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Success prediction in MOOCs A case study

Success prediction in Massive Open Online Courses (MOOCs) is now tackled in numerous works, but still needs new case studies to compare the solutions proposed. We study here a specific dataset from a French MOOC provided by the OpenClassrooms company, featuring 12 courses. We exploit various features present in the literature and test several classification models.

INTRODUCTION

Multiple models and data mining methods for learner success prediction in a Massive Open Online Courses (MOOCs) are proposed by many works in the literature [START_REF] Gardner | Student success prediction in MOOCs[END_REF], with different conclusions about which model provides the best performance. The quality of the results seems to highly depend on the input dataset, and on the selected or computed features. Generalization of the methodology for success prediction seems now ongoing [START_REF] Gardner | Student success prediction in MOOCs[END_REF], but we still need new case studies to improve the accuracy and insights obtained by these methods.

This work presents a case study on a new dataset, provided by OpenClassrooms, a major online courses french company. We test several models using classification algorithms and sequence-based approaches, such as process and pattern mining. Our study aims at enriching previous results obtained for different datasets published in the literature.

Our first contribution in this work is the comparison of 8 classification models. Random Forest, AdaBoost, Support Vector Machine (SVM), logistic regression and neural networks are first applied, followed by sequence-based approaches: an LSTM neural network, a process mining method and a proposal of a solution based on a sequence mining method. The second contribution consists in experimental results obtained from a new dataset for a success prediction task. While most papers only focus on 1-5 courses [START_REF] Gardner | Student success prediction in MOOCs[END_REF], we use here 12 different courses from the same platform.

The remainder of this paper is organized as follows: section 2 surveys previous work related to success prediction. Section 3 presents the dataset used for the experiments with details on the raw data used to compute features. Section 4 describes features obtained from the literature and their adaptation to our context. Section 5 presents the classification methods that we applied. The result of our experiments are detailed and discussed in section 6. We conclude by summarizing our work and drawing perspectives in section 7.

RELATED WORK

Prediction of dropout or success in MOOCs is carried out in numerous works [START_REF] Gardner | Student success prediction in MOOCs[END_REF]. The goal is to improve the performance of the learners by detecting a possible failure in advance. Such a detection could for instance lead to a teacher intervention to increase the learner engagement in the course.

The input data for such a prediction is based either on assignments [START_REF] Taylor | Likely to stop? predicting stopout in massive open online courses[END_REF][START_REF] Koprinska | Students at risk: Detection and remediation[END_REF][START_REF] Feild | Improving student performance using nudge analytics[END_REF][START_REF] Tomkins | Predicting post-test performance from online student behavior: A high school MOOC case study[END_REF][START_REF] Sweeney | Next-term student performance prediction: A recommender systems approach[END_REF] or clickstreams [START_REF] Ren | Predicting performance on MOOC assessments using multi-regression models[END_REF][START_REF] Ng | Modelling the way: Using action sequence archetypes to differentiate learning pathways from learning outcomes[END_REF][START_REF] Mukala | Learning analytics on coursera event data: A process mining approach[END_REF][START_REF] Boroujeni | How to quantify student's regularity?[END_REF]. Social activities can also be included to assess the learner engagement in a course [START_REF] Taylor | Likely to stop? predicting stopout in massive open online courses[END_REF][START_REF] Koprinska | Students at risk: Detection and remediation[END_REF][START_REF] Tomkins | Predicting post-test performance from online student behavior: A high school MOOC case study[END_REF].

