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In this paper we develop a fully numerical approach to compute quasi-periodic vibrations

bifurcating from nonlinear periodic states in cyclic and symmetric structures. The focus is on

localised oscillations arising from modulationally unstable travelling waves induced by strong

external excitations. The computational strategy is based on the periodic and quasi-periodic

harmonic balance methods together with an arc-length continuation scheme. Due to the pres-

ence of multiple localised states, a new method to switch from periodic to quasi-periodic

states is proposed. The algorithm is applied to two different minimal models for bladed disks

vibrating in large amplitudes regimes. In the first case, each sector of the bladed disk is mod-

elled by a single degree of freedom, while in the second application a second degree of free-

dom is included to account for the disk inertia. In both cases the algorithm has identified and

tracked multiple quasi-periodic localised states travelling around the structure in the form of

dissipative solitons.

1. Introduction

The emergence of localised vibrations in cyclic and symmetric structures is an important phenomenon due to potential

problems induced by high cycle fatigue. Mechanical components with cyclic symmetry are very common in the aerospace

industry, where e.g. bladed disks of aircraft engines [1], space antennas [2] and reflectors [3] are usually composed of ideally

identical substructures assembled in a cyclic and symmetric configuration. In the linear framework localised vibrations arise due

to the lack of symmetry induced e.g. by manufacturing variability or wear. This topic is well-known in the aerospace industry as

a mistuning problem, and studies have mainly focused on effective modelling techniques [4,5], experimental characterisation

together with model identification [6,7], and even the use of intentional mistuning to reduce the level of vibrations in real

applications [8,9].

In real applications, structures may deviate from the linear behaviour e.g. due to frictional interfaces, large displacements,

or fluid-structure interaction [1,10–13]. In the presence of nonlinearities the emergence of localised vibrations might go much

beyond mistuning. It is well-known, for example, that even perfect cyclic and symmetric structures can localise vibrations in

the nonlinear regime due to the dependence of mode shapes on amplitude, and also due to bifurcations [14–20]. Moreover, the

effect of inhomogeneities when a system vibrates in the nonlinear regime is a challenging research field, and the role played by
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nonlinearity in an inhomogeneous mechanical system experiencing energy localisation is an active topic [21,22].

This paper introduces a fully numerical approach to compute quasi-periodic states bifurcating from periodic vibrations due

to nonlinearities. The focus is on localised states resulting from the emergence of modulation instability for travelling wave

excitations in cyclic and symmetric structures. This investigation has been motivated by recent findings in Refs. [23,24], in which

the authors show that localised states in the form of solitons bifurcate from travelling wave responses. The previous findings

have been computed using an asymptotic method applied to a very idealised minimal model, and more flexible methods are

required for the case of more complex and more realistic applications. The fully numerical approach proposed in this paper

relies on harmonic balance methods (HBMs) for the computation of periodic and quasi-periodic vibrations. Moreover, due to

the presence of several coexistent localised states, a method to switch from periodic to quasi-periodic branches near bifurcation

points is introduced. The numerical approach is applied to two different minimal models: (1) a bladed disk with one degree

of freedom per sector; and (2) a bladed disk with two degrees of freedom per sector. The computed results show that, in both

cases, strong localised states are possible due to nonlinear envelope dynamics.

The paper is organized as follows. In Sec. 2 the fundamentals of the HBM is introduced, including a new technique to switch

from periodic to quasi-periodic branches. Section 3 focuses on the investigation of two minimal models, and quasi-periodic

localised solutions are computed using the approach described in Sec. 2. Finally, Sec. 4 describes the main conclusions and

suggests directions for future investigations.

2. The harmonic balance method

We investigate nonlinear dynamical systems mathematically described by

Mẍ(t) + Cẋ(t) + Kx(t) + fnl(x(t)) = fext(t), (1)

where M, C, and K are the n × n mass, damping, and stiffness matrices, respectively, while ẍ(t), ẋ(t), and x(t) represent the

corresponding acceleration, velocity, and displacement vectors. In Eq. (1), fext(t) is the vector of external excitations, while the

vector fnl(x) models the displacement dependent nonlinear forces.

