ
4.2.1. General information on the undamped system
4.2.1.1. Linear analysis. The resonance frequency ωi and mode shapeΦi of the linearized undamped system are obtained by
solving the eigenvalue problem KΦi ¼ω2

i MΦi. Due to the special structure of matrix K, only one (n odd) [resp. two (n even)]
single eigenvalue and n�1 [resp. n�2] double eigenvalues are associated with distinct eigenvectors. The results of this
eigenvalue problem can be expressed as follows:

ω2
1 ¼

k
m

; Φ1 ¼ ½1;…;1�T

ω2
i ¼

kþ2kcð1� cos ðθiÞÞ
m

; ΦðcÞ
i ¼ ½ cos ðθiÞ;…; cos ðnθiÞ�T ; θi ¼

2ði�1Þπ
n

; iA 2; n½ �

ΦðsÞ
i ¼ ½ sin ðθiÞ; …; sin ðnθiÞ�T

ω2
n ¼

kþ2kcð1� cos ðθiÞÞ
m

; ΦðcÞ
i ¼ ½ cos ðθiÞ; …; cos ðnθiÞ�T ; θi ¼

2ðn�1Þπ
n

ð41Þ
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As observed above, the linear frequencies are clustered within the interval
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Fig. 9. Simple nonlinear cyclic system used in our example.
which is a special characteristic of cyclic systems. In the remainder of this paper, we will study this system around the first
resonance frequency ω1 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
¼ 1, and moreover the frequency used to search for the multiple solution will be set to

ωm ¼ 3.

4.2.1.2. Computing multiple solutions of the undamped system. Applying the HBM with H harmonics leads to an equation of
the form of Eq. (4). For the computation of multiple solutions, a single harmonic approximation will be used (H¼1) (taking
only one harmonic is especially convenient for keeping the number of variables as low as possible; this method however
may be applied with any number of harmonics H).

Applying the HBM with one harmonic to the undamped system results in the following polynomial system with n
variables a¼ ða1;…; anÞ for i¼ 1…n:

kþ2kcð Þ�ω2m
� �

ai�kcai�1�kcaiþ1þ3
4 knla

3
i � f i ¼ pðuÞi að Þ ¼ 0 ð42Þ

As a result, the polynomial equation system PðuÞ ¼ ðpðuÞ1 ;…; pðuÞn Þ is already in a Groebner basis form for any total degree
monomial ordering. The leading term of pðuÞi is indeed xi

3
(relative to any total degree ordering), thus implying that the

leading terms of pðuÞi and pðuÞj are relatively prime for ia j, which results in the fact that P is a Groebner basis (see [11]).
Moreover, the quotient space Q¼C½x�=〈PðuÞ〉 is of finite dimension D¼ 3n.

As a consequence of the special form of polynomial system PðuÞ, no Groebner basis computation is required, and the
normal set is given by B¼ fxα;αA ½0;2�ng [29].

Solving the eigenvalue problem for multiplication matrix Mx1 leads to complex and real eigenvalues. In our case, we are
solely interested in the real solution of Eq. (42), so only real eigenvalues have been retained. Due to the large multiplication
matrix size as n increases, the computation of all eigenvalues becomes very costly, and tools such as Arnoldi methods [30]
may be used to extract eigenvalues with the smallest imaginary part. As matrices are filled with floating point numbers,
rounding errors occur during the conversion of large rational numbers to floating point numbers, thus leading to small
errors in the eigenvalue and eigenvector computations. In order to remove these errors, solutions are refined by applying a
Newton–Raphson algorithm to the undamped system using the computed eigenvector as an initial guess. If the algorithm
converges, the solution is retained; otherwise, we assume that the eigenvector was not a solution of our problem.

In order to take into account cyclic symmetry, we have chosen to sort our solutions by family. For a fixed frequency, a
solution a is part of family Fan either if a¼ an or if a is a circular permutation of an.

Let us note that the special form of the example in the undamped case with H¼1 always leads to a total number of
solutions of D¼ 3n; therefore, the linear total degree homotopy method may also be efficient in this case since no divergent
path will need to be followed (all D¼ 3n paths lead to a solution, whether real or complex, of the undamped system) and
since the homotopy method can easily be run on a parallel computer. For generic cases however, the number of solutions
may be less than the Bezout bound, in which case the total degree homotopy would have to follow divergent paths. This
drawback is overcome by using the Groebner basis and multiplication matrices, since they are able to provide the correct
number of solutions (as the dimension of basis B) and then compute them by means of eigenvalue estimation.

