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Abstract

Snaking bifurcations in a chain of mechanical oscillators are studied. The

individual oscillators are weakly nonlinear and subject to self-excitation and

subcritical Hopf-bifurcations with some parameter ranges yielding bistability.

When the oscillators are coupled to their neighbours, snaking bifurcations

result, corresponding to localised vibration states. The snaking patterns do

seem to be more complex than in previously studied continuous systems,

comprising a plethora of isolated branches and also a large number of similar

but not identical states, originating from the weak coupling of the phases of

the individual oscillators.
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1. Introduction

Spatially localised states of dynamical systems have been studied in a

large number of different fields in the sciences and in engineering. While

for linear systems Anderson localisation was the key to quite a satisfactory

understanding, in nonlinear dynamical systems the quest to understand lo-

calisation seems far from settled. For a long time progress seems to have

been largely confined to conservative nonlinear systems, where solitons and

breathers made their appearance. Only later, dissipative systems have come



into focus, with first work based on tracing solitons into the driven and dis-

sipative regime, introducing dissipative solitons. In parallel to the study of

solitary states in conservative and dissipative systems, another breakthrough

to the understanding of spatial localisation in dissipative localisation was

accomplished in the study of subcritical bifurcations in pattern-forming sys-

tems, where the concept of branching has emerged and is a well-established

field of study today.

Branching is today well known in a number of disciplines, amongst others

in optics [1], granular matter [2], structural mechanics [3][4][5][6][7][8], and

mostly in fluid dynamics [1][9][10][11][12][13], and magnetohydrodynamics

[14][15]. The first studies into the topic have probably emerged in the field of

binary-fluid convection, where spatially localised convection rolls have been

observed in water-ethanol mixtures [9] or helium [10]. There localised con-

vection domains of arbitrary length are found to be stable, being surrounded

by the conductive state.

In terms of bifurcation diagrams, the localised states have shown to be

arranged in a unique and fascinating way, giving birth to what is called a

snaking structure [11][12][15][6]. The snaking structure has e.g. been stud-

ied a lot in the one dimensional [16] and the two dimensional [17] Swift-

Hohenberg equation, which is a convenient and generic model system to

study fundamental properties of the arising dynamics.

A typical snaking bifurcation diagram involves two snaking solution branches,

intertwined into each other. Figure 1 gives an example from convection [12]

to illustrate the phenomenon. For the bifurcation diagram (left panel), the

average kinetic energy “E” of the flow is plotted versus the Rayleigh number

“Ra” and two intertwined branches appear. In the right panel, nineteen so-

lutions are shown, which correspond to the numbers positioned close to the

snaking structure, in which spatially localised convective rolls can be identi-

fied. Notice that the higher the energy of the solution, the larger the number

of convection cells. Often the two snaking branches are also interconnected

through a number of unstable branches, and a ladder like pattern emerges

[17].

Although snaking bifurcations are now generally known and studied in

many fields of dynamical systems, it seems that there is hardly any study

into the phenomenon in the context of structural vibrations in engineering.

In many respects this is quite surprising, since non-linear oscillators with

subcritical Hopf bifurcations, often coupled to neighbouring oscillators of

the same type into chains or arrays, are actually very common models for
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a number of systems from engineering vibrations. And also the appearance

of bi- or multi-stability, which is obviously at the core of the phenomenon

[13][16][17], is well established in many of these engineering systems. More-

over, the emergence of spatially localised vibration states in structural dy-

namics is also a well known observational fact: e.g. in turbo-machinery,

there is the so-called effect of ’mis-tuning in rotors’[18][19]. Traditionally,

the origin of the localisation is thought to have its root in slight system in-

homogeneities, leading to linear localisation in the sense of Anderson. From

testing, strong localisation is confirmed, but proper validation of the theory

has up to now not been accomplished in the linear framework. In a sense

it is tempting to hypothesise that one of the key reasons behind might be

the non-linearity involved, which definitely becomes substantial for the large

local vibration amplitudes observed. To the best of our knowledge, in model

systems for turbo-machinery dynamics, snaking behaviour has never been

investigated. Also systems from fluid-structure-interaction, may show weak

non-linearity, Hopf bifurcation, and bi-stability, like models for aerofoil flap

dynamics [20][21][22][23]. Similarly in friction induced vibrations the emer-

gence of snaking could be well expected, with all the necessary ingredients

like flutter instability and bi-stability already known to exist, cf. e.g. [24],

[25].