We assume that the system in Eq. (1) is vibrating under periodic or quasi-periodic1 regimes. Therefore, x(t) is expanded in a

two-frequencies quasi-periodic Fourier series as

x(t) = a0,0 +
h1∑

k1=−h1

h2∑
k2=−h2

ak1,k2
cos

(
k1𝜔1t + k2𝜔2t

)
+ bk1 ,k2

sin
(

k1𝜔1t + k2𝜔2t
)
. (2)

In Eq (2), h1 and h2 are the numbers of retained harmonics for the frequencies 𝜔1 and 𝜔2, respectively, a0,0 is the vector of static

displacements, while ak1,k2
and bk1,k2

are the vectors representing the Fourier coefficients. It is important to note that when h1

or h2 is null the quasi-periodic expansion in Eq. (2) recovers the standard periodic HBM (see e.g. Refs. [10,25,26]). Moreover, the

quasi-periodic expansion is only valid when the two frequencies 𝜔1 and 𝜔2 are incommensurable, otherwise 𝜔2 can be written

as a harmonic of 𝜔1 and, consequently, x(t) is in the periodic regime (see e.g. Ref. [27]).

In the following we introduce a hyper-time domain with two independent variables 𝜏1 = 𝜔1t and 𝜏2 = 𝜔2t. The scalar

product between two quasi-periodic functions f1(𝜏1, 𝜏2) and f2(𝜏1, 𝜏2) in hyper-time domain is defined as

< f1(𝜏1, 𝜏2), f2(𝜏1, 𝜏2) >= ∫
2𝜋

0 ∫
2𝜋

0

f1(𝜏1, 𝜏2)f2(𝜏1, 𝜏2)d𝜏1d𝜏2. (3)

The aim of the HBM is to transform the set of nonlinear differential equations in Eq. (1) into a system of nonlinear algebraic

equations. This system is obtained after substituting Eq. (2) into Eq. (1), and finally projecting the resulting equation onto the

trigonometric basis using Eq. (3). This process leads to

L(𝜔1, 𝜔2)z + gnl(z) − gext = 0, (4)

where L(𝜔1, 𝜔2) is the matrix representing the linear dynamics, z is the vector of unknown Fourier coefficients in Eq. (2), and 0

is the null vector. The matrix L(𝜔1, 𝜔2) is algebraically represented as [27–29]

L(𝜔1, 𝜔2) =

⎡⎢⎢⎢⎢⎢⎣

L0,0 0 … 0

0 L−h1,−h2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Lh1 ,h2

⎤⎥⎥⎥⎥⎥⎦
, (5)

where the inner matrices L0,0 and Lk1 ,k2 are

L0,0 = K, Lk1,k2 =

[
K − (k1𝜔1 + k2𝜔2)2M (k1𝜔1 + k2𝜔2)C
−(k1𝜔1 + k2𝜔2)C K − (k1𝜔1 + k2𝜔2)2M

]
. (6)

1 The quasi-periodic regime considered in this paper is composed of two incommensurable frequencies.
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In Eq. (4), gnl(z) and gext are the vectors projecting fnl(x(t)) and fext(t) into the frequency domain, respectively. Usually, gnl(z)
is not directly computed since displacement dependent nonlinear forces are, most of the times, defined in the time domain.

Therefore, an alternating frequency-time (AFT) domain technique based on the hyper-time concept [27,28,30], as depicted in

Fig. 1, is implemented. In order to illustrate this approach, suppose that the set of coefficients a00, ak1,k2
and bk1,k2

in Eq. (2)

are given. Therefore, the displacement field x(𝜏1, 𝜏2) and the corresponding nonlinear forces fnl(x(𝜏1, 𝜏2)) define surfaces in

hyper-time domain. Finally, one can compute the Fourier coefficients of the nonlinear forces gnl(z) using the scalar product in

Eq. (3). However, in practice, gnl(z) is obtained directly using a two-dimensional fast Fourier transform (2D-FFT). Similarly, the

transformation from frequency to time domain can be implemented by means of an inverse 2D-FFT.