Classification methods rely on common approaches such as linear regression, logistic regression, K-nearest neighbors, random forests, decision trees, support vector machines, hidden Markov models and neural networks. Because the course context is different for each study, it is hard to determine which model will be the best for a prediction task. Support vector machine is the best method obtained for [START_REF] Tomkins | Predicting post-test performance from online student behavior: A high school MOOC case study[END_REF] while random forest performs better in [START_REF] Sweeney | Next-term student performance prediction: A recommender systems approach[END_REF]. The conclusion of [START_REF] Taylor | Likely to stop? predicting stopout in massive open online courses[END_REF] states that prediction performance depends more on the features computed than on the model. Several temporal data mining methods are proposed in the literature [START_REF] Gardner | Student success prediction in MOOCs[END_REF][START_REF] Ng | Modelling the way: Using action sequence archetypes to differentiate learning pathways from learning outcomes[END_REF][START_REF] Mukala | Learning analytics on coursera event data: A process mining approach[END_REF]. Recurrent neural networks are assessed for dropout detection and experiments conclude that LSTM recurrent networks present the second best results in [START_REF] Wang | A nonlinear state space model for identifying at-risk students in open online courses[END_REF] (where a Nonlinear State Space Model is slightly better). [START_REF] Mukala | Learning analytics on coursera event data: A process mining approach[END_REF] proposes a solution based on process mining to emphasize a correlation between the way learners browse the course and their performances. Other approaches use sequence mining algorithms to predict learner skills [START_REF] Ng | Modelling the way: Using action sequence archetypes to differentiate learning pathways from learning outcomes[END_REF].

In the present work, we test some of the common shallow methods proposed in the literature, as well as neural network approaches. We also explore a solution based on process mining, and propose one based on sequence mining. For all these algorithms, we assess a large set of features adapted from the literature. 

INPUT DATA

OpenClassrooms is a MOOC platform that provides courses in various domains, from art and culture to computer science. All courses are freely accessible anytime, and paid services are proposed for supplementary features such as online help and certificates of achievement. Courses are generally composed of texts, videos or e-books that users can browse, read or download after a registration process. Based on the properties proposed in [START_REF] Gardner | Student success prediction in MOOCs[END_REF], these courses can be characterized as follows:

• massive, open and online: thousands of learners can follow the courses freely. Paid access is provided to get an access to a tutor or a completion certificate; • no-stakes: the learner can complete a course without certification or credit; • asynchronous: learners are free to register, browse the content, or complete a course. There is no constraint on dates for enrollment or assignments. This point is important and has an impact on the choice of features used as input for the prediction model; • heterogeneous: learners have various motivations and mostly come from francophone countries since courses are in french.

In this study, we are considering a dataset covering 12 courses in the domains of programming languages, project management and startup creation. The two leftmost columns of table 1 present for each course its name and the total number of learners that followed it, from 2014 to 2016.

The provided courses are composed of static web pages and quizzes/assignments, and do not contain any video. A course is composed of chapters, divided in sections, and of exercises based on quizzes and assignments. To succeed in a course, a learner must obtain an average grade on all exercises higher than 70/100 (the exercises are quizzes automatically graded).

The input format of learner activity is a clickstream dataset. Each access to a resource is recorded as one event in a log file. The granularity of the retrieved events varies among different courses. Apart from Audace Entreprendre, Node JS, XML and Java (in bold in table 1), which are traced at the section level, all courses present a chapter granularity.

The first step applied on the raw dataset consists in segmenting the learners' sequences of events into sessions. This session detection step aims to enrich some features related to the learners' regularity, the duration, or the number of events in the working sessions. The learners' sessions are determined from the raw sequences with the method proposed in [START_REF] Sadallah | Towards reading session-based indicators in educational reading analytics[END_REF], where a session is defined as a delimited and sustained set of pages visited by the same user within the duration of one particular visit to a particular website. Once sessions are determined, a cleaning task is performed: learners with only one session and no exercise attempt are removed. We associate this behaviour to learners that want to check the content of the course and do not really intend to follow it.

Discussion with the OpenClassrooms company about their needs lead us to define two groups for our goal of success prediction:

• passing group: set of learners that obtained an average grade equal to or higher than 70/100 for a course; • failing group: set of learners that did not obtain an average grade higher than 70/100. This group contains all the learners that either quit the course or completed all exercises but failed to obtain a grade higher than the 70/100 validation threshold.

