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1. Introduction

The harmonic balance method (HBM) enjoys widespread use and is able to treat many types of nonlinearities (contact and
friction [11,17], geometric nonlinearities [16], Euler’s equation, unsteady aerodynamic [14,8], etc.). HBM consists of identifying
periodic solutions in the form of a truncated Fourier series, whose coefficients are estimated by solving a set of nonlinear
algebraic equations. The most important parameter when applying this method is the number of selected harmonics used to
approximate the solution. Typically, the higher the number of harmonics, the better the solution. For large-sized systems
however, adding harmonics can prove very costly in terms of extra computational resources. If the number of nonlinear
degrees of freedom (dof) is small compared to the number of linear dofs, then one method to reduce problem size would be to
condense the problem into the nonlinear dof [17]. However, if all dofs are nonlinear, this condensation step would no longer
be applicable and other methods would need to be used in order to reduce computational resources.

When nonlinear dofs constitute just a subset or when the nonlinearity is distributed spatially, it can be observed that all
dofs are not submitted to the same level of nonlinearity; hence, the number of selected harmonics may be overestimated
for either linear or weakly nonlinear dofs. This finding implies that some variables of the algebraic system are insignificant
since they are either equal or near zero. These excess variables needlessly slow the calculation.

In order to correctly estimate the number of selected harmonics for a given level of accuracy and thereby reduce the
size of the set of nonlinear algebraic equations, a number of selection algorithms have been proposed, thus leading to
methods known as adaptive harmonic balance methods (or AHBM) [11–14].

The aim of this paper is to review and discuss the available methods for harmonic selection in HBM (Section 2) and to
present a new selection method (Section 3). The efficiency of the proposed method will then be demonstrated through a
series of three examples (Section 4).
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2. HBM and harmonic selection

2.1. HBM principles

In this section, the principles of HBM will briefly be recalled. Many papers in the literature focus on the method, and
readers are referred to the bibliography for further details regarding this method (see in particular [10,11,16,15]).

Let us consider an n-dof dynamic system whose motion equation is given by the following:

M €UþC _UþKUþFnlðU, _U Þ ¼ Fex ð1Þ

where M, C and K are, a respectively, the mass, damping and stiffness matrices; Fnl is the vector of nonlinear forces, and Fex

is the vector of external forces, assumed to be periodic with a period T ¼ 2p=o. The solution UðtÞ of Eq. (1) can then be
sought according to the following form:

UðtÞ ¼U0þ
XNh

k ¼ 1

Uc
k cosðkotÞþUs

k sinðkotÞ ð2Þ

After application of the HBM projections (see Appendix A), the following set of nonlinear algebraic equations is obtained:

KðoÞ ~Uþ ~F nl ¼
~F ex ð3Þ

With K denoting the dynamic stiffness matrix, ~U the vector of Fourier coefficients (i.e. the vector of unknowns in the
frequency domain), and ~F nl and ~F ex the vectors of nonlinear and external forces in the frequency domain. All these vector
and matrices are of size M¼ nð2Nhþ1Þ, where Nh is the number of selected harmonics in the Fourier approximation of
UðtÞ (Eq. (2)).

When analytical expression cannot be derived for ~F nl, this vector is computed through the use of an alternate
frequency–time (AFT) procedure [4]. The AFT procedure consists of evaluating the temporal evolution of UðtÞ with an
inverse fast Fourier transform (iFFT) of ~U . The nonlinear forces are then computed within the time domain, and lastly the
Fourier coefficients ~F nl are evaluated with an FFT.

Periodic solutions to the system in Eq. (1) are found by solving the nonlinear algebraic system in Eq. (3). When
simulations take place over a frequency range ½o1,o2�, one convenient way to solve the system is to use the continuation
methods [15,10], which consists of two steps: first, a predictor computes an estimation of the solution for the next
frequency point, then, a corrector (often derived from a Newton method) is applied to this prediction to derive the true
solution.

2.2. Existing selection algorithm

When solving Eq. (3), if the number of retained harmonic Nh is too high, then a number Mi of unknowns may prove
insignificant, as a result of being equal or near zero. Selection algorithms will be introduced to reduce the system size by
means of removing the Mi insignificant variables.

Selection methods from the literature can be divided into two types: global selection and local selection.

2.2.1. Global selection

A global selection consists of setting an equal number of harmonics for all dof; this number is then updated by
evaluating a criterion that quantifies the nonlinear contents of nonlinear forces. Depending on the choice of this criterion,
two selection methods have already been proposed.