2.1. Harmonic selection

The number of harmonics defined by k1 and k2 in Eq. (2) can be drastically reduced. Without any additional information

regarding the nonlinear forces fnl(x), the vector of unknowns z can be reduced to roughly half of its original dimension due to the

symmetry properties (odd/even) of the harmonic functions. In the literature, several different techniques have been suggested

to decrease even more the dimension of z and, consequently, the computational efforts [27,31]. In this paper we are interested

in localised vibrations induced by strong travelling wave responses. It is well-known in the literature that localised solutions

bifurcate from travelling wave states due to modulation instability [32–35]. In this case, any general physical coordinate xn(t)
can be written as

xn(t) = 𝜓(𝜔2t)fcw(𝜔1t), (7)

where 𝜓(𝜔2t) is the modulating (or envelope) function dependent on 𝜔2 only, and fcw(𝜔1t) is the carrier wave. One should

note that in the case of a carrier wave with no static component the spectrum of xn(t), i.e. its frequency contain, cannot depend

on 𝜔2 only. Therefore, the harmonics referred to k1 =1 can be removed from the solution basis. Fig. 2 displays two examples

of retained harmonics using the full basis and the reduced one. In Panel (a), for h1 = h2 =4, the number of retained harmonics

reduces from 41, using the full harmonic expansion, to 36, using the modulation instability property. The reduction is more

efficient when h2 ≫ h1, as in Panel (b). In this case, for h2 =7 and h1 =1, the number of retained harmonics reduces from 23,

using the full harmonic basis, to 15, when solutions localise due to modulation instability.

2.2. Stability of periodic solutions

Stability of periodic solutions is addressed using Floquet theory. Thus, a small perturbation h(t) is added to an already known

periodic solution xp(t), and linear stability of xp(t) is computed based on the evolution of h(t). In this case, three different

configurations are possible: (1) if h(t) increases in time xp(t) is unstable; (2) if h(t) decreases over time then xp(t) is stable;

and (3) if h(t) is constant then the system is marginally stable and a nonlinear stability analysis is required. It is possible to

demonstrate (see e.g. Ref. [36]) that the linear stability of xp(t) can be computed from the so-called monodromy matrix 𝚽. The

most straightforward way to compute 𝚽 consists in time integrating the linearised system with periodic coefficients

ẏ(t) = By(t), (8)

where y(t) = {x(t) ẋ(t)}T , and

B =
⎡⎢⎢⎣

0 I

M−1(K + 𝜕 fnl

𝜕x
∣x=xp

) M−1C

⎤⎥⎥⎦ . (9)

This integration is carried out over one period T using 2n linearly independent initial conditions. For simplicity, the ith initial

condition is usually assumed as yi(0) = {0, 0, 0,… , 1,… , 0, 0, 0}T , where all terms of yi(0) are null except the ith one which has

the unity value. The final configuration of each ith solution, yi(T), is grouped in a matrix 𝚽 as

𝚽 =
[
y1(T),… , yi(T),… , y2n(T)

]
. (10)

The three possible scenarios about the stability of xp are given by the eigenvalues 𝜌i of 𝚽: (1) if max(|𝜌i|) < 1, the system is

linearly stable; if max(|𝜌i|) > 1, the system is linearly unstable; and in the special case (3) when max(|𝜌i|) = 1, the system is

marginally stable. In this paper, we are interested in unstable Floquet multipliers 𝜌i with imaginary parts different than zero

(Im(𝜌i)≠0). In this case, the system experiences a Neimark-Sacker (NS) bifurcation, and a branch of quasi-periodic solutions

detaches from periodic states.