We will thus consider a model system as simple as we can think of, but

derived from models actually in use in the turbo-machinery community and

the field of fluid-structure interaction and friction-induced vibration. We

choose a chain of (weakly non-linear) oscillators coupled into a linear oscil-

lator chain. For simplicity we close the chain into a cyclically symmetric

ring, which moreover has the advantage of bringing it even closer to models

used widely in turbo-machinery for rotors with a small but finite number of

blades attached. To obtain or model instability and spatially local bifurca-

tion, i.e. the bi-stability of the individual oscillator, we introduce non-linear

damping terms, i.e. non-linear terms depending on velocities. This approach

is heuristic and rather for simplicity at the present stage of understanding,

but can be thought of bringing into our purely structural model the corre-

sponding non-linear forcing and dissipation terms from surrounding flow, or

an involved friction interface.

With a velocity dependent force arising from a fifth order polynomial

representation, our system results in individual uncoupled oscillators show-

ing subcritical Hopf bifurcations and bistability, while the oscillator chain,

i.e. the coupled oscillators, yield snaking bifurcations that we determine
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by solving algebraic equations or time-integration. Interestingly, the results

do turn out different to many of the hitherto reported snaking bifurcation

patterns. The snaking observed in our study seems to show more than a

single snake-and-ladders pattern, and much of the pattern as a whole seems

to have disintegrated into isolated branches, now usually called isolas. Re-

viewing where these differences might come from, shows that the key features

where our system is different, can easily be identified. First of all, our system

is discrete. Individual self-excited oscillators are coupled, as e.g. in the work

of Yulin and Champneys in [26], where a one-dimensional periodic array of

optical cavities pumped by coherent light were studied. As in our results,

the effect of discreteness was studied, showing that the pinning region (the

parameter interval where the snaking occurs) gets progressively narrower as

the continuum limit is approached. The second characteristic of our system

that is slightly unusual is its finite size due to the cyclic symmetry, which

does not allow arbitrary wave-numbers or wavelengths to appear, and so

does put a constraint onto the system. Formally similar, Taylor and Dawes

in [27], studied snaking and localised states in spatially discrete problems for

modified periodic or phase shifted boundary conditions. Also in their case,

isola rather than continuous snakes have been observed.
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Figure 1. An example for snaking in a convection system. Adapted from

[12]. Left: typical snaking pattern with two intertwined solution branches

in the bifurcation diagram with kinetic energy “E” of the fluid plotted

versus the Rayleigh number “Ra” . Right: The stream-functions for

solutions as marked in the snaking pattern. The graphs show the spatially

localised convection patches.

2. The mechanical system

We consider a cyclic system of  non-linear oscillators, see Figure 2,

which are coupled via a weak linear spring of stiffness ∆. Each oscillator

has mass  and is linked to the ground via a linear spring  and a non-linear

damper which introduces a velocity proportional force of the form

 = −1 ·+ 3
·

3 − 5

·

5
 (1)

Here  denotes the displacement of the individual oscillator,
·
 the veloc-

ity, and we introduced the coefficients 1 3 5 to parametrise the velocity-

dependent force.
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Figure 2. The model system under study.

