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ABSTRACT: One of the undesirable phenomena in turbomachinery is linked to the contact between rotating and
stationary parts, which is more likely to occur when clearance is minimized in order to improve aerodynamic efficiency.
These mechanical characteristics favor energy exchanges between the two structures, and this in turn may lead to
high dynamic excitations of the impeller and stator or even to unstable vibrations. Lot of numerical studies have
been conducted in order to derive a better understanding of the dynamic behavior taking place during blade-to-casing
contact. However, the influence of other physical phenomena, such as wear and heating, remain poorly understood. A
recent experimental study shows that the dynamic behavior of structures is significantly influenced by both wear and
thermal expansion. The focus of this paper therefore is show some effects associated with friction and wear.
The numerical study reported in this paper is based on a simplified finite element model of a rotating bladed disk and
a flexible casing. The contact algorithm uses an explicit time marching scheme with the Lagrange multipliers method.
Friction and wear are formulated respectively by Coulomb’s and Archard’s Laws.

KEYWORDS: modal interaction, spectral analysis, blade-casing contact, blade vibration, wear.

1 INTRODUCTION

Lot of work has been devoted to highlighting the physical
phenomena associated with contact and prioritizing their
respective influence on possible unstable behavior exhibited
in some specific cases by rotating machines. However, the
influence of certain phenomena such as wear still require
further study. The bibliographical study conducted in [1]
has allowed identifying the predominant phenomena during
rotor-stator / blade-casing contact. The system’s dynamic
behavior is determined to be of a nonlinear type, with these
non-linearities being introduced by means of phenomena
like friction, wear and heating.
Torkhani [2] has highlighted chaotic system behavior in

the presence of friction, which becomes “increasingly com-
plex” upon reaching certain coefficient of friction values.
The experimental and numerical studies examined in [3,4]
reveal the significant influence of wear and heating phe-
nomena on the dynamic behavior during contact. As a
general rule, these two phenomena are handled separately
in the simulations. Nonetheless, we have been able to ob-
serve the importance of coupling dynamics, thermal expan-
sion and wear, to yield a better understanding of the cor-
responding interaction phenomena. The modeling of wear
has been addressed in the literature according to various
approaches. Strömberg [5] and Salles [6] modeled wear
using Archard’s Law, while Williams [7] and Batailly [4]
proposed a plastic behavior law for the abradable coating.
Within the scope of this paper, we will be using an Ar-
chard Law formulation [8] given its effective representation
of the wearing problem, while remaining rather simple to
integrate into the simulations.
During contact, the processes of friction and wear influ-

ence the dynamic behavior of structures, thus making it
necessary to establish the mathematical formulation of an
elastodynamic contact problem with friction and wear, for
subsequent application to a case of rotor-stator / blade-

∗Address all correspondence to this author.

casing contact. Figure 1 illustrates the entire array of phe-
nomena to be taken into account in this work when setting
up the equation.
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Figure 1. Physical phenomena encountered during
blade-casing contact

2 DYNAMICAL MODEL

In this paper, we have implemented a finite element model
of a bladed wheel placed in contact with a flexible cas-
ing [9]. This bladed wheel model contains four blades mod-
eled by two Euler-Bernoulli beams per blade with six de-
grees of freedom per node (three displacements and three
rotations). The disc is also modeled by Euler-Bernoulli
beams that couple the blade to one another, with two de-
grees of freedom per node: radial displacement and rota-
tion along the axis of rotation. The link with the rotor axis
will be set by means of radial tension-compression springs.
Moreover, stiffeners have been introduced to connect the
blades so as to control tune the modal organization of the
bladed wheel.
The casing is modeled by a continuous elastic ring [10]

containing two degrees of freedom at every point, i.e. radial
displacement us (θ, t) and tangential displacement ws (θ, t).
The points will be identified by θ, which corresponds to the
angular position with respect to the stationary reference.
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Ring displacements will be expressed through use of Ritz
functions, in accordance with the procedure described by
Love [11]:

ws (θ, t) =

ktot∑
nd=1

And
(t) cos (nd θ) + Bnd

(t) sin (nd θ) (1)

where ktot is the number of nodal diameters (or modes)
taken into consideration. The ring is assumed to be inex-
tensible, which implies that radial displacement is corre-
lated with tangential displacement [12]:

us (θ, t) =
δws (θ, t)