Our choice for the terms "Pass / Fail" is based on [START_REF] Gardner | Student success prediction in MOOCs[END_REF], where it is defined that A student typically passes a course if they meet or exceed an instructor-specified overall grade threshold; otherwise they fail.

The two rightmost columns of table 1 present the number of learners in each group for the 12 courses of the dataset, after the cleaning step. As commonly encountered in MOOC contexts, these groups are clearly unbalanced: on average, the passing group represents 15% of the learners. Courses of table 1 are ordered according to the percentage of passing learners.

FEATURES

Table 2 presents our candidate features set. This set regroups an adaptation of the best features identified in [START_REF] Taylor | Likely to stop? predicting stopout in massive open online courses[END_REF][START_REF] Ren | Predicting performance on MOOC assessments using multi-regression models[END_REF][START_REF] Whitehill | Beyond prediction: First steps toward automatic intervention in mooc student stopout[END_REF][START_REF] Chen | Dropoutseer: Visualizing learning patterns in massive open online courses for dropout reasoning and prediction[END_REF][START_REF] Nagrecha | Mooc dropout prediction: Lessons learned from making pipelines interpretable[END_REF] and a set of regularity features proposed in [START_REF] Boroujeni | How to quantify student's regularity?[END_REF].

We needed to adapt some of the features due to differing contexts for our MOOC.

Several options are possible to generate features depending on the considered machine learning approach:

• basic features: features are computed for the whole considered period (after x weeks of the course for instance). These features do not evolve with time; • temporal features: features are computed for successive time periods in order to emphasize their evolution all along the course. The period commonly used in the literature seems to be one week [START_REF] Gardner | Student success prediction in MOOCs[END_REF]; • temporal features with stacking: similar to the previous method but each feature of a period is stacked with the previous one. Practically, it consists in adding the values of week n with those of week n+1. 

PREDICTION TASK

In this section, we present different classification methods tested for our prediction task of passing/failing. We start with the baseline methods commonly applied for this kind of task and then detail a process mining approach and our proposal based on a sequence mining solution.

Baseline approaches

In order to compare our results with other available works in the literature, we experimented with the following methods: Random Forest, AdaBoost, SVM, logistic regression, dense neural network and LSTM neural network.

A first step of feature selection is necessary for logistic regression and SVM models. We rely here on a wrapper method with a forward selection to emphasize the best features. A subset of features is iteratively built, starting from an empty set and adding one by one the features that best improve our model's accuracy for the whole set of courses. The process is stopped when accuracy does not increase anymore.

Except for LSTM neural network that directly relies on a sequence of features, other methods can deal with several types of input features: basic features, temporal features and temporal features with stacking. We test each possibility in our experiment, to determine in what measure this choice impacts the performance of the prediction.

Process mining approach

Process mining was initially a method to analyze business processes for process discovery, process conformance checking and process improvement. In the context of online courses, this method proposes to study the behavior of learners during a course, by emphasizing common paths in course resource navigation.

The classifier for our prediction task is built from the outputs of process discovery and conformance checking methods. Our process discovery relies on the Heuristic Miner algorithm [START_REF] Der Aalst | Process Mining: Data Science in Action[END_REF]. This algorithm is robust, and deals with the majority of common problems in process detection. Models for failing and passing are built with this algorithm for each course. Our conformance checking solution relies on an algorithm based on an alignment method [START_REF] Der Aalst | Process Mining: Data Science in Action[END_REF]. Our prediction task is carried out by computing the fitness of a learner on both failing and passing models, and affecting him to the group with the best fitness.

The input dataset of a process mining algorithm is a set of traces, where each trace represents the sequence of activities of one learner. In our context, an activity is an access to a resource and is defined with the id of this resource. Because the grades and the duration of each access are lost, a categorization step is carried out on each event of a learner's trace. It consists in updating the resource ids (the activity) as follows: for an exercise id, the new id depends on success or failure. For a chapter/section, the new id depends on the duration spent on the resource, using 3 classes of short/medium/long durations.