2.3. Numerical continuation

In the case of quasi-periodic oscillations arising due to NS bifurcations the second frequency 𝜔2 has to be treated as an

unknown. This unknown can be added to the algebraic system by means of a phase condition. Physically, this phase condition

pins down the envelope function by removing the intrinsic rotating symmetry of the problem. Mathematically, this constraint
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Fig. 1. Hyper-time approach to compute the Fourier coefficients for the nonlinear forces. The fist line is associated with the hyper-time representation, while the second

line illustrates the corresponding results in frequency domain (modulus of the 2D-FFT). Here we have chosen a displacement x(t) = cos(t) + cos(
√

2t) + cos(t +
√

2t) =
cos(𝜏1) + cos(𝜏2) + cos(𝜏1 + 𝜏2).

Fig. 2. Complete harmonics sampling (blue circle) and the modulation instability reduction (red cross). Panel (a) shows the results for h1 =h2 =4, while Panel (b) shows

the harmonic basis for h1 =1 and h2 =7. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

can be included in Eq. (1) by setting one of the sinusoidal terms for the harmonic k1 =1 and k2 =1 as equal to zero. Therefore

the new nonlinear algebraic system, with 𝜔2 as un unknown, is written as(
0

0

)
=

(
L(𝜔1, 𝜔2)z + gnl(z) − gext

ai
1,1

)
(11)
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Fig. 3. Strategy to switch from periodic to quasi-periodic branches. In the first step, the NS bifurcation is identified from the Floquet multipliers. In the second step the

unstable mode is used as initial conditions for Eq. (8) and the growth rate from the computed response is removed. The final result is added to the corresponding periodic

regime, in the third step, and the final configuration in frequency domain is used as an initial guess for the solution of Eq. (11).

where ai
1,1

states the k1 = k2 =1 cosine term for the ith degree of freedom. One should note that the harmonics k1 = k2 =1 and

the cosine term (instead of the sine term) have been chosen arbitrarily. In general, any non-zero quasi-periodic sine or cosine

harmonic for any ith degree of freedom can be chosen as a phase condition.

In order to follow the solutions of Eq. (11), a numerical continuation scheme based on a tangent predictor and an arc-length

corrector is implemented. The tangent prediction uses the Jacobian of Eq. (11), at a solution point, to estimate the next solution

(see e.g. Ref. [37]). The arc-length corrector equation

0 =∥Z0 − Z(𝜔1, 𝜔2)∥2 − s2, (12)

is added to the problem, where Z0 is an already known previous solution and s is the step length. After adding Eq. (12) to

the algebraic system in Eq. (11), the Fourier coefficients ak1,k2
and bk1 ,k2

as well as the frequencies 𝜔1 and 𝜔2 are treated as

unknowns in the minimisation problem. This continuation scheme allows the periodic and the quasi-periodic HBM approaches

to follow turning points (see e.g. Ref. [37]).

2.4. Branch switching

In this subsection we develop a strategy to switch from a periodic to a quasi-periodic branch. The most straightforward

way to change from a periodic to a quasi-periodic branch uses results obtained from time integration [31,38]. In this case,

solutions from unstable periodic regimes are used as initial conditions for a time-marching algorithm, and the system jumps

to the quasi-periodic branch naturally. This approach works well if there is only one stable quasi-periodic solution within the

analysed regime, and for unstable periodic states. In more complicated cases, when e.g. several quasi-periodic states coexist,

it is difficult to guarantee that initial conditions from the unstable periodic state will lead the time integration scheme to the

required quasi-periodic solution.