The first example was presented by Laxalde in [12]. The criterion used in this method corresponds to the Fourier error
between nonlinear forces in the time domain and the reconstruction of nonlinear forces from the selected Fourier
coefficient. This criterion is expressed as follows:

EðNhÞ ¼

Z 2p=o

0
FnlðU, _U Þ� F0þ

XNh

k ¼ 1

Fc
k cosðkotÞþFs

k sinðkotÞ

" #
dt

�����
����� ð4Þ

If the Fourier error exceeds a threshold value, then the number of harmonics is increased for the computation at the next
frequency step. Note that the number of harmonics to be added for the purpose of decreasing the Fourier error is an a priori

fixed increment to be defined by the user.
The second example of harmonic selection was presented by Jaumouillé in [11]. The criterion used is the variation in

strain energy with the number of harmonics. Strain energy is first calculated for a number N0
h of selected harmonics and

then for a number N0
hþ1. The relative difference between these two energies is evaluated as follows:

EðN0
hÞ ¼

9SðN0
hÞ�SðN0

hþ1Þ9

9SðN0
hÞ9

ð5Þ

where S stands for the strain energy. The number of selected harmonics is given whenever the relative difference lies
below a threshold value.
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2.2.2. Local selection

Local selection relies upon the fact that all dof are not exposed to the same level of nonlinearity. Consequently, the
number of selected harmonics should be variable with respect to the dof. The local selection method thus consists of
finding a number of selected harmonics for each dof. In its construction, this method is a sort of global method extension
since the number of selected harmonics varies not just with dof but with frequency as well.

A local selection method had been proposed by Maple in [14,13]. For each dof d, the fraction of spectral energy
contained in the last selected harmonic of the computed solution is evaluated as follows:

EðNh,dÞ ¼
ðUd,c

Nh
Þ
2
þðUd,s

Nh
Þ
2

ðUd
0Þ

2
þ
PNh

k ¼ 1ðU
d,c
k Þ

2
þðUd,s

k Þ
2

ð6Þ

If this fraction exceeds a fixed threshold value, then additional harmonics need to be introduced, and the solution is
computed once again with this new number of harmonics. Like with global methods, the number of harmonics to be added
is determined by an a priori fixed increment.
2.2.3. Limitations of the previous methods

The three previous examples of harmonic selection methods all exhibit some limitations: they are incremental and the
increment on the number of harmonic to be added is set by the user.

Incremental means that, for a fixed frequency step of the HBM, the harmonics truncation order is increasing
incrementally until a stop criterion is satisfied. Consequently, for each iteration of the selection procedure (i.e. for each
increase/decrease of the total number of harmonics by the increment), it is necessary to compute a complete nonlinear
solution of the system for the fixed frequency step in order to evaluate the respective stop criteria. This procedure allows
for precise control over the error (induced by criterion), yet they can be very time consuming due to the many possible
computations of nonlinear solutions required for the criteria evaluation. In his thesis [12], Laxalde choose to present his
selection method in a non-incremental way, i.e. for a fixed frequency step of the HBM Fourier’s error is computed for a
given number of harmonics and if this error is high relative to the threshold value, the number of harmonics is increased
for the next frequency step. Doing so, Fourier’s error can be larger than the threshold value and the method then does not
really control Fourier’s error. An incremental version of this method can be easily derived.

In the incremental procedures, an important parameter is the increment defining the number of harmonic to be added/
removed from one iteration of the selection procedure to another. This increment is set by users and there is a priori no
information on how to choose it. On one hand, if this increment is small, it can result in many iteration for the selection
procedure to make the error smaller than the threshold value, thus leading to many nonlinear calculation for a given
frequency step. On the other hand, if this increment is too large, insignificant harmonics could be added leading to an
unnecessary large system of algebraic equation to be solved. Moreover if the increment is not chosen well, it can lead to
premature end of the selection procedure. For instance, in Jaumouillé’s method it may happen that the relative difference
between SðNhÞ and SðNhþDNhÞ is zero while the relative difference between SðNhÞ and SðNhþ2DNhÞ is larger than the
threshold value, thus leading to a premature stop of the selection process. This is typically the case if DNh ¼ 1 and if only if
odd harmonics respond, or more generally when a subset of non-consecutive harmonics responds.

The next section presents a new selection procedure which intend to overcome the two limitations exposed before
while maintaining the local nature of the selection.
3. Proposed selection method

3.1. Preliminary remarks

The procedure presented here will start by defining a maximum number of harmonics to be retained and building the
corresponding system of HBM equation. Let Nh

m
be the maximum number of harmonics intended to be used in the

computation of solutions. In the case where all dof are computed with all Nh
m

harmonics, the HBM equation (Eq. (3)) can be
rewritten as follows:

f ð ~U ,oÞ ¼KðoÞ ~Uþ ~F nl�
~F ex ¼ 0 ð7Þ

which is a system with Mm ¼ nð2Nm
h þ1Þ unknowns and Mm equations. Let Im ¼ ½1: :Mm� be a list of index corresponding to

all variables in Eq. (7).
Consider now that we have a selection method that enables defining a reduced vector of unknown called ~U r through an

index vector Ir (of length Mr) corresponding to significant variables only (thus with Mr ¼ lengthðIrÞr lengthðImÞ ¼Mm). The
procedure for deriving the index vector Ir will be presented in the next section. In this case the system to be solved (also
called the reduced system) can be written as

f rð
~U r ,oÞ ¼ 0 ð8Þ

which is a system of MrðrMmÞ unknowns and Mr equations.
3



The vector ~U r in Eq. (8) is derived from the vector ~U in Eq. (7) by considering its restriction to the variables indexed by
Ir as follows:

~U r ¼
~U 9Ir

ð9Þ

Conversely the vector ~U r of Eq. (8) can be transformed into a vector ~U
rec

in Eq. (7) (a reconstituted vector) by
considering that the values of the non-selected variables equal zero:

~U
rec
9Ir
¼ ~U r and ~U

rec
9Imr
¼ 0 ðwith Im ¼ Ir [ ImrÞ ð10Þ

The set of Mr equation f r is derived from the set of Mm equation f as follows:

f rð
~U r ,oÞ ¼ f 9Ir

ð ~U
rec

,oÞ ð11Þ

In other words, only the Mr equations related to the Mr variables in ~U r are retained by considering that the ith equation is
related to the ith variable.