δθ
(2)

The ring thus features 2 ktot degrees of freedom.
The mass and stiffness matrices of the ring are derived

by applying the Lagrange equations. For the bladed wheel,
the mass and stiffness matrices will be obtained through a
conventional finite element formulation. In this manner,
resolving the contact problem, with the inclusion of both
the friction and wear phenomena, consists of solving the
set of bladed wheel - casing system motion equations:

Mü + Du̇ + Ku + Fc = Fext (3)

where u is the displacement field, M the mass matrix, K
the stiffness matrix, D the structural damping matrix, Fext

the external force vector and Fc the contact force vector
will be obtained through the Lagrange multipliers method.

3 TIME STEP INTEGRATION OF THE CONTACT
PROBLEM

An explicit time step finite difference method is used to
solve the equations above (9). The stability of an explicit
scheme is provided for a time increment Δt less than the
critical time increment Δtstab. Following a convergence
study, the time increment was set at a value close to a
small fraction of the smallest characteristic period of the
structures.
The (nonlinear) contact problem is solved by a succes-

sion of prediction steps, yet without taking into account
the contact forces, followed by corrections in cases where
contact has been detected. These steps can be detailed as
follows [12, 13].

3.1 Prediction step

The displacements un+1 are predicted 1, yet without taking
into account contact forces and based on known values at
previous times n and n − 1:

un+1,p =

[
M

Δt2
+

D

2Δt

]
−1 (

Fextn +

(
2

M

Δt2
− K

)
un

+

(
2

M

Δt2
− K

)
un +

(
D

2Δt
−

M

Δt2

)
un−1

)
(4)

The initial distance between the two structures g must
be updated using the predicted values, in order to ver-
ify Signorini’s conditions relative to the unilateral contact.

1The index p will be used to declare the prediction step.

Wear is taken into account by applying a law similar to Ar-
chard’s Law [8] and then following the method described
by Salles [14]. To proceed, let’s introduce the distance
function g

(
uM

N , wM
)
, which is dependent on normal dis-

placement variables as well as wearing depth.

g
(
uM

N , wM
)

= uM
N − wM − gM (5)

where uM
N , wM and gM are respectively the normal dis-

placement, wearing depth and initial gap calculated on a
set of contact points xM .
The contact takes place if g

(
uM

N , wM
)
fails to satisfy the

non-penetration condition predicted during step n + 1:

g
(
uM

N , wM
)

n+1,p
≤ 0 (6)

The normal displacement vector in step n + 1 is deduced
from Equation (4). On the other hand, the wearing depth
vector will be calculated after the correction step (see Eq.
(14)) since the normal contact force needs to be known first;
this force will be determined during the next step. The
wearing depth vector value will thus be introduced during
step n in order to verify the non-penetration conditions (7).

uM
Nn+1,p − wM

n − gM ≤ 0 (7)

3.2 Correction step

If according to the predicted values the rotor penetrates
into the stator, the degrees of freedom would need to be
corrected to ensure verification of the non-penetration con-
dition (8) as well as the force equilibrium condition (9):

g
(
uM

N , wM
)

n+1
= g

(
uM

N , wM
)

n+1,p
+ tCNn+1,p · δuM

n+1

(8)

(
M

Δt2
+

D

2Δt

) (
un+1 + δuM

n+1

)
= Fextn + Fcn+1

+

(
2

M

Δt2
− K

)
un +

(
D

2Δt
−

M

Δt2

)
un−1 (9)

where δuM
n+1 are the corrections to consider for the pur-

pose of validating both conditions, and CN is the linearized
vector yielding the normal force direction along with the
displacement corrections direction. Fcn+1 is the vector of
forces due to the contact and may be expressed according
to the Lagrange multipliers method by:

Fc = FcN + FcT = − [CN + CT] λN = −CNTλN (10)

where CT is the linearized vector yielding the friction force
direction and λN is the Lagrange multiplier. CT was de-
rived by using Coulomb’s Law during its sliding phase (per-
manent sliding), thus meaning that it depends on the co-
efficient of friction μ.
The compatibility conditions of displacements and equi-

librium forces that need to be verified by the corrected
degrees of freedom are written, in the case of several con-
tacts (i.e. a contact occurs at the different points belonging
to the subset xM ), just like equations (8) and (9), but in
vector form:

gn+1 ≈ gn+1,p + tCNn+1,p · δuM
n+1 = 0 (11)
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(
M

Δt2
+

D

2Δt

)
δuM

n+1 = −CNTn+1,pλNn+1 (12)

The system of equations resulting in λNn+1 and δuM
n+1 still

needs to be solved.⎧⎪⎨
⎪⎩

λNn+1 =

[
CN

T
n+1,p

(
M

Δt2
+

D

2Δt

)−1

CNTn+1,p

]
−1

gn+1,p

δu
M
n+1 = −

(
M

Δt2
+

D

2Δt

)−1

CNTn+1,pλNn+1

(13)
At each time interval, the expressions for gn+1,p, CNn+1,p

and CNTn+1,p must be calculated on the basis of predicted
values and with the accuracy required to ensure conver-
gence.
Once the contact force calculation has been executed,

we are in a position to calculate the wearing depth vector
obtained by:

wM
n+1 =

Δt

2

(
kw|PNn+1|

∥∥u̇M
T n+1

∥∥ + ẇM
n

)
+ wM

n (14)

where kw is the coefficient of wear intensity appearing in
Archard’s Law and PN the normal contact pressure.

4 SIMULATION RESULTS

The objective of this work program is to test the influence
of both friction and wear on the dynamic behavior in a
situation of blade-casing contact. To achieve this objective,
the values of the coefficient of friction and Archard Law’s
coefficient of wear intensity will be varied.
Contact is initiated by exciting a mode with one diame-

ter on the stator with a stationary wave whose amplitude is
sufficient to cover the clearance between the two structures.
The simulations presented were run at the constant rota-
tional speed corresponding to case A in Figure 2, where a
modal interaction is expected between the backward mode
of the casing and the counter-rotation mode of the bladed
wheel with one diameter [1].
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Figure 2. Campbell diagram in stationary frame

The frequency content of simulations will be analyzed
with two spectral analysis tools. The Short-Time Fourier

Transform - or STFT - will then serve to visualize spec-
trum changes vs. time [15]. The two-dimensional Discrete
Fourier Transform - 2D DFT - will determine the spatial
decomposition into nodal diameters for each spectrum fre-
quency. An analysis of the complete spatial spectrum re-
veals the modal decomposition in forward (FW) participa-
tion and backward (BW) participation for a given diam-
eter [16]. The frequency analysis will be carried out over
the range of initial bending modes [0 − 4000Hz].

4.1 Reference simulation

Different simulated cases will be compared to a reference
configuration, whose values are: μ = 0.1 and kw = 0. The
time-frequency analysis (see Fig. 3) was conducted in us-
ing both the tangential displacement of the blade tip and
the radial displacement of the casing. On these same fig-
ures, indications are provided of the eigenfrequencies of the
respective free structures, the rotational speed harmonics
present within the spectrum and the excitation frequency
with associated main rays coming from modulations by the
rotational speed. Figure 3a shows the stator response to
the external excitation introduced to initiate contact. As
it may be observed, the excitation frequency Fexct does in-
deed excite the mode at one diameter from the structure
ω1