The evolution equations for the individual oscillators read


··
 + 1

·
 − 3

·

3

 + 5
·

5

 +  − ∆ (+1 + −1 − 2) = 0 (2)

where the stiffness ∆ couples the -th mass with the neighbouring ones. We

introduce the quantities 0 =
p
 ∆ = ∆  =


2
√


  = 0, divide

the equation (2) using the group 200, with 0 a reference displacement,

obtaining

1
··e + 2

·e − 3
·e3 + 4

·e5 + 5e − 6 (e+1 + e−1 − 2e) = 0 (3)

where

1 = 1 2 = 21 3 = 23
2
0
2
0 4 = 25

4
0
4
0 5 = 1 6 = ∆ (4)

and the e¤ superposed indicates that the new displacements are dimension-

less, e () = ()0 In (3) we defined a dimensionless time  = 0, which

allows to replace 

with 0



. Notice that we choose 3 5  0, thus the

third degree term of the velocity-dependent force introduces a destabilizing

force into the system, while the fifth degree term tends to stabilize it. Fig-

ure 3(a) lists the arbitrary but characteristic parameters that will be used in

the next sections. We will choose 1, i.e. the linear damping coefficient, as

our primary control parameter in a range from −04 to +06. In this range
the velocity dependent force changes its shape in a way such that for low 1
values a negative damping is introduced, which is often used in the literature

to model self-excited vibrations, such as in fluid- or friction-induced flutter

[28] or squeal [29].
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3. Numerical algorithm

3.1. Harmonic Balance Method (HBM)

The problem to solve is composed of  second order differential equa-

tions. In this study periodic vibrations will be considered only. We therefore

apply the Harmonic Balance Method (HBM) as an efficient numerical tech-

nique to obtain an approximation to the steady-state solution of the system.

In the following we briefly recall the main steps of the HBM, further details

can e.g. be found in [30]. Consider a time dependent signal  () and express

it in a Fourier series

() =
0

2
+

X
=1

( cos () +  sin ())  (5)

where  is the fundamental frequency,  is the number of harmonics con-

sidered and

 =
2



Z 2

−2
() cos ()  (6)

 =
2



Z 2

−2
() sin ()  (7)

A set of non-linear algebraic equations is obtained by substituting the di-

mensionless form of eq. (5) into (3) and projecting the equilibrium equations

on the Fourier basis 1 sin ()  cos () for  = 1   The projection

gives back a system of algebraic equations in which the unknowns are the

Fourier coefficients   of the  degrees of freedom (dof) considered. In

our particular case the dynamical system is autonomous (there is no forcing

term) and therefore the angular frequency of the solution  is also treated

as an unknown.

3.2. Numerical solution and continuation

The number of algebraic equations to be solved is (2 + 1). If only

one harmonic is considered ( = 1) the system of equations for the -th

mass is

7



⎧⎪⎪⎨⎪⎪⎩
5
8
4

5 (2 + 2)
2
 − 3

4
3

3 (2 + 2)  +  (2 − 1)+

+ (5 + 26)− 6 (−1 + +1) = 0
5
8
4

5 (2 + 2)
2
 − 3

4
3

3 (2 + 2)  +  (2 + 1)+

− (5 + 26) + 6 (−1 + +1) = 0

(8)

where  () is the first harmonic cosine (sine) coefficient. In subsection 4.1

it will be shown that in most parameter ranges even with just one harmonic

the approximate solution is very close to the exact one, therefore we will

mostly use one harmonic only, which leads to a system of 2 polynomial

equations of the fifth order. The other equation comes from the projection

of the equilibrium equation on 1 which would allow for evaluation of the

mean displacement over a period. As the non-linearities are odd and there is

no constant term in the equations, the mean displacement always vanishes.

The system of 2 polynomial equations has been solved using a Newton-

Raphson scheme implemented in the MATLAB R° function fsolve. For a fixed

value of 1, a set of initial conditions has been provided using steady state

solutions obtained from a time integration algorithm. Localised as well as

non localised solutions were used as a starting point for the Newton-Raphson

algorithm. To solve the system we set for one mass 1 = 0, which allows us

to solve for the fundamental frequency of the solution too. A continuation

algorithm, also implemented in MATLAB R°, continued the solution using a
pseudo arc-length scheme [31] which allowed to follow the solution trajectory

even when turning points were encountered [31].