Finally, for 1rdrn we define ~ud (resp. ~ud
r ) the vector of Fourier coefficients (resp. the reduced vector of Fourier

coefficients) corresponding to dof d. Vector ~ud assumes the following form:

~ud
¼ ½ud

0,ud
1c ,ud

1s, . . . ,u
d
Nm

h c ,ud
Nm

h s� ð12Þ

with u0 the continuous component, and ukc ð1rkrNm
h Þ [resp. uks] the coefficient of cosðkotÞ [resp. sinðkotÞ] in the Fourier

development of ud.
~ud

r is associated with the index vector Id
r (in relation to ~U ) and with index vector Jd

r (in relation to ~ud) such that

~ud
r ¼

~U 9Id
r
¼ ~ud9Jd

r
ð13Þ

with

Id
r � ½1 . . .Mm�, Ir ¼

[n
d ¼ 1

Id
r , Jd

r � ½1 . . .2Nm
h þ1� ð14Þ

For example, if only the continuous component, the first and the third harmonics (cosine and sine terms) were selected for
dof d we would have Jd

r ¼ ½1, 2, 3, 6, 7� (see Eq. (12)).

3.2. Prediction step

Let us now assume that a solution ð ~U
i

r ,oiÞ to Eq. (8) has been computed (where i stands for the frequency step),
associated with the index vector Ii

r . One estimation of the solution for the next frequency step can be given through the use
of a tangent predictor [15]. In using Eq. (7) instead of Eq. (8) to compute this prediction, information could be obtained on
the participation of the non-selected harmonics in the solution at the next frequency step. Consequently, the vector
considered in the prediction phase will always be of maximum size Mm. To compute the prediction, the solution ð ~U

i

r ,oiÞ of
Eq. (8) is first transformed into a solution ð ~U

i
,oiÞ of Eq. (7) by adding zeros, as described previously in Eq. (10). Then, the

predicted vector ~U p is given by the following:

~U p ¼
~U

i
þD ~U

i
ð15Þ

with DU i being solution of the following linear system:

@f

@ ~U
ð ~U

i
,oiÞD ~U

i
¼�

@f

@o
ð ~U

i
,oiÞDoi ð16Þ

In order to apply the selection method to each dof, the predicted vector is decomposed into n subvectors of size 2Nm
h þ1

corresponding to the Fourier coefficients of each dof. These subvectors are denoted ~ud
p for 1rdrn and are organized as

described in Eq. (12). In addition, each local predicted vector ~ud
p is associated with an index vector J i,d

r which corresponds to
variables that have been used in the computation of ~u i,d

r as defined in Eq. (13).

3.3. Selection criteria

Let us consider dof d ( ~u i,d
r ), which has been computed using the Fourier coefficients associated with J i,d

r . We can forward
the hypothesis that the true solution at the next frequency step iþ1 does not significantly deviate from the prediction. As a
consequence, let us consider that the predicted vector have roughly the same harmonic content as the true solution. The
parameter Ed

k corresponding to the fraction of spectral energy contains in the harmonic of rank k of the predicted subvector
~ud

p can then be defined as follows:

Ed
k ¼ ½ðu

d
p,kcÞ

2
þðud

p,ksÞ
2
Þ�=J ~ud

pJ
2 for 0rkrNm

h ð17Þ
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Thanks to the index vector Ji,d
r and the predicted subvector ~ud

p, we are able to evaluate the percentage of energy Ei,d
r that

will be retained if we use the Fourier coefficients associated with J i,d
r :

Ed
r ¼

X
k2HðJi,d

r Þ

Ed
k ð18Þ

where HðJ i,d
r Þ is an index vector linking each element in J i,d

r to its harmonic number. For example, if J i,d
r ¼ ½1, 2, 3, 6, 7� then

HðJi,d
r Þ ¼ ½0;1,3� (the continuous component, the first and the third harmonics are retained). We also define the fraction of

residual energy rd (i.e. the percentage of energy contained in the non-selected Fourier coefficient) as follows:

rd ¼ 1�Ed
r ð19Þ

The notion behind the selection procedure is to asses the fraction of residual energy rd compared with two threshold
values rb and rf (with 0rrbrrf r1Þ:
�
 Case 1: If rd
Zrf , the error committed is too large and Fourier coefficients need to be added in order to reduce error rd

(through the use of the forward procedure defined hereafter), thus leading to cardðJiþ1,d
r ÞZcardðJ i,d

r Þ.

�
 Case 2: If rdrrb, the error committed is too small and Fourier coefficients can be removed so as to reasonably increase

the error rd (through the use of the backward procedure defined hereafter), leading to cardðJiþ1,d
r ÞrcardðJi,d

r Þ.