s , since Fexct = ω1
s . It can be checked that the response

has actually one nodal diameter in Figure 4. Note that
the frequency Fexct of the main component in the stator
response known to be a one nodal diameter would be seen
at Fexct + 1 Ω where a dominant component actually takes
place. This could be interpreted as the system transmit-
ting vibration frequencies from one structure to the other
by means of contact forces.
Moreover, the presence of the fourth harmonic of rotational
speed (4 Ω) can be seen as well as the excitation frequency
modulation by four times the rotational speed Fexct + 4 Ω.
Frequency components appearing within the signal spec-
trum will be called side-bands [17] in the remainder of this
paper. This will related to an amplitude modulation at
frequency Ω of the excitation frequency Fexct.
The bladed wheel spectrum (Fig. 3b) is characterized by

a component closed to the rotor ω1
r (a rotor mode with one

diameter), which coincides with the mode with one diam-
eter from the stator, as observed in the rotating reference
frame ω1

r = ω1
s + 1 Ω = Fexct + 1 Ω. The second har-

monic (2 Ω), fourth harmonic (4 Ω), sixth harmonic (6 Ω)
and twelfth harmonic (12 Ω) of rotational speed are also
found, along with the odd side-bands from Fexct ± 1 Ω to
Fexct ± 3 Ω. The second harmonic of excitation frequen-
cies 2 Fexct is also present, as are its even side-bands at
2 Fexct ± 2 Ω, 2 Fexct − 4 Ω and 2 Fexct − 6 Ω.

It can be demonstrated that these side-bands are non-
linear combinations of the excitation frequency and the ro-
tational speed harmonics (see §5). The frequencies of these
side-bands track the relation:

fk
SB = Fexct + k Ω for k ∈ Z (15)

where fk
SB is the side-band frequency of order k and Fexct

is the excitation frequency of the casing.
The two-dimensional Discrete Fourier Transform or

frequency-nodal diameter diagram shown in Figure 4 indi-
cates that a stationary wave with one diameter at Fexct =
1417Hz is indeed present, while the bladed wheel response
is dominated by a backward wave at one diameter to
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Figure 3. STFT of the first family modes of both structures, with μ = 0.1

Fexct + 1 Ω = ω1
r in accordance to case A in the Camp-

bell diagram (Fig. 2).
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Figure 4. 2D DFT diagram of the first-family modes of both
structures with μ = 0.1

4.2 Influence of friction

Firstly, attention will be solely paid to the influence of
the coefficient of friction (calculations without wear) based
on the following values: μ = 0; 0.05; 0.1; 0.15; 0.2. Figure
5 shows the time response of the tangential displacement
of a particular blade tip. Two distinct types of behavior
can be observed depending on the chosen value of μ. For

μ = 0; 0.05; 0.1, the blade bends and vibrates around its
static equilibrium position with intermittent contact. For
μ = 0.15; 0.2, after a short transient response, the blades
exhibit a quasi-static behavior. The vibration response of
the bladed wheel thus depends on the coefficient of fric-
tion and displays a maximum at an intermediate μ value.
For higher μ values, the blades are in permanent contact
with the stator and exhibit a static deformation with a
zero diameter spatial shape. On the stator side, the fre-
quency response is dominated by a 4 Ω component with a
four-diameter deformed shape that propagates in the for-
ward direction at propagation speed Ω. This could be in-
terpreted has a rotating deformed shaped imposed to the
flexible stator by the four blades. This indeed results in a
vibration at 4 Ω frequency.

Figure 5. Influence of friction

The spectrograms shown in Figure 6 for μ = 0 and
μ = 0.05 will be compared to the spectrogram of Figure
3b. Aside from the amplitude difference, as highlighted by
examining the temporal responses (Fig. 5), it can be ob-
served that for a zero coefficient of friction (see Fig. 6a),
the second harmonic of the excitation frequency and its
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side-bands are absent from the spectrum, as are the sec-
ond (2 Ω) and fourth (2 Ω) rotating frequency harmonics.
On the other hand, with a coefficient of friction equal to
μ = 0.05, all of the frequency components present in the
reference simulation are available, yet at lower levels.