4. Simulation Results

4.1. Single oscillator dynamics

In this subsection we concentrate our attention on the behaviour of a

single oscillator when it is isolated from the rest of the chain. The following

parameters will be used:

0 = 2 0 = 1 3 = 03 5 = 01 ∆ = 0 (9)

In Figure 3(b) we plot the maximum potential energy of the mass in dimen-

sionless form: emax = 1
2
e2max, where emax is the vibration amplitude at the

steady-state condition. The results have been obtained using three different

approaches: circles represent the result of the Time Integration (TI), the solid
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line shows the result obtained using the HBM where  () is approximated

with only the first harmonic, while the dashed line is the result obtained us-

ing the HBM with two harmonics, the first and the third. The choice of the

first and third harmonics takes into account the fact that the non-linearities

introduced are odd and symmetry breaking bifurcations are not considered

in this work. We start focusing on the TI results (circles). When 1 & 02

only one solution exists in which for every initial condition the vibration is

damped and vanishes. Decreasing 1, in the range 0  1 . 02 another solu-
tion appears with emax  0 which corresponds to a stable limit cycle of finite
amplitude. The single oscillator experiences a subcritical Hopf bifurcation,

and in the interval 0  1 . 02 two different stable solutions exist. Notice
that using TI, only the stable solutions can be found (Figure 3(b) circles),

while HBM also allows to obtain the unstable ones and to follow them. If

1  0 the steady state is not stable and the vibration amplitude grows up

to the upper branch with emax  0. In this range the only stable solution

is a limit cycle for which the amplitude grows when 1 is further reduced.

Figure 3(b) also shows the results obtained using HBM with one harmonic

(solid line) and with two harmonics (dashed line). First we note that in the

interval 0  1 . 02 another solution appears which represents an unstable
limit cycle. Differences in the two curves obtained with HBM appear for

the upper branch when 1 decreases, as higher vibration amplitude implies

higher contribution of the non-linearities. The solution which includes two

odd harmonics approximates very well the exact solution obtained with TI

scheme. Nevertheless if we just focus on the interval 0  1 . 02 we can see
that even the single harmonic approximation is never too far from the exact

solution1. In the following sections the oscillator chain dynamics is studied

in the bistability zone (0  1 . 02), and all the results presented will be
obtained using HBM with one harmonic.

1Also in Figure 8 (left panel) we will plot in the bifurcation diagram TI solutions

superposed to the HB solutions to demonstrate that the first order truncation is able to

capture the basic features of the exact solution. We are aware that this approximation

can smooth out some fine details of the true solution, but the aim here is to focus on the

overall result.
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Figure 3. (a) Dimensionless velocity dependent force plotted versus the

velocity for 1 = [−04−025−01  06] 3 = 03 5 = 01
0 = 2 0 = 1 (b) Maximum potential energy of one single oscillator

plotted against the bifurcation parameter 1 Blue dots: results of the time

integration at the steady state. Solid line: HB solutions with a single

harmonic. Dashed line: HB solutions with two odd harmonics.

4.2. Oscillator chain dynamics: linear system

Before studying the dynamical behaviour of a cyclically symmetric chain

of  = 12 non-linear oscillators we analyse the response of the underlying

undamped linear system with a dimensionless coupling stiffness ∆ = 001.

Due to the cyclic symmetry this system presents mostly pairwise degenerate

eigenfrequencies that can be computed as [32]

 = 1 + 2∆

µ
1− cos

µ
2



¶¶
 (10)

where N and 0 ≤  ≤ 2 for even  or 0 ≤  ≤ ( − 1) 2
for odd   Due to the weak coupling among the oscillators the natural

frequencies will lie on a narrow band. A possible set of orthogonal normal
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modes is [32]

0 = [1 1  1]

 (11)

 = [cos ()  cos (2)   cos ()]

 (12)

 = [sin ()  sin (2)   sin ()]

 (13)

The following table lists the natural frequencies [rads] and Figure 4 shows

the normal mode shapes of the undamped linear system.