�
 Case 3: If rbrrdrrf , then the error committed is at an intermediate level, leading to the supposition that the number

of Fourier coefficients is sufficient for the next frequency step, thus leading to J iþ1,d
r ¼ Ji,d

r .

3.3.1. Forward procedure

This procedure is implemented for the purpose of adding Fourier coefficients (Case 1) in order to obtain rdrrf ; it consists
of adding the spectral energy contained in the non-selected variable associated with the set J i,d

mr ¼ ½1 : 2Nm
h þ1�\J i,d

r until the
residual spectral energy lies below the threshold value rf . For each non-selected variable of ~ud

p the parameters Ed
k are computed

and ordered. The variables generating the highest values for Ed
k can then be added to the selected variable until rdrrf .

3.3.2. Backward procedure

This procedure is used to remove Fourier coefficients (Case 2) in order to obtain rbrrk. In this case, the procedure
consists of removing the spectral energy contained in the selected variables until the spectral residual energy is greater
than the threshold value rb. For each selected variable of ~ud

p the parameters Ed
k (k 2 HðJ i,d

r Þ) are computed and ordered. The
variables producing the lowest values for Ed

k are then removed from the selected variables until rbrriþ1,d.
The method described for one dof is then applied to all system dof, which leads to a series of local index vector

ðJiþ1,d
r Þ1rdrn indicating the Fourier coefficients to be retained for each dof d at the next frequency step iþ1. Afterwards,

this series is converted into a series of global index vector ðIiþ1,d
r Þ1rdrn (see Eq. (13)) that defines the selected variables to

be used during the next frequency step. The diagram in Fig. 1 summarizes this harmonic selection algorithm.
Note that when the continuous component of the predicted vector is larger than its harmonics component, the

computation of Ed
k in Eq. (17) is subjected to rounding error. To overcome these numerical issues, it can be considered that

the continuous component is always selected and then the parameters Ed
k can be computed without taking into account the

continuous component (i.e. by assuming that ~ud
p in Eq. (17) no longer has a continuous component).

3.4. Remarks and comparison with existing methods

As explained in Section 2.2, existing selection methods are incremental and add harmonics by increment until the
stopping criterion is achieved. At each iteration they will seek information about the next harmonic number, and if the
number of harmonics to be retained is not bounded it can grow very large if the stop criteria is never satisfied. In the new
method presented here, a (possibly large) maximum number of harmonic Nh

m
is defined at the beginning of the procedure

thus defining a maximum set of harmonic in which the selection procedure seeks harmonics to be retained, thus making it
non-incremental. The selection method operates independently for each dof and give different set of retained harmonics
for each dof thus making it a local type of selection.

The key points of the new method are (a) the use of a tangent prediction over the set of all harmonic (the predicted
vector is always of maximum size Mm) which allows to evaluate and sort the participation of all harmonics smaller than
Nh

m
at the same time and (b) the hypothesis that the prediction is sufficiently close to the real solution in order to say that

the real solution will have the same harmonics support as the prediction. Only a tangent predictor can be used for the
prediction, since only this type of predictor can yield informations about non-selected Fourier coefficients through the
Jacobian matrix ð@f =@ ~U Þð ~U

i
,oiÞ. Contrary to existing methods, no nonlinear calculations have to be performed in order to

evaluate harmonics participation. One limitation of the proposed method appears when the prediction deviates too far
from the true solution. However, if the frequency step is small enough, this prediction will be close to the true solution.

As in Maple’s procedure, the criteria used to quantify the participation of a harmonic of the predicted vector is the
spectral density of energy contained in this harmonic, but here the spectral density is computed for all harmonics smaller
than Nh

m
, thus giving an overview of each harmonic participation. The threshold value rf controlling the forward procedure
5



Fig. 1. Description of the harmonic selection process.
must be set at a low level to be able to select a number of Fourier coefficients that ensures good approximation of the
solution. The same principle applies to the threshold value rb which must also be set low so as not to remove Fourier
coefficients too early. As in the existing methods the threshold values (rf and rb) must be empirically set by users, yet they
have a physical meaning and are related to the percentage of energy that will be retained in the predicted vector. Clearly, if
the threshold values are set to zero, all the responding harmonics are selected and the error then equals the error of the
classical HBM with Nh

m
harmonics.

The cost of this method lies primarily in the computational time required to establish the predicted vector, which consists of
solving a (possibly large) linear system of size Mm. Yet this time duration is often small when compared with the time required to
solve the total set of nonlinear algebraic equations in Eq. (7) using Newton–Raphson algorithm. Moreover, in continuation of the
techniques, the computation of this predicted vector is a compulsory step; in this case therefore, the cost of the proposed method
is solely determined in the forward or backward procedure employed, and both are inexpensive from a computational standpoint
since they only entail computing the Ed

k parameters in Eq. (17) and then ordering them.

4. Examples

In order to evaluate method efficiency, we will now present three examples featuring different types of nonlinearity.
The first one is a small and simple dynamic system with smooth nonlinearity, the second example is a small system with
cubic nonlinearity featuring an internal resonance and the third example has been derived from an industrial problem
with a non-smooth nonlinearity. A comparison will be drawn with the classical harmonic balance method (considered as
the reference method) in order to estimate the benefits of the proposed harmonic selection method.