The new approach developed in this subsection does not require any stability condition for the quasi-periodic response, and

also works for systems with several coexistent stable quasi-periodic solutions. Overall, the main idea is to use information from

the monodromy matrix 𝚽, evaluated at an unstable periodic solution, to generate an initial guess for the nonlinear algebraic

problem in Eq. (11). The steps required are illustrated in Fig. 3. Firstly, a Floquet analysis is carried out for the periodic solutions. It

is well-known from the linear stability analysis that, close to the bifurcation point, perturbations h(t) increase exponentially with

growth rate 𝜇 = 𝜔1

2𝜋
Re{ln(𝜌i)} and pulsate with frequency 𝜔2 = 𝜔1

2𝜋
Im{ln(𝜌i)}, where 𝜌i is the corresponding unstable Floquet

multiplier. Therefore, this value of 𝜔2 is assumed as an initial guess for the algebraic system in Eq. (11).

The second step consists in time integrating the tangent system in Eq. (8) using the real part of the corresponding unstable

eigenvector of the monodromy matrix 𝚽 as an initial condition. Since the system is unstable with respect to this perturbation,

the initial condition will increase exponentially in time with growth rate 𝜇, as shown in Fig. 3. The exponential part is then

removed from the response, and the final configuration is a quasi-periodic signal with frequencies 𝜔1 and 𝜔2. It is expected that

nearby the NS bifurcation point perturbations will behave similarly to this linear approximation.

The final step uses information from the periodic state. This solution, which coexists with the quasi-periodic regime, is added

to the previously calculated perturbation. The final state consists of a periodic state with a small quasi-periodic perturbation on

top. The spectrum of this configuration is then used as an initial guess for the algebraic system in Eq. (11).
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Fig. 4. Minimal model for the bladed disk with a single degree of freedom per sector.

It should be noted that the presented approach has two free parameters. The first one is the perturbation amplitude. Since

initial conditions for Eq. (8) uses the unstable eigenvector of 𝚽, these initial conditions may assume any arbitrary amplitudes

values. The second free parameter is the value of 𝜔1 itself or, in other words, the distance from the computed solution to the

actual NS bifurcation point. We have observed, in the simulations of Sec. 3, that far from the bifurcation point or with large

perturbations amplitudes, the nonlinear algebraic problem has experienced convergence problems. On the other hand, when

the system is solved very close to the bifurcation point, or with relatively small perturbations amplitudes, the algebraic system

may converge to the undesired periodic regime. The compromise between these two parameters has been chosen empirically

in the present investigation.

3. Numerical application

We apply the methodology described in Sec. 2 to compute quasi-periodic localised solutions bifurcating from nonlinear trav-

elling waves in cyclic and symmetric systems. We then define𝜔i as the ith linear natural frequency, and 𝜙i as the corresponding

mode shape. Due to the cyclic symmetry, it is well-known that most of the eigenvalues come in pairs of 𝜔2i and 𝜔2i+1 having

the same values (degenerated eigenvalue), while the corresponding eigenvectors 𝜙2i and 𝜙2i+1 are just shifted in space. Using

the linear mode shapes of the cyclic structure, a travelling wave force ftw(t), also known as an engine order excitation, can be

defined as

ftw(t) = 𝜙2i cos(𝜔F t) + 𝜙2i+1 sin(𝜔F t), (13)

where 𝜔F is the force frequency. The external excitation has just one harmonic, and the values of 𝜙i and 𝜙i+1 are directly

applied as the Fourier coefficients within the HBM implementation. Moreover, the travelling wave in Eq. (13) can be seen as the

superposition of two standing waves, 𝜙2i and 𝜙2i+1, in which the time evolution is with appropriately chosen phases.

In the following we study two different minimal models for bladed disks vibrating in nonlinear travelling wave regimes.

Firstly, a physical system composed of a cyclic and symmetric chain of Duffing oscillators is assumed as a physical model for a

bladed-disk operating in large displacements. A similar system has been already investigated in Refs. [23,24], where it has been

shown that solitons bifurcate from unstable travelling wave responses. The second example introduces a more complicated

minimal model composed of two degrees of freedom per sector. In this case, travelling waves with zero and one nodal circles

are possible. In both cases several coexistent quasi-periodic states may branch off in the form of localised solutions.