0 = 1 1 = 1001 2 = 1005 3 = 1010

4 = 1015 5 = 1019 6 = 1020
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Figure 4. Mode shapes of the underlying linear system.

4.3. Oscillator chain dynamics: non-linear system

We now study a cyclically symmetric chain of  = 12 non-linear oscil-

lators in the bistability zone. The parameters used are the same we used for

the single oscillators above, except for ∆ = 001, which introduces a small

coupling between the oscillators. The results obtained from time integration

were used to derive initial conditions for the continuation algorithm. Figure

5 shows, in the left panel, the sum of the maximum potential energy of each
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mass emax = 1
2

P

=1 e2max = 1
2

P

=1

³e2 +e2´ plotted against the linear
damping coefficient 1 Many solutions appear to be entangled, making it

almost impossible to distinguish one from the other. Looking more closely

at the overall structure created by the superposed solutions we can observe

trajectories similar to snake and ladder branches [11][12][6][15] and twelve

’steps’ (corresponding to the number of oscillators) can be identified. Each

step is labelled with a red circle and the corresponding energy distribution is

plotted in the twelve bar plots on the right-hand side of Figure 5. In each bar

plot the mass number has been reported on the x-axis, while the bar height

is computed as e = e2max
max

¡e2max¢=112  (14)

such that the energy of each oscillator is normalized with respect to the one

which is vibrating with the largest amplitude.
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Figure 5. Left: bifurcation diagram for the non-linear oscillator chain. The

subcritical Hopf bifurcation of the individual oscillator is indicated, and the

complex snaking pattern linking the spatially homogeneous stationary

static state with the state where all oscillators are vibrating fills the zone of

bistability. Middle and Right: the average dimensionless energy of each

mass for the 12 equilibrium solutions which are marked with a red circle in

the snaking pattern.
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Figure 6. In each subplot from 1 to 12 the vibration shape, i.e. with the

corresponding phase information, of the solutions in Figure 5 (left panel,

red circles) is shown.

The bar plots 1−12 in Figure 5 shed some light on the system dynamics:
each step can be easily related to the number of masses on which the vibration

is localised. From the bottom to the top, at the first step one mass is moving

while the others are more or less motionless, at the second step two masses

are moving and so on up to the twelfth. This resembles the usual snaking

behaviour, where, for example in fluid dynamics, the steps can be related to

the increasing number of convection rolls. Especially in the bottom part of

our snaking (Figure 5, left panel) it is possible to see very close similarities

with the classical snaking picture. On the other hand, when increasing the

energy, and thus the influence of the non-linearities, the picture gets more

and more distorted and only seems to be bounded by the very last branch in

which all the masses are moving.

Consequently one might conjecture that the relative phases between the

individual oscillators play a special role in our system. Figure 6 thus shows

the vibration mode shape, indicating the relative phasing between the oscilla-

tors, in 12 bar plots numbered from 1 to 12, each-one related to one of the red

circles in the bifurcation diagram (Figure 5, left panel). It seems that there

is an additional sub-structure due to relative in- or out-of-phase behaviour

within our localised vibration zones. Sometimes an oscillator is out of phase
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with both of its neighbours, sometimes two adjacent oscillators go in phase,

but out of phase to their respective other neighbours. At the present state

of our study, we have not yet succeeded to obtain a deeper understanding of

this result, but think it is at the very heart of the multiplicity of solutions

observed. Further studies will need to follow.