4.1. Example 1: A nonlinear system featuring internal resonances

In order to confirm that the AHBM performs adequately well for many types of nonlinear systems, we will consider in
this section the special case of a system with internal resonances. In general terms, internal resonances appear when the
frequencies of the linearized system (natural frequencies) are commensurable or nearly commensurable [1,2]. However,
due to the fact that resonance frequencies change with motion amplitude in nonlinear systems, cases of internal
resonances can also appear when natural frequencies are not commensurable (see for example [9]).

Internal resonances are responsible for strong modal interactions and sub-harmonic or super-harmonics resonances.
For instance in [1], Nayfeh considered a nonlinear system with cubic nonlinearity and with a 1:3 internal resonance
between the first and the second mode of the system. By applying the method of multiple scales, he was able to show that
the response could be dominated by the first vibration mode whenever the excitation frequency was positioned near the
second natural frequency.

In this example we will re-demonstrated this result with the use of the HBM. We will also demonstrate that the HBM is
able to treat the internal resonance case, and that the AHBM proposed herein can reduce the number of harmonics
involved, proving its adaptation for these types of systems.
6



4.1.1. System definition

The system used in this example is the one presented in [1]. It corresponds to a beam of normalized length l¼2 with
one end clamped and the other hinged. Motion equations for the first two vibration modes have been derived from the
Galerkin procedure and are given by the following:

€u1þ2Ec1 _u1þo2
1u1þEnf nl,1ðu1,u2Þ ¼ F1 cosðOtÞ

€u2þ2Ec2 _u2þo2
2u2þEnf nl,2ðu1,u2Þ ¼ F2 cosðOtÞ ð20Þ

where ðu1,u2Þ are the amplitude of the first and the second mode of vibration, ðo1,o2Þ the first two natural frequencies,
ðc1,c2Þ the modal damping coefficients, O the excitation frequency, and lastly ðf nl,1,f nl,2Þ the nonlinear forces given by

f nl,iðu1,u2Þ ¼ ai,1u3
1þai,2u2

1u2þai,3u1u2
2þai,4u3

2, i¼ 1;2 ð21Þ

For the remainder of this example we will consider that E¼ 10�4, and n¼ 1=4. The numerical values for the other
parameters in Eqs. (20) and (21) are listed in Table 1.

Note that the excitation frequency is now denoted O. In the case of primary resonance we will set O¼o and search for
solution under Fourier series with fundamental frequency o (see Eq. (2)). In the case of subharmonic resonances we will set
O¼ no and still search for Fourier series with fundamental frequency o¼O=n. This approach provides a convenient way to
decrease the fundamental frequency of the Fourier series and therefore expand harmonic content without any procedural
modification.

Lastly, the selection parameters for the AHBM are set to rf ¼ 10�8 and rb ¼ 10�10 for the remainder of this example.

4.1.2. Primary resonance

A first simulation is carried out to obtain the primary system resonances. As explained in the previous section, the excitation
frequency O is equal to the fundamental frequency o in the development in Eq. (2). The maximum number of harmonics is set
equal to Nh¼20 for HBM and Nm

h ¼ 20 for AHBM. In this case the development in Eq. (2) includes both even and odd multiples
of the fundamental frequency o¼O. The nonlinear algebraic system given by the HBM (or the AHBM) can then be solved by
means of an arc-length continuation. Lastly, the excitation frequency is expressed as O¼o2ð1þsÞ with s 2 ½�0:05;0:15�.

The frequency response is depicted in Fig. 2 while the number of retained variables for each dof is depicted in Fig. 3(a,b). In
order to clarify the results presentation (no overlapping on the plot due to turning point and thus multiple solutions for the
same detuning value) the x-axis in Fig. 3(a, b) has been changed from s to ‘‘point number’’ corresponding to the position on
the curve (Fig. 2). Although the number of variable have been divided by more than 4, a good match still remains between
solutions. The protocol maintains odd harmonics up to the fifth depending on the excitation frequency and, as expected,
removes all even harmonics. In the end, 10 even harmonics and at least seven odd harmonics will have been removed by
applying the selection procedure. The proximity of the two solutions is illustrated by depicting the following error estimators:
�
 the relative error between HBM and AHBM solutions:

Esol ¼
J ~U HBM�

~U AHBMJ

J ~U HBMJ
ð22Þ
�
 relative error between strain energy:

Estrain ¼
9SHBM�SAHBM9

9SHBM9
ð23Þ

with

SMeth ¼
1

2

o
2p

Z 2p=o

0
TUMethðtÞKUMethðtÞ dt

!
ð24Þ
Table 1
List of parameter used for the resolution of Eq. (20).

Param. i¼1 i¼2

oi 3.8553 12.4927

ci 100 100

ai,1 8.27 30.8

ai,2 9.24 33.12

ai,3 33.12 34.41

ai,4 11.47 114.84
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in Fig. 3(c,d), where it is visible that both error estimators Esol and Estrain defined in Eqs. (22) and (23) lie, respectively, under
2.5�10�7% and 2�10�3%.
4.1.3. Secondary resonance

Let us compare the two natural frequencies given in Table 1; it can be seen that o2 ¼ 3o1ð1þ0:08Þ, which leads to
conclude that a 1:3 internal resonance can occur in this system. Consequently, the present section will involve searching
for the system subharmonic resonance induced by this 1:3 internal resonance.