3.1. Bladed disk with a single degree of freedom per sector

The system under investigation is depicted in Fig. 4. It consists of Ns =24 masses m=1 kg, connected to each other by linear

springs kc =1 N/m, and attached to the ground by linear springs kl =1 N/m and viscous dampers c=0.01 Ns/m. Each mass is also

connected to the ground by cubic springs knl =0.1 N/m3 and subjected to external forces fn. This minimal model with geometric

nonlinearities can, for example, be obtained when the Von Karman theory is applied to a system of clamped beams or plates

that are cyclically connected to each other by massless springs [10,39]. The Ns equations of motion for the system in Fig. 4 are

written as

mẍn + cẋn + klxn − kc(xn−1 + xn+1 − 2xn) + knlx
3
n
= fn, (14)

where x1 = xNs+1 due to the cyclic symmetry.

In the following analysis the external force is assumed as an eighth engine order. For low excitation amplitudes, the system

vibrates in an almost linear regime, and the frequency response functions (FRFs) show stable solutions only. For stronger forces

the system looses stability due to NS bifurcations, and quasi-periodic solutions detach from the periodic branch. Fig. 5 displays

a typical result calculated for a travelling wave with force amplitude of 0.025 N. The plane wave solutions have been calculated

with the periodic HBM assuming a series expansion with three harmonics (h1 =3). In Fig. 5, solid black lines identify stable

travelling waves, while the black dashed line represents unstable solutions. The plane wave FRF shows the usual stiffening effect,

as expected due to the cubic springs. However, no periodic bi-stability is observed. In fact, homogeneous states loose stability
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Fig. 5. FRF calculated from the HBM implementation, where the horizontal axis displays the external force frequency and the vertical one identifies the maximum vibration

amplitude. The four insets display the spatial envelope function in four different configurations.

due to NS bifurcations before the first turning point (around 2.00 rad/s), and recover stability again only after the second turning

point (around 2.02 rad/s). Inside the unstable periodic regime, two quasi-periodic branches detach from plane waves. The first

NS bifurcation, computed from the Floquet analysis, is identified with the blue line in Fig. 5. The branch is followed with the

quasi-periodic HBM assuming one harmonic for the carrier wave (h1 =1), and five harmonics for the envelope function (h2 =5).

The quasi-periodic branch detaches from plane waves as weakly localised solutions but internally changes its configuration

along the branch to a strongly localised dissipative soliton. This feature is highlighted by the envelope functions plotted in the

insets in Fig. 5. Moreover, around 2.01 rad/s another pair of unstable Floquet multipliers is computed, leading to the second

branch of localised solutions identified by the red line in Fig. 5. These solutions are calculated with the quasi-periodic HBM

assuming h1 =1 and h2 =5. The branch comprises, again, localised states moving around the structure in the form of dissipative

solitons.

Panels (a) and (c) of Fig. 6 display the amplitude of each harmonic, for a specific degree of freedom, and for two solutions

in the two different quasi-periodic branches of 5. These solutions show that sidebands components, equivalent to h1 =1 and

h2 =±1, dominate the quasi-periodic dynamics. This is a typical feature of localised states emerging via modulation instability,

and it has been extensively investigated within the nonlinear Schrödinger equation framework [40–42]. Panels (b) and (d) show,

in dashed red lines, the same solutions but in time domain. The curves show, as discussed before, localised humps preserving

their shapes while they move around the system. The same graphs also identify, in black solid lines, the corresponding results

computed from time-integration. The comparison between the quasi-periodic HBM and the time marching results are in very

good agreement.