At this point it also seems useful to have another look at the numerical

accuracy of our computational approach. Figure 7 shows in each column

results obtained from TI for four solutions using 1 = 01 and different initial

conditions. In particular from the left to the right the vibration is localised

on one mass, five masses, eight masses and on all the twelve masses. In the

first row the displacement time history is shown at the steady-state, in the

second row the solution is shown in the phase space and in the third row the

dimensionless maximum potential energy of each mass is given (TI results,

dark blue). To assess the effect of the first harmonic truncation on the energy

distribution among the different oscillators, HBM results are computed for

the same parameter sets and using the TI solutions as starting point. The

maximum potential energy, shown in Figure 7 (HBM results, pale yellow

bars), proves that the energy is distributed exactly in the same manner and

that the low-order approximation causes only a very small reduction in the

potential energy of each mass (due to the loss of solution details) which

seems acceptable for our purposes. Notice also that the shape of the solution

with all the masses vibrating corresponds very well to the last mode of the

linearised system, in which the motion is out-of-phase.
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Figure 7. Each one of the four columns corresponds to one solution

obtained with TI. In the first row the displacement time history, in the

second row the space state trajectories (
e vs e), in the third row the

dimensionless maximum potential energy of each mass in steady state

condition is shown (dark blue). In the third row, the energy distribution

obtained with single harmonic HBM is plotted (pale yellow).

4.4. Isolas: closed solution branches

Figure 5 has suggested that our snaking picture in the bistability zone

is more complex than the usual one. In Figure 8 (left panel) the snaking

picture observed before is thus plotted again, but this time the ensemble of

all the solutions is drawn in the background in pale gray, while four solutions

are highlighted using thick lines. It turns out that they have a well defined

shape resembling a figure eight. Hereafter we will refer to these branches

as isolas, since they are isolated. Despite the whole picture seems really

intricate, it is made up of a number of such isolas. Closer study shows that

our isolas are actually not strictly speaking isolated in the sense that there

are no other solutions branching off, but that there are further bifurcations

and interlinking solutions and connecting branches involved. We will come

back to this point below.
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In obtaining the snaking picture we found and plotted 53 isolas and con-

necting branches. Following the branches of the isolas, localised solutions

with a different number of vibrating masses are linked together, which is

conceptually linked to the snaking phenomenon. In Figure 8 four isolas are

selected with the peculiarity to have all the masses moving in out-of-phase

manner. On the left panel eight points, lying on the straight line 1 = 015,

are marked with a red circle. The dimensionless vibration shape of each

point is graphed in the correspondent bar plot on the right side. Focusing

on the pair of points that belongs to the same isola, we can see that increas-

ing the energy of the vibration leads to a higher number of masses involved:

for example the first isola links solutions localised on one and three masses

vibrating, the second isola links solutions localised on three and five masses

vibrating, and so on. Compare the points 2 − 3 or 6 − 7: they belong to
different isolas, nevertheless they are close in the bifurcation diagram. It can

be seen that in fact those points have a slightly different vibration shape.

Notice that the points 4 and 5 deserve some further attention: both of them

involve five vibrating masses, but the solution has a different vibration shape

(compare the bar plots of Figure 8). These considerations indicate how com-

plicated the snaking phenomenon for our vibration system is, as not only the

number of vibrating masses matters, but also the relative phases, i.e. the

vibration shape plays a fundamental role.

Again, and just to double-check, in the bifurcation diagram (Figure 8,

left panel) points obtained via time integration are denoted as red stars to

show which branch of the isola is stable. Discrepancies between TI and HBM

results are apparent and due to the 1 harmonic approximation, but small.
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Figure 8. Left: The overall snaking pattern is kept in the background, while

four isolas are highlighted. On each isola two points are marked with a red

circle and a number. Stars indicate time integration results. Right: eight

bar plots visualise the shape of the vibration for the corresponding solution

marked.