4.2.2. Special case n¼8
The remainder of this paper will consider a system with n¼8 dofs, where all dofs are forced with the same amplitude.

While considering only 8 dofs may appear to be very simplistic, it will nonetheless be shown that this system can exhibit a
wide number of steady-state solutions.

4.2.2.1. Nonlinear resonance. The first computed solution is the principal nonlinear resonance curve computed by means of
the continuation method with an initial guess computed from the linear system at ω0 ¼ 0:1. This initial solution (see Fig. 10,
solution 1) corresponds to the principal resonance curve and is associated with a motion on the first linear mode shapeΦ1.

4.2.2.2. From undamped to damped. Next, solutions of the undamped forced system are computed using the method
described in Section 3.2 for a particular frequency ωm arbitrarily set to ωm ¼ 3. The resulting multiplication matrices are of
14



size 38 ¼ 6561, thus solving the eigenvalue problem; keeping only the real solutions and sorting results by family ultimately
yields a total of Nu¼692 distinct solutions for the undamped forced system at ωm ¼ 3.

These solutions are now used as the initial iterates for continuation on the damping parameter; during the continuation
procedure as damping increases, some solutions tend to disappear due to excessive damping, as explained in Section 2.3.
Here, the damping continuation leads to Nd¼124 solutions for the damped forced system (thus Nu�Nd ¼ 568 solutions have
disappeared due to increased damping). The fact that the undamped solution does not always lead to a damped solution is
illustrated in Fig. 2, where the solution curve can be observed to shrink as damping increases.

As a byproduct of this damping continuation method, we derive the maximum damping value for each solution to exist
(i.e. the maximum value of parameter ϵ that has given a solution for the forced damped system). This information can be
useful, for example, in design strategies. Another advantage of working on the undamped system is that the solutions are
unbounded; hence when searching solutions at a particular frequency ωm, the chance of finding solutions is higher than
using the damped system.
4.2.2.3. Multiple steady states of the damped system. Finally, the Nd¼124 solutions of the damped system are continued using
the arc-length continuation presented in Section 2.2. In order to avoid a useless continuation, we have sequentially verified
that the initial point of the continuation does not belong to any previously computed solution family. This has been carried
out by monitoring the distance between the initial point and all previously computed solution curves: if this distance
lies below a low threshold, then the initial point is considered to be part of a previously computed solution and thus no
continuation is applied. Since the system is cyclic, we have also tested to determine if the cyclic permutation of the initial
point does not belong to any known solution. A similar strategy has been employed to terminate the continuation of closed
curves (if the current point is near the initial point, then continuation stops).
0.8 1 1.2 1.4 1.6 1.8 2 2.2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

log E

fre
qu

en
cy

 [H
z]

solution1
solution2
solution3
solution4
solution5
solution6
solution7
solution8
solution9
solution10
solution11
solution12
solution13
solution14
solution15
solution16

Fig. 10. Representation of all computed solutions in the energy–frequency plot.
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Fig. 11. Principal resonance and its bifurcation.
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Using this sequential sorting technique leads to computing only 16 continuations, corresponding to 16 families of
solutions. In order to simplify the solution representation, we have opted to display results in an energy–frequency plot. A
global representation of all solutions discovered is presented in Fig. 10. From this plot, it can be observed that the solutions
in this example can be sorted into two categories: closed curve solutions (8), and bifurcated solutions (8). Bifurcations can
arise either from the principal resonances (see Fig. 11) or from the closed curve solution (Fig. 12). In this example, some
of the bifurcated solutions may be computed by monitoring the bifurcation as previously indicated in this paper
(e.g. bifurcations of the principal resonance and its sub-bifurcations). Closed curve solutions however cannot be computed
by this technique since they are disconnected from other solutions. The proposed method overcomes this drawback by
conducting a global analysis in which the bifurcated and closed curve solutions are treated equally.