3.2. Bladed disk with two degrees of freedom per sector

The physical model in Fig. 7 displays the bladed disk with two degrees of freedom per sector under investigation. In this case,

the Ns =24 sectors are described by two degrees of freedom: (1) the masses M=1 kg refer to the disk inertia; and (2) m=0.3 kg

models the blade masses. Each mass M is also connected to the ground by linear springs and viscous dampers k1 =1 N/m and

c1 =0.005 Ns/m, respectively, while the interaction between each sector is given by k2 =1 N/m and c2 =0.005 Ns/m. The con-

nection between the blade and the disc is given by the linear springs and dampers k3 =1 N/m and c3 =0.005 Ns/m, while the

cubic spring knl =0.1 N/m3 models the stiffening effect induced by large deformations. The set of equations for the 2Ns degrees

of freedom are written as

mẍn + c3(ẋn − Ẋn) + k3(xn − Xn) + knl(xn − Xn)3 = fn (15)

MẌn − c2(Ẋn+1 + Ẋn−1 − 2Ẋn) − c3(ẋn − Ẋn) + c1Ẋn − k2(Xn+1 + Xn−1 − 2Xn) − k3(xn − Xn) + k1Xn − knl(xn − Xn)3 = Fn

(16)

Minimal models similar to the one in Fig. 7 are often used in the literature for the investigation of bladed disk vibrations [16,43].

Firstly, we compute the system responses due to travelling wave forces of eighth engine order and zero nodal circles. In

this case, the blades and the disc are vibrating in phase, and nonlinearities are triggered by the difference between the two
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Fig. 6. HBM results for two quasi-periodic solutions. Panel (a) displays the amplitude of each harmonic, for a specific degree of freedom, in the first quasi-periodic branch of

Fig. 5. Panel (b) shows the comparison of HBM results with time marching (TM). Panels (c) and (d) show the same quantities of Panels (a) and (b), but for a solution within

the second quasi-periodic branch of Fig. 5.

Fig. 7. Minimal for the bladed disk with two degrees of freedom per sector.

amplitudes. For low excitation forces, as expected, the system behaves similarly to the underlying linear model and solutions are

always stable. However, for stronger excitations, the system looses stability and experiences NS bifurcations as in the previous

example of Sub. 3.1. Fig. 8 displays a typical result, obtained assuming an external force with amplitude of 0.01 N. The results

have been calculated assuming h1 =3 for periodic solutions, while h1 =1 and h2 =5 for the quasi-periodic responses. In this

case, again, no periodic bi-stability is observed, and two NS bifurcations are identified. The first quasi-periodic branch, identified

by the blue line in Fig. 8, shows a solution branching off from plane waves and internally changing its configuration to a strongly

localised response with one hump before merging to the travelling waves again. The second quasi-periodic branch, in red, shows

similar features of Fig. 5. In this case, again, localised solutions with two humps detach from plane waves and merge back to

periodic solutions.

The results obtained from the quasi-periodic HBM approach are compared to time integration in Fig. 9. Panel (c) shows an

example for the first quasi-periodic branch in Fig. 8, while Panel (f) illustrates the same quantities calculated from a solution in

the second branch. In this case, as discussed before, each sector has the two degrees of freedom moving in phase. The results

in time domain show humps of localised solutions moving around the structure preserving their shapes. The envelope function

which modulates the disk and the blades have similar shapes, although they experience different amplitudes. This feature can
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Fig. 8. Maximum blade displacement for a system with two degrees of freedom per sector. The results have been calculated assuming a travelling wave force with zero

nodal circles and eight nodal diameters. The black lines show stable periodic solutions, and the black dashed line represents unstable ones. The blue and red lines are

quasi-period solutions detaching from the branch of travelling waves. The insets show the spatial envelope function in four different configurations for the blade (blue and

red lines) and the disk (black lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 9. Responses for the two different quasi-periodic configurations in Fig. 8. Panels (c) and (f) display the comparison of time marching (TM) results, with black solid lines

showing time integration responses and red dashed lines identifying HBM results. Panels (a) and (d) show the blade spectra, while Panels (b) and (e) display the same

quantities for the disk. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

be confirmed from Panels (a) and (d), which display the spectrum for a blade, and Panels (b) and (e), which illustrate the same

quantities for the corresponding disk displacement. The spectra for the blade and the disk are essentially the same, differing

only in amplitudes. These findings can be confirmed from the results in the four insets in Fig. 8.