4.5. Isolas and connecting branches superposition

In this subsection we study in some more detail the bifurcation structures

of the isolas found. In Figure 9 the left panel shows on the background the

snaking picture (pale gray), while six solutions are emphasised to show on

which part of the pattern they lie. We chose isolas in the bottom part of

the pattern because they are less distorted than those in the upper part, and

the picture is thus easier to explain. Nevertheless any other choice of the

isolas would show the same main features. The six solutions are drawn in

pairs, using a solid and a dashed line, into the subplots (a), (b), (c) to show

to the reader how they are linked together. Looking at the subplot (a) one

can see that the left hairpin bends of the isolas are connected through an

independent branch which bifurcates from the isola. The same behaviour

can be observed in Figure 9(b) where the branch drawn with the dashed line

bifurcates from the isola drawn with the solid line. Figure 9(c) shows two

solutions which are very close to each other along one branch. All these six

solutions are then superposed to each other in Figure 9(d) to show how the

complex overall snaking pattern emerges. Looking at the six solutions as a
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whole, it can be clearly seen that the snaking branches appear and even the

peculiar structure of the ’ladder’ (in the sense that they connect two different

points of the same isola) is there, indicated by arrows in Figure 9(d).

In sum it almost seems that the usual snaking picture to be found in more

strongly non-linear, and perhaps more strongly dissipative systems, is kind

of broken into smaller elements, i.e. isolas and connecting branches. Further

work on clarifying these aspects is necessary.
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Ũ
m
a
x

(c)

0 0.1 0.2
ξ1

0

0.02

0.04

0.06

0.08

Ũ
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Figure 9. Left: Bifurcation diagram in the plane
³emax 1´  The snaking

structure is left in the background, while six families of solutions are

highlighted (thick line). On the right-hand side the six solutions are plotted

in pairs (using one dashed and one solid line) into the subplots (a),(b),(c).

In the subplot (d) all the six solutions are plotted together to show how

they arrange in the overall snaking structure.

4.6. Vibration shapes for different solution branches

Here an analysis of the vibration shapes is carried out to show how the

solution branches shown in Figure 9 relate to different vibration shapes. In

Figure 10 we plot in the left panel the solution branches again (from Figure

9(a)) in the plane
³emax 1´. On the isola of solutions (Figure 10) eight

points labeled from 1 to 8 are marked with a red circle. We note that the

points 8-1-2-3 belong to a part of the isola on which the vibration remains
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mostly localised on one single mass. After the solution number 3 a hairpin

curve brings us to another part of the isola on which the solutions 4-5 show a

vibration localised on three masses which vibrate in an out-of-phase manner.

Then, for the solutions 6 and 7 the vibration of two of the masses reduces

again and the vibration comes back to be localised one on just one mass.

We look now at the thick branch of solutions (Figure 10 left panel) which

connects two points of the same isola (thin solid line). The solution 11 shows

a vibration localised on one mass in a similar manner as for the solutions 7

and 8 on the previous isola. Moving towards the solutions 12-13-...-18 the

neighbouring mass starts vibrating in phase with the previous one and the

vibration remains localised on two masses (Figure 10) up to the intersection

between the connecting branch and the isola. To sum up: while the isola

comprises solutions localised on one or three masses, the connecting branch

corresponds to solutions localised on one or two masses.

0 0.05 0.1 0.15 0.2 0.25
ξ1

0

0.01

0.02

0.03

0.04

0.05

0.06

Ũ
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Figure 10. Left: two solution branches, or isolas, are drawn (Figure 9(a)) in

the plane
³emax 1´. On each branch eight points are marked and labelled.

For each point the corresponding bar-plot shows the shape of the vibration.

Figure 11 shows in the left panel the branches presented in Figure 9(c). In

this case the two patterns have both a figure eight shape and they approach

each other in the middle zone. The subplots on the right-hand side of Figure

11 give the shape of the vibration, while in Figure 12 the dimensionless energy
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of each mass e is plotted for the points marked with squares/circles in Figure
11 (left panel). The isola of solutions drawn with a thin solid line connects

solutions localised on two masses with others localised on three masses (Fig.