4.3 Influence of wear

Starting with the reference configuration at μ = 0.1,
the value of Archard Law’s coefficient of wear intensity
will be varied. The following values will be used herein:
k∗

w = 0.1; 1; 10. In order to facilitate the interpretation,
these values were normalized. The introduction of wear re-
sults in an attenuation of the vibrations given that abrad-
able material is removed by the wear process; hence, the
clearance between the casing and blade tips increases. The
wear maps shown in Figure 7 indicate that contact occurs
in two diametrically opposite places. This map corresponds
to a two-lobe wear profile. A comparison of these maps re-
veals that for higher values of Archard Law’s coefficient,
the wear lobes will be generated more quickly.
In Figure 8, the temporal response of the tangential dis-

placement of a blade has been plotted for the three tested
coefficients. It can be noticed that as the wearing coeffi-
cient rises, the response decay is faster.

0 1 2 3 4 5 6 7 8 9
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x 10
−4

A
M

P
LI

T
U

D
E

 [m
]

TIME [s]

TANGENTIAL DISPLACEMENT

k
w
* =0.1

k
w
* =1

k
w
* =10

Figure 8. Influence of wear

As opposed to the influence of the coefficient of friction,
the variation in Archard’s coefficient of wear intensity ex-
erts no influence on the spectrum content. In other words,
all simulations run with wear expose the same side-bands

and rotational speed harmonics with respect to the refer-
ence simulation. Nonetheless, as the coefficient of wear in-
creases, its terms will gradually drop their level over time.
As such, it is observed that all side-bands and rotational
speed harmonics disappeared after two seconds for the sim-
ulation at k∗

w = 10, although they remain present after ten
seconds with the simulation at k∗

w = 0.1.

5 RESULTS INTERPRETATION

During simulation runs, we mainly encountered rotational
speed harmonics and side-bands. In the spectrograms un-
der analysis, side-bands are actually observed at a distance
of multiple Ω relative to an excited frequency. The presence
of the rotational speed harmonics is obviously expected as
part of a rotating system. In contrast, such is not the case

for the side-bands ; consequently, this section of the paper
is intended to offer a qualitative explanation of the spectral
content found numerically.
To pursue this objective, let’s begin by assigning a defi-

nition of side-bands, before introducing an analytical model
that will lead to discovering the various terms encountered
in the simulations. Let’s also note that the qualitative com-
parison with the numerical part will take place between the
calculated force and the measured displacements.
In the simplified approach below, structural displace-

ments are forced and the focus lies on the resultant contact
force spectrum.

5.1 Side-bands definition

Side-bands appearing within a signal spectrum are the out-
come of an amplitude modulation of a so-called carrier fre-
quency by a so-called modulating frequency. The spectrum
will then be characterized by two side bands offset by the
modulating frequency and centered around the carrier fre-
quency.
If we consider ω0 as the carrier frequency and Ω as the

modulating frequency, the modulated signal will thus be
given in the temporal domain by the expression (16) :

s(t) = cos (ω0 t) cos (Ω t) (16)

The shape of the signal resulting from a current multiplica-
tion of beats within the temporal domain. In the spectral
domain, this signal will be:

S (ω) = δω0−Ω + δω0+Ω (17)

The spectrum therefore contains two bands ω0 − Ω and
ω0 + Ω, which have been called side-bands herein.

5.2 Problem set-up

Note that the definition above can explain a limited num-
ber of observed side-bands. To better understand the origin
of side-bands encountered during simulations, we will be
introducing an analytical model of the contact force law
between a blade on the bladed wheel and its casing (see
Fig. 10), which will be tested by entering into a reference
displacement.
The displacements of both structures will be modeled

by harmonic functions, while the contact force will obey
to a law that contains a linear part and a nonlinear part.
For purposes of this paper, let’s take a closer look at the
frequency content of the contact force with a second order
polynomial non-linear function.