In order to complete the energy–frequency plot, the motion shapes of all solutions at maximum energy are depicted in
Fig. 13. As can be observed, most of these shapes possess symmetry, except for solutions 5, 10, 11 and 14.
0.8 1 1.2 1.4 1.6 1.8 2
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

log E

fre
qu

en
cy

 [H
z]

closed curve solution
first bifurcation
second bifurcation

Fig. 12. A closed curve solution and its bifurcation.
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Fig. 13. Motion shape for all 16 solutions at maximum energy.
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Fig. 14. Results of the stability analysis for all solutions (○: stable points).
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Fig. 15. Comparison between HBM ð�Þ and temporal integration ð○Þ, for a stable point of solution 8 at f¼0.46539 Hz.
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Fig. 16. Comparison between HBM ð�Þ and temporal integration ð○Þ, for a stable point of solution 12 at f¼0.4441 Hz.
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Fig. 17. Representation of all solutions of the damped system in the frequency–amplitude plot (16 solution families have been plotted).
In addition, the solution stability was computed using Floquet's theory and monodromy matrices. Results are shown in
Fig. 14. Let us note that only a small number of points are stable, but almost every solution is stable near its maximum
energy.

In order to validate the HBM solutions and stability analysis, temporal integrations were performed on several stable
solution points. This integration procedure is carried out over 1000 periods and only the 5 last periods are retained.
Comparisons of temporal integrations and HBM results are displayed in Figs. 15 and 16; a very good agreement is shown
between HBM and temporal integration solutions.

Moreover, all solutions are depicted in a classical frequency–amplitude plot in order to showcase the level of complexity
of system dynamics (see Fig. 17).

5. Conclusion

This paper has proposed a method to compute multiple steady states of nonlinear dynamic equations with polynomial
nonlinearities. The harmonic balance method has been used to transform the set of nonlinear differential equations into
polynomial equations, which can then be solved by computation in the induced quotient algebra. In order to decrease
computation time, we have proposed working on the undamped system first. This procedure offers several advantages,
among which (i) a decrease in the number of variables, and (ii) placement of the polynomial system in Groebner basis form
so that no Groebner basis computations are needed. Once the undamped system has been totally solved, the solutions of
the damped system are recovered by the use of a continuation method on the damping parameter, thus leading to a full
frequency response diagram.

The proposed method has been applied to a simple example with 8 dofs. The overall procedure is motivated by the fact
that nonlinear normal modes forms backbones curves for the forced solutions. Ideally, we should start with nonlinear
normal modes, then find forced undamped solutions, and finally apply the damping continuation procedure. Here we
choose to start from the undamped forced solutions as they are structurally close to the forced and damped solutions. Using
continuity arguments, we suppose that all solutions of the forced and damped systems tend to the solution of the
undamped forced system as the damping goes to zero. Taking the argument in the reverse way, we can suppose that all
solutions of the damped forced system can be obtained from a suitable solution of the undamped forced system using
continuation procedure. Of course, if we only consider a subset of solution of the undamped forced system, the continuation
procedure on the damping parameter will only lead to a subset of solution of the damped and forced system. In this paper
we only consider monophase solution of the undamped forced system, leading to monophase solution of the damped and
forced system (solution where all dofs are “in-phase” with the excitation). However, the undamped forced system can have
other types of solution such as travelling waves, or internal resonances that cannot be obtained with the “monophase
hypothesis”. In this case, one has to compute those additional solution before applying the damping continuation procedure.
Futur work is planned to elaborate further on this point.

In this paper, the solutions of polynomial systems are computed by solving eigenvalue problems related to multiplication
matrices. The major limitation of this method is clearly the exponential growth in multiplication matrix size with the
number of variables. For a system with cubic nonlinearity, the maximum number of allowable degrees of freedom to have
relatively short computation times seems to lie around 10 (i.e. multiplication matrices of size 310 	 6� 104). In being careful
about memory management, using sparse multiplication matrices along with a parallel eigenvalue solver may increase this
limit. It is relatively certain however that a system with more than 30 dofs (i.e. matrix size 	 1014) cannot be fully solved
18



with this method within a reasonable amount of time. In addition, since the system has cyclic symmetry, a high number of
redundant solutions (up to a circular shift of their component) is obtained. We have chosen herein to handle the redundant
solution in a heuristic way by sorting the solutions by family. Nonetheless, it may be useful to consider symmetry before
solving the system in order to reduce the number of solutions. Finally, to maintain the number of variables sufficiently small,
model order reduction methods adapted to nonlinear problems should also be considered.
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