11 - Fig. 12). The thick solid line isola, instead, links solutions with three

vibrating masses with others with four vibrating masses. Moving to the top

of the isola, a smooth transition happens from one kind of localisation to the

other. It is interesting to compare the solutions 4-5-6-7 with the solutions

18-11-12-13. The two branches are very close together but are not coincident.

The solutions (18-4) (11-5) (12-6) (13-7) have the same number of masses

involved in the vibration, but with a different shape. Figure 12 shows that

even if the overall energy of the solutions (in pairs) is broadly the same, it

is just distributed differently among the masses due to the different shape.

For example if in the subplot 18 of Figure 12 the mass 7 is exchanged with

the mass 8 the same distribution that appears in the subplot 4 is obtained,

and the same reasoning can be done for the other three pairs, and so on for

the whole two branches of the two isolas. Note that this is a feature that

enriches the general picture of the snaking phenomena in vibrating systems

as the appearance of the many different branches could be thought of to

arise from some symmetries in the system. This could explain even why in

the upper part of our snaking structure (Figure 5 left panel) the solutions

appear more entangled: the larger the number of the masses involved in the

vibration, the larger the possibilities to arrange them in different ways.
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Figure 11. Left: two solution branches (Figure 9(c)) in the plane
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³emax 1´. On each trajectory eight points are marked and labelled with a
number. For each number the corresponding bar plot shows the shape of

the vibration.
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Figure 12. Dimensionless energy plotted for each solution marked with the

corresponding number from Figure 11.

5. Conclusions

In this work we have studied snaking bifurcations of a non-linear cyclically

symmetric oscillator chain. Bistability has been introduced in a heuristic

manner through non-linear velocity dependent forces. Solutions have been

obtained by time integration and harmonic balance techniques. The bifur-

cation diagrams resulting in the bistability zone resemble typical snaking

patterns, but also show marked differences. The solution branches are com-

posed of isolas, which have a figure eight shape in the bifurcation diagram.

When the isolas are put together, they picture a typical snaking pattern,

which has been observed in many other fields of physics. Still, our findings

suggest that the snaking behaviour in structural dynamics could be more

complicated due to the superposition of different non-linear mode shapes:
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solutions which have very different shapes present almost the same energy

content and thus the corresponding solution branches overlap or are very

close to each other in the bifurcation pattern.

Physically the snaking phenomenon is due to the weak nearest neighbor

coupling among the oscillators and to the positive linear damping coefficient

(1  0) which damps the small oscillations. In fact when one or few masses

are in the high amplitude limit cycle the neighbors can be still stable under

small oscillations and don’t necessary jump on the high energy solution (limit

cycle). We obtain therefore a multitude of solutions (from which, the snaking

behavior) because of this bistability between low and high amplitude limit

cycles.

From the present results it has become clear that more work on snaking

in engineering structures is necessary. Future work will need to focus both

on conceptual aspects, as well as on evaluating engineering relevance and

impact. As for conceptual understanding, more work is necessary on under-

standing analogies and differences between the systems under study here and

elsewhere. The larger number of states found in the present work needs to

be clarified, and the relevance of symmetries, symmetry breaking and imper-

fect bifurcations, as observed here, needs to be understood better. As for

engineering relevance, probably first another set of simplified and idealised

model systems, ideally extracted from fluid-structure-interaction, friction-

induced vibration, or similar fields, will need to be studied. Thereafter more

realistic models, e.g. derived from larger scale computer assisted modelling

systems (like finite element analysis or computational fluid mechanics) could

be studied.

As for our personal impression about future impact, a deeper under-

standing of snaking phenomena in engineering systems could make engineers

able to better and quantitatively more accurately predict localised non-linear

vibration states, which are known to be a source of numerous issues in en-

gineering and technology, like fatigue, strength, or noise. For these reasons

we hope that this work might serve as a starting point to conduct further

studies on localisation phenomena and snaking in vibration engineering.
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