ur

f
NL

Ω

b
la
d
e

casing us

Figure 10. Simplified model of a blade in contact with the
casing
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Figure 7. Time history of wear patterns
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The (purely radial) displacement of a blade will be de-
fined within the rotating reference frame by:

ur (t, θR) = Ur · cos (ωr t) · cos (nr
d θR) (18)

with Ur being the blade displacement amplitude, ωr the
eigenfrequency of the bladed wheel, nr

d the number of diam-
eters in the bladed wheel wave and θR the angular position
of the blade within the rotating reference frame. Accord-
ing to Equation (18), the field ur is a stationary wave. In
a more general case, ur will be of the following form:

ur (t, θR) = U bw
r ·cos (ωr t + nr

d θR)+Ufw
r ·cos (ωr t − nr

d θR)
(19)

where U bw
r and Ufw

r are respectively the counter-rotating
and co-rotating component amplitudes of the displacement
wave for a blade on the bladed wheel. Although, the form
given in Equation (18) is sufficient for the demonstration.
Let’s note that the expressions in (18) and (19) are equiv-

alent with respect to the reference θR whenever Ufw
r =

U bw
r = Ur/2.
The casing displacement will also be defined by a sta-

tionary wave within the stationary reference frame:

us (t, θS) = Us · cos (ωs t) · cos (ns
d θS) (20)

with Us the casing displacement amplitude, ωs the eigen-
frequency of the casing, ns

d the number of diameters of the
casing wave and θS the angular position of the blade rela-
tive to the stationary reference frame.
The displacements of both structures will be expressed

in the rotating reference frame prior to being injected into
the force function. To proceed, we will use Equation (21)
to transition from the stationary reference frame to the
rotating one:

θS = θR + Ω t (21)

Within the rotating frame, the casing displacement then
becomes:

us (t, θR) = Us · cos (ωs t) · cos (ns
d θR + ns

d Ω t) (22)

Let’s note that in decomposing the second term into cos,
only the stationary stator wave is actually exposed. Given
the rotating reference frame, this decomposition step gives
rise to two waves traveling in opposite directions.
The contact force between the two structures will be de-

fined by Equation (23), which comprises a linear part and
a second-order nonlinear part. We have actually selected a
regular non-linearity that is both even and simple to pro-
cess analytically to ensure being representative of the con-
tact law in some point.

f (t, θR) = α1 (ur − us) + α2 (ur − us)2 (23)

where α1 and α2 are contact stiffness coefficients.
By inserting (18) and (22) into (23) and in adopting the

special case in which α1 = α2 = α out of simplification, the
contact force expression will assume the following form:

f (t, θR) = α

[
U2

r

4
+

U2
s

4

+
Ur

2
cos (ωr t ± n

r
d θR)

−
Us

2
cos (ωs t ± (ns

d θR + n
s
d Ω t))

+
U2

r

4
(cos (2 ωr t) + cos (2 n

r
d θR))

+
U2

s

4
(cos (2 ωs t) + cos (2 (nr

d θR + n
s
d Ω t)))

+
U2

r

8
cos (2 ωr t ± 2 n

r
d θR)

+
U2

s

8
cos (2 ωs t ± 2 (ns

d θR + n
s
d Ω t))

−
Ur Us

4
cos (ωr t ± n

r
d θr ± ωs t ± (ns

d θR + n
s
d Ω t))

]
(24)

The previous equation and subsequent expressions
make use of a contracted notation for the multiplica-
tion of two cosines; instead of writing cos(a) · cos(b) =
1

2
[cos(a + b) + cos(a − b)], we will write cos(a) · cos(b) =

1

2
cos(a ± b). This notation may also be generalized. The

final row of (24) contains eight terms according to this no-
tation.
The expression in (24) displays in order: nonlinear static

terms (ω = 0), the linear terms, and some other nonlinear
terms. The frequencies and corresponding nodal diameters
presents in the system are listed in Tables 1 and 2. Table
1 provides the nodal diameters and frequencies obtained
when only considering a linear contact, whereas Table 2
shows the nodal diameters and frequencies obtained when
solely accounting for a second-degree nonlinear force. The
spectral content of the contact force will be composed of
frequencies stemming from both the linear and nonlinear
contact forces. Terms appearing in the analytical force
expression are in good accordance with the spectrum of the
numerically simulated response. In particular, one could
notice the presence of several even terms associated to the
contact nonlinearity.