Sequence mining approach

With this approach, our goal is to determine whether different groups of learners present distinct frequent sub-sequences of events in their traces.

Our first step is to build the passing model (by retrieving the frequent sequence on only the passing learners) and the failing model. We rely on the VMSP algorithm to generate the maximal frequent sequences on both groups. Note that all sub-sequences of a maximal sequence are also frequent sequences, thus we still obtain all the frequent sequences.

Our second step is to compute a similarity score between a model and a learner's sequence. Our proposal consists in tessellating the new learner sequence with the larger frequent sub-sequences of the models. Practically, we try to map each frequent sequence on the learner sequence. The mapping obtained is used to compute a similarity score:

1. for a frequent sequence of length n in the model, generate all k-grams with k between 2 and n; 2. map all k-grams one by one on the learner sequence, keeping the mapping with the larger k-gram; 3. repeat the steps 1-2 for all frequent sequences; 4. for each item position of the learner sequence, a score is computed as the length of the longer k-gram that maps this position. The similarity score is then obtained by summing up all these positions' scores.

The input dataset for this method is similar to the one used for our process mining approach. Each learner's event is categorized with our previous method (see section 5.2).

EXPERIMENTS

For all the following experiments, a cross validation 80% train -20% test is carried out 10 times on each course separately. For the neural network approaches, the training set is divided into a train set, a validation set and a test set. Input features are standardized. The computation of temporal features is carried out by grouping the sessions into 7 days periods. For each period, all features, except the regularity ones, are computed.

Neural networks present the advantage of avoiding the laborious feature selection step, but still need some tuning for determining a correct architecture with its optimization parameters. Our first task was to assess several candidate architectures, varying the number of layers and units. Our prediction tasks were carried out on all courses and results were aggregated. The best accuracies were obtained with the following parameters: [Dense Layer of 512 units, Dropout layer, Dense Layer of 256 units, Dropout layer, Dense layer of 1 unit with a sigmoid activation].

A similar search was carried out for the architecture of the LSTM solution, leading to the following parameters: [LSTM layer of 32 units, Dense layer of 1 units with a sigmoid activation]. The input of the LSTM algorithm, a time series, was computed as follows: each session is considered as a time step. For a specific learner, the input features for time t is computed with the learner t th session and each element of a learner's time step is stacked with its previous element (a padding is applied to provide the same time's series length for each learner).

Finally, in order to assess our prediction at different time steps of the learning process, classification tasks are tested on truncated versions of the sequences. Experiments provide results for 25%, 50%, 75% and 100% of learner's sequence length (number of events).

In the following, the best features for random forest, logistic regression, SVM and AdaBoost models are first presented. Second, the results of the prediction task are detailed for each model.

Best features selection

The best features obtained for the shallow methods are presented in table 3. The best features for SVM and logistic regression are obtained with the wrapper method described in section 5.1. Best features on each course were computed with a 10 times 80%-20% cross validation, leading to a score for each feature depending on its ranking. These scores were then aggregated among the courses. For random forest and AdaBoost, the weights provided by the learning algorithms have been used. For each method and sequence length, we selected the features with the best scores until a sudden drop appeared (the elbow method).

Clearly, the number of best features decreases with the increase of the sequence length available for the classification task, leading to the sole use of marks (feature marks) for full length. The marks feature is obviously pertinent for all sequence lengths.

If we ignore marks, random forest, logistic regression and SVM seem more related to inter-activity periods features while AdaBoost is associated to activity features. The best features concern mainly the marks, the activity intensity and the activity intensity between assessments. No regularity feature appears in the best features list for any model.

In the following, the aggregated best features obtained for SVM and logistic regression models are used to provide the results of our prediction task.

Best models

Table 4 presents the aggregated accuracies obtained for each model on each course separately, with basic features, temporal features and temporal features with stacking.