Finally, we investigate the system responses due to travelling wave forces of eighth engine order and one nodal circle. Physi-

cally, the disk and the blades vibrate out-of-phase within this regime. The overall behaviour is similar to the previous examples,

in which branches of localised solutions bifurcate from travelling waves when modulation instability is triggered. Fig. 10 dis-

plays a typical result obtained for an external excitation with amplitude of 0.016 N. The periodic solution has been calculated

assuming h1 =3, while the quasi-periodic branches have been computed assuming h1 =1 and h2 =7. Within this configuration,

solutions are more damped than in the previous case, in Fig. 8, since dampers c3 dissipate more energy. Moreover, nonlinear-

ities play the role in lower amplitude regimes due to the out-of-phase motion, and localised solutions branch off for lower
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Fig. 10. Maximum blade displacement for a system with two degrees of freedom per sector. The results have been calculated assuming a travelling wave force with one

nodal circle and eight nodal diameters. The black lines show stable periodic solutions, and the black dashed line represents the unstable one. The blue and red lines are

quasi-period solutions detaching from the planes waves. The insets show the spatial configuration in four different branches for the blade (blue, green, red, and purple

bars) and the disk (black bar). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 11. Responses for two different quasi-periodic configurations in Fig. 10. Panels (c) and (f) display the comparison of time marching (TM) results, with black solid lines

showing blade displacements and blue solid lines referring to the corresponding disk results, with the HBM implementation, in red dashed lines. Panels (a) and (d) show

the blade spectra, while Panels (b) and (e) display the same quantities for the disk. (For interpretation of the references to colour in this figure legend, the reader is referred

to the Web version of this article.)

displacement regimes. In Fig. 10, three branches of quasi-periodic states detach from travelling waves. The first branch, in blue,

resembles a dissipative soliton with three humps moving around the structure. However, the other two branches, in red and

green, show more complicated patterns, and the modulating functions have more irregular shapes.

The previous HBM solutions are compared to time integration in Panels (c) and (f) of Fig. 11. The two displayed results are

obtained from initial conditions in the first (blue) and in the third (green) branches in Fig. 10. In both cases localisation arises due

to modulation of travelling waves. In Panel (c), a regular hump moves around the structure preserving its shape. In Panel (f), the

envelope function which modulates the travelling waves has a more irregular form, discussed before. Although this envelope

function has an irregular shape, the final configuration still consists of a quasi-periodic motion with two incommensurable

frequencies. The comparison between time integration and the quasi-periodic HBM shows good agreement. Panels (a) and (d)
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in Fig. 11 display the spectra for the blade responses, while Panels (c) and (e) in Fig. 11 show the same quantities for the disc. The

amplitude spectra for the blade and the disk are, again, very similar, although the graphs do not show any information about

the differences in phase.

4. Conclusions and outlook

In this paper we have employed the periodic and quasi-periodic HBMs to compute nonlinear localised vibrations in cyclic and

symmetric structures. The investigation has been focused on models experiencing nonlinearities induced by strong engine order

excitations. The strategy has been applied to two different minimal models: (1) a chain of linearly coupled Duffing oscillators;

and (2) a more complicated bladed disk model with two degrees of freedom per sector. In both cases multiple quasi-periodic

coexistent states may exist, and a new strategy to track these several quasi-periodic states have been introduced. The results

computed in this paper corroborate previous findings, showing that cyclic and symmetric structures subjected to large travelling

wave forces may localise vibrations due to envelope dynamics.

The present paper has studied localised vibrations arising due to smooth nonlinearities. However, bladed disks of aircraft

engines are often subject to friction and impact induced e.g. by root joint, underplatform dampers, shrouds and damper wires.

Therefore, future investigations will also have to deal with localised vibrations involving non-smooth nonlinearities. More work

also needs to be done on model accuracy. Thus, reduced-order models from fully nonlinear finite elements will also be addressed.
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