As explain in Section 4.2.1 the excitation frequency of Eq. (20) is set at O¼ no with n¼9 which therefore yields a
fundamental frequency of development in Eq. (2) of o¼O=9. The maximum number of harmonic is set to Nh¼27 for the
HBM and Nm

h ¼ 27 for the AHBM. In this case the development in Eq. (2) contains frequencies of the form kO=9 from k¼1 to
27, hence the maximum frequency contained in this development would be 3O.

Let us note that the search for a subharmonic solution is not trivial since it does not bifurcate from the primary
resonance response. We were led to run a polynomial homotopy algorithm [7] at O¼o2ð1þ0:05Þ in order to derive a
starting point for the arc length continuation method.

Once the starting point has been computed, this simulation is carried out with both HBM and AHBM. Frequency
responses are depicted in Fig. 4 while the number of selected variables for both dof is depicted in Fig. 5(a,b) (where, as
before, the x-axis has been changed to point number). The two methods yield very similar results, whereas the number of
selected variable in the AHBM is less than half the number of HBM variables. This finding has been confirmed in Fig. 5
(bottom left and bottom right), where the two error estimators Esol and Estrain defined in Eqs. (22) and (23) lie, respectively,
below 10�6% and 3�10�2%.

The harmonic selection method automatically remove all harmonics of the form 2kO=9 as would be expected.
Moreover, a selection takes place between harmonics of the form ð2kþ1ÞO=9. To illustrate this point, the harmonic content
of the two dof are depicted in Figs. 6 and 7 (where only harmonics of the form ð2kþ1ÞO=9 have been depicted). As an
example, for dof 1 (Fig. 6), it is observed that the 5=9O harmonic is never selected, the 21=9O¼ 7=3O is always selected,
and the 19=9O can be either selected or not depending on the point number. These two figures also indicate that the
response corresponds to a subharmonic resonance induced by an internal resonance. It is in fact clearly visible that the
dominant frequency for dof 1 is 1=3O while the dominant frequency for dof 2 is O.

As a final step, results are compared with a direct integration of motion equations for an excitation frequency of
O¼w2ð1þ0:0536Þ (which correspond to the point number 10). Results are plotted in Fig. 8, revealing a perfect match
between solutions.

In conclusion, the harmonic selection procedure may be applied even in the presence of internal resonance phenomena.
As a matter of fact, the selection procedure could prove quite useful in such cases. When solving these systems using HBM
the fundamental frequency o¼O=n can be set very small (i.e. with large n) leading to many (insignificant) terms in the
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Fourier development expressed in Eq. (2). The AHBM proposed herein is able to automatically suppress all useless terms,
thus offering a smaller set of equation to be solved.

4.2. Example 2: An industrial problem

4.2.1. System definition

The system studied in this example consists of a blade and a disk sector in rotation bounded by a dovetail joint where
friction can occur. The finite element meshes of the blade and the disk are shown in Fig. 9(a). There is two contact
interfaces and the meshes are assumed to be compatible at each contact interface. No boundary conditions are applied on
the blade (i.e. a free structure), and a zero displacement condition is imposed on the sector edges. Each structure is
subjected to centrifugal forces. From this FE model, a Craig–Bampton reduced order model was built, which entailed
retaining a set of Nnode nodes (for the blade and the disk) at each contact interfaces, plus another node at the blade tip
trailing edge (which acts as a control node). In addition Nmode dynamic modes with fixed interface were considered in the
Craig–Bampton reduction for each structure. At the interfaces, the unilateral contact law and the Coulomb friction law are
used in this example. Further details on this model are available in [5,6].

The resulting equation of motion for each structure s¼1,2 is given by

Ms €U
s
þCs _U

s
þKsUs

þFs
nl ¼ Fs

ex ð25Þ

where Ms (resp., Cs, Ks) represent the mass (resp., the damping and the stiffness) matrix, Fs
nl represents the nonlinear forces

and Fex the excitation force.
Since the nonlinear forces are only acting at the contact interface, the motion equations can be split into the following

form:

Ms
cc Ms

ca

Ms
ac Ms

aa

" #
€U

s

c

€U
s

a

2
4

3
5þ Cs

cc Cs
ca

Cs
ac Cs

aa

" #
_U

s

c

_U
s

a

2
4

3
5þ Ks

cc Ks
ca

Ks
ac Ks

aa

" #
Us

c

Us
a

" #
þ

Fs
c

0

" #
¼

Fs
ex,c

Fs
ex,a

" #
ð26Þ

where subscript c (resp. a) denotes for the contact nodes (resp. the linear nodes). Matrices are projected in a local frame
such that the vector of relative displacements at the contact interface is expressed as Ur ¼U1

c�U2
c and such that the

action–reaction principle reads F1
c ¼�F2

c .
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Fig. 6. Amplitude of odd harmonics of dof 1 in the case of a secondary resonance (� � �: HBM, 2J2: AHBM).
After applying the HBM projection (see Appendix A), the following motion equation is obtained in the frequency
domain for each structure s:

Ks
cc Ks

ca

Ks
ac Ks

aa

" #
~U

s

c

~U
s

a

2
4

3
5þ ~F

s

c

~0

" #
¼

~F
s

ex,c

~F
s

ex,a

2
4

3
5 ð27Þ

4.2.2. Determination of the contact forces

The friction forces ~F
s

c are evaluated with a dynamic Lagrangian frequency–time (DLFT) approach [17]. This technique
uses augmented Lagrangians which allow for calculation without any softening of the non-smooth contact and frictional
laws. A time marching procedure in the time domain is also required to fit the contact constraint. The main advantage of
this method is that, at convergence, results are not dependent on any penalty coefficients. In most research focusing on
DLFT [5,17], motion equations are condensed on the nonlinear dof and on the relative dof. Since in this example one of the
structures is free we would prefer to avoid condensing our model in order to both eliminate any potential numerical issues
(i.e. singularity of the stiffness matrix for the blade), and witness the effect of the selection procedure on all dofs. In the
frequency domain the contact forces are expressed as a penalization of the motion equations; however, since no
condensation has been applied, the definition of contact force differs slightly from that in [17]. We have defined contact
forces herein as follows:

~k ¼ ~F
1

c ¼�
~F

2

c ¼
1
2ð
~F

1

ex,c�K1
cc
~U

1

c�K1
ca
~U

1

a�ð
~F

2

ex,c�K2
cc
~U

2

c�K2
ca
~U

2

aÞÞþEð ~U
1

c�
~U

2

c�
~X rÞ ð28Þ
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Fig. 7. Amplitude of odd harmonics of dof 2 in the case of a secondary resonance (� � �: HBM, 2J2: AHBM).
where E is the (pseudo) penalty coefficient and ~X r is a new variable of relative displacement computed in the time domain
so as to ensure compliance with both the contact and friction laws. In theory the penalty coefficient E can be chosen
arbitrarily since, at convergence, results do not depend on E. However Charleux proposed to take E in the order of
magnitude of the spectral radius of the stiffness matrix K [5]. In this example we took E¼ 104.

The couple ( ~k, ~X r) is determined through an AFT procedure as detailed in [17].
The contact forces will be divided as follows:

~k ¼ ~k ~u�
~k ~x ð29Þ

with

~k ~u ¼
1
2ð
~F

1

ex,c�K1
cc
~U

1

c�K1
ca
~U

1

a�ð
~F

2

ex,c�K2
cc
~U

2

c�K2
ca
~U

2

aÞÞþEð ~U
1

c�
~U

2

c Þ

~l ~x ¼ E ~X r ð30Þ

We will now briefly recall the main steps involved in calculating ~k:
�
 From a given vector ~U ¼ ½ ~U
1
; ~U

2
�, compute the vector ~k ~u in the frequency domain along with its counterpart k ~u in the

time domain.

�
 For each time step n, a prediction kn

pre of the contact force in the time domain is computed under the assumption that
the nodes had not moved from their position at time step n�1.
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(top: amplitude of dof 1, bottom: amplitude of dof 2).

Fig. 9. Finite element model of the system considered in example 2: (a) blade and sector FEM; (b) detailed view of the dovetail joint.
�
 kn
~x is computed in the time domain in order to satisfy the contact and friction states (separation, stick, slip) given by the

prediction kn
pre.
�
 k is computed using the relation kn
¼ kn

~u�kn
~x , and ~k is given by a FFT of k.

Additional details about can be found in [17], which provide clear explanations of each step of the contact forces
computation procedure.
4.2.3. Simulations

The simulations have been carried out with a reduced model in which 2� (3�8)¼48 nodes have been retained on the
contact interface. The number of dynamic modes retains in the Craig–Bampton reduction equals 11 for the blade and the
sector. We ultimately produced a model with n1 ¼ 159 dofs for the blade(¼[(48 nonlinear nodes þ 1 control node)�3 dof
per node þ 11 modes]) and n2 ¼ 156 dofs for the sector(¼[144�3 þ 11]).

For this simulation, a harmonic force f assuming the form f ðtÞ ¼ A cosðotÞ has been applied on the normal component of
the control node. The force amplitude is set at A¼0.2. Simulation takes place around the first mode of the system, and the
13
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Fig. 10. Amplitude response of the control node in the normal direction: comparison between HBM (n) and AHBM (J).
problem is solved with HBM with Nh¼20 harmonics (leading to a problem with 12 915 unknowns) and AHBM with
Nm

h ¼ 20 maximum harmonics. Selection parameters have been set at rb ¼ 10�10 and rf ¼ 10�8. The Jacobian matrix used
to compute the prediction (Eq. (16)) is computed semi-analytically as indicated in [17]. Note that in this simulation all
harmonics (continuous component, odd and even harmonics) have been retained. From a preliminary computation with
only one harmonic, we were able to observe that the continuous component of the solution is greater than its harmonic
component; therefore, the parameters Ed

k of Eq. (17) have been computed without the continuous component in order to
avoid rounding off errors, as discussed in Section 3.3.