Linear force law fL = α (ur − us)
Frequencies [rad/s] ωr ωs ± ns

d Ω
Nodal diameters nr

d ns
d

Table 1. Frequencies and nodal diameters obtained with a
linear contact force interaction in the rotating frame

The purely linear case enables identifying the angular
eigenfrequencies of both structures expressed in the rotat-
ing reference frame. From a spatial perspective, the force
field is a superposition of the two fields with ns

d and nr
d

nodal diameters (second and third rows in (24)).
The purely nonlinear case exbibits the presence of static

terms (i.e. zero frequency), the second harmonic of the an-
gular eigenfrequencies of structures expressed or not in the
rotating frame (2 ωr, 2 ωs, 2 (ωs ± ns

d Ω)), the 2 ns
d rotating

speed harmonic and lastly the combination of eigenfrequen-
cies of structures within the rotating frame (this term was
not numerically observed). The presence of the second har-
monic is correlated with the chosen non-linearity, which in
this case is of the second order.
From this analysis, it seems that the presence of the

rotational speed harmonics and side-bands will be guided
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2nd-order nonlinear force fNL = α (ur − us)
2

Frequencies [rad/s] 0 2 ωr 2 ωs 2 ns
d Ω 2 (ωs ± ns

d Ω) ωr ± ωs ± ns
d Ω

Nodal diameters 0 2 nr
d 2 nr

d 2 ns
d ±nr

d ± ns
d

Table 2. Frequencies and nodal diameters obtained with a 2nd-order nonlinear contact force interaction with an harmonic input

by the contact law, and more specifically by the degree of
non-linearity. Consequently, we are able to improve the
contact law approximation for any order N by applying
Equation (25):

fN =

N∑
n=0

αn (ur − us)
n

=

N∑
n=0

αn

[
n∑

p=0

Cp
n up

r (−us)
n−p

]

(25)
where fN is the contact force formulated with a degree of
non-linearity extending all the way to order N .
We can see that a mean to increasing the number of side-

bands and rotational speed harmonics would be to raise the
value of N in Equation (25).
The same would apply in the frequency domain, as spa-

tially the number of harmonics will depend on the selected
degree of non-linearity.
One could easily understand that if the polynomial de-

gree approximating the contact law were to be raised, then
the contact force spectrum would become richer. The Fig-
ure 11 shows the spectrum of a contact law that follows
exactly Signorini’s unilateral law with a single harmonic
input. It is observed that only the fundamental (input fre-
quency) and even harmonics are noteworthy and therefore
characterize this contact law. In the case of the rotating
blade with Signorini law the spectrum will therefore con-
tains for instance every terms in the form 2 p ns

d Ω with
p = 0, 1, 2, ... (see Table 2).

OUT

ω

2ω

4ω 6ω

IN

−U +U

U sin(ω t)

Figure 11. Output amplitude spectrum of the Signorini’s
unilateral contact law with an harmonic input

6 CONCLUSION

A numerical model allowing for the incorporation of blade-
casing friction and wear contact has been built herein.
The integration method has used the Lagrange multipli-
ers method along with an explicit time marching scheme.
A sensitivity study with respect to both Coulomb Law and
Archard Law parameters has been conducted in conjunc-
tion with a campaign of numerical simulations. A one di-

mensional spectral analysis on the time and a two dimen-
sional analysis in space domain has been used to charac-
terize the frequency content and type of waves.
Depending on the coefficient of friction value, we have

observed two distinct types of behavior from the perspec-
tive of the bladed wheel, one dynamic the other quasi-
static. In the case with dynamic behavior, two wearing
lobes were obtained on the stator per each revolution.
These findings were derived with synchronous vibrations
at one diameter on both stator and rotor. Put otherwise,
all blades touch twice per revolution and always in the same
stator zone. The introduction of wear into the system has
made it possible to attenuate vibration amplitudes.
The spectral analysis has demonstrated the presence of

many side-bands and harmonics as a function of the level of
vibration; as shown with a simple analytical model, these
features can be explained by the contact non-linearity be-
tween rotor and stator.
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