Fig. 10 shows the amplitude response of the control dof in the normal direction, no differences can be observed
between HBM and AHBM results. Fig. 11 displays the various kinds of error. This illustration confirms that HBM and AHBM
solutions are very close to one another since the relative error between HBM and AHBM solutions (Eq. (22)) is less than
42�10�4% for the blade (Fig. 11b) and the sector (Fig. 11c). The relative difference between strain energy (Eq. (23)) is also
small, lying below 1.5% for the blade (Fig. 11d) and below 0.04% for the sector (Fig. 11e). Lastly, Fig. 11a reveals the error on
motion equations defined by the following:

Eeq ¼

Z 2p=o

0
JM €XþC _XþKXþF frð

_X Þ�FexJ dt ð31Þ

once again confirming that the HBM and AHBM solutions are very close to each other.
The number of selected Fourier coefficients during the computation is depicted in Fig. 12d. It can be seen that the

number of variables is significantly reduced compared to HBM. Solutions lying out of the resonance zone are computed
with only 7.3% of the total number of variables (945 Fourier coefficients for the AHBM vs. 12 915 Fourier coefficients for
the HBM) whereas inside the resonance zone the number of selected Fourier coefficients increases until reaching a
maximum corresponding to 93% of the total number of variables (12 000 Fourier coefficients for the AHBM against 12 915
Fourier coefficients for the HBM). Figs. 13–15 present the matrices of selected Fourier coefficients for the blade at three
different frequencies. These figures indicate that solutions lying out of the resonance zone are computed with just the
continuous component and the first harmonic (Fig. 13), then when approaching the resonance, some Fourier coefficients
are added (Fig. 14), and finally in the resonance zone nearly all Fourier coefficients of all dof are selected (Fig. 15). The
selection procedure leads to a total time savings on the order of 50% (Fig. 12).

5. Conclusion

This paper has introduced a new adaptive harmonic balance method and applied it to two examples. The harmonic
selection technique relies upon both a tangent predictor computation and a spectral energy evaluation within the
predicted vector. Unlike most existing adaptive harmonic balance methods, this new method defines a number of selected
14
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tangent dof (y direction) and control node and CB modes.
Fourier coefficients for each dof. Moreover, the addition or removal of variables does not require an a priori increment on
the number of harmonics: the selection algorithm on its own is able to determine which Fourier coefficient should be
added or removed. The efficiency of this new AHBM has been demonstrated in various simulations conducted within the
scope of this paper. Three examples have been considered, a small and simple system with smooth nonlinearity, a small
system with cubic nonlinearity featuring internal resonance and an industrial problem with non-smooth nonlinearity.
In all examples, when systems are excited in a quasi-linear zone (i.e. away from the resonance), solutions can be computed
with a small number of Fourier coefficients; moreover, when systems are excited in the resonance zone, the number of
retained Fourier coefficients varies with both dof and frequency. This procedure allows for time savings on the order of 50%
compared with a classical HBM calculation and without deteriorating the quality of solutions. This method should allow
handling large problems of great complexity, and especially problems presenting geometric nonlinearities or friction
damping.
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Fig. 15. Matrices of selected Fourier coefficients for the blade at o¼ 4:089 rad s�1. From top left to bottom right: normal dof, tangent dof (x direction),

tangent dof (y direction), control node and CB modes.
Acknowledgments

The authors would like to thank the Snecma Company for its technical and financial support. This research has been
performed within the scope of the MAIA mechanical research and technology program sponsored by CNRS, ONERA and
SAFRAN Group.

Appendix A

This appendix will review the harmonic balance method equations. Let us start by considering an n-dof nonlinear
system whose motion equations are given as follows:

M €UþC _UþKUþFnlðU, _U Þ ¼ Fex ðA:1Þ

Periodic solutions UðtÞ of Eq. (A.1) are then sought according to the following form:

UðtÞ ¼U0þ
XNh

k ¼ 1

Uc
k cosðkotÞþUs

k sinðkotÞ ðA:2Þ

Next, by substituting Eq. (A.2) in Eq. (A.1) and projecting the expression obtained onto the ð1,½cosðkotÞ,sinðkotÞ�Þ basis
using the following scalar product:

/f ,gS¼
Z 2p=o

0
f ðtÞgðtÞ dt ðA:3Þ

a set of nð2Nhþ1Þ nonlinear algebraic equations can be derived as given by

KðoÞ ~Uþ ~F nl ¼
~F ex ðA:4Þ

with KðoÞ being the dynamic stiffness matrix, expressed as

KðoÞ ¼ diagðK,LkðoÞ1rkrNh
Þ ðA:5Þ

LkðoÞ ¼
K�ðkoÞ2M koC

�koC K�ðkoÞ2M

" #
ðA:6Þ

~U is the vector of unknowns, ~F nl is the vector of nonlinear forces and ~F ex is the vector of external forces. All these vector
marked with a ~ lie in the frequency domain and assume the following form for a given vector ~X :

~X ¼ ½X0,Xc
1,Xs

1, . . . ,Xc
Nh

,Xs
Nh
�T ðA:7Þ
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