Each row is associated to a model and the columns present the sequence length used to fit the model (25%, 50%, 75% and 100%). The sub-columns (A., P., F.) stand for All, Pass and Fail, respectively for the overall accuracy, the accuracy for the passing learners and the accuracy for the failing learners.

Among the shallow classification methods, the Adaboost and logistic regression models present the more balanced results on both the passing and failing groups: Adaboost seems more reliable to detect the failing learners while the logistic regression model performs better on the passing group. The Random Forest solution provides good results on balanced courses but clearly fails on very unbalanced ones (see the 28% accuracy on the passing group). The SVM model presents results similar to the logistic regression model, except for the passing learner accuracies which are clearly lower.

Compared to the best shallow models, the dense neural network presents a poor performance on passing learners and does not significantly outperform failing learner prediction. In our opinion, the lack of passing learners for each course in the train set does not enable to fit appropriately the parameter of the network. The LSTM model provides a result similar to the dense neural network, but with a higher computation cost. Hence we do not recommend these neuralbased models in our context.

The process mining model presents very low scores. Our explanation is that the graphs generated by the heuristic miner algorithm on the two learner groups (passing and failing) contain the same navigation paths. Traces for passing or failing learners can then be replayed on both graphs with a good fitness.

A similarly bad result is also obtained with the sequence mining model. It can be explained by the fact that frequent sequences of failing learners are short and almost all included in the frequent sequences of the passing learners. Passing frequent patterns are more numerous and longer (longer patterns involve an increase of the similarity score between a model and an input learner trace). It is then more likely to find a better similarity between a learner sequence and the passing learner model. Our conclusion for the process and sequence mining approaches is that passing and failing learners do not present a discriminant behavior on the way they browse the courses.

The second and third parts of table 4 present the average accuracies when temporal features are used for the input dataset of the models, without and with stacking. Compared to the results obtained with the basic features, the results with the temporal features with and without stacking are lower for all models on all sequence lengths, with a clear drop on the accuracies of the passing learners. To conclude, the temporal features do not provide any improvement in our experiments.

To summarize, our experiments show that shallow models present the best results for our dataset. Among them, Ad-aBoost and logistic regression present the best results respectively for the failing group and the passing group. Another observation is that contrary to several experimental results [START_REF] Ng | Modelling the way: Using action sequence archetypes to differentiate learning pathways from learning outcomes[END_REF][START_REF] Mukala | Learning analytics on coursera event data: A process mining approach[END_REF], our temporal data mining approaches (temporal features, LSTM, process mining and sequence mining solutions) do not perform well on our data set. Our conclusion here is that no difference can be found in the way learners access the course resources.

CONCLUSION

The objective of our work was to assess several solutions for predicting success in the context of Massive Online Open Courses, using a new dataset provided by the OpenClassrooms company, a major online course enterprise in France.

From our experimental results, we reached the following conclusions:

• failing and passing learners do not seem to present differences in the way they browse a course. Neither specific paths nor specific patterns are identified with our proposed solutions to discriminate between passing and failing learners; • best features depend on the model used for the prediction tasks; • temporal features do not increase the performance of the prediction task; • the best models to detect failing and passing learners are respectively based on AdaBoost and logistic regression solutions.

A short term perspective work is to apply the same prediction tasks on other MOOC datasets, in order to validate our previous conclusions in other learning environments.

Table 1 :

 1 Number of learners per group for each course of the OpenClassrooms dataset, after cleanup. The first column presents the total number of learners and the two last ones detail the number of passing and failing learners.

	Name	# users	# pass	# fail
	Java	7761	34 (0%)	7727 (100%)
	XML	855	10 (1%)	845 (99%)
	Ionic	960	46 (1%)	914 (99%)
	Rubys	149	5 (3%)	144 (97%)
	Node JS	2227	81 (4%)	2146 (96%)
	Arduino	2487	115 (5%)	2372 (95%)
	Bootstrap	8402	727 (8%)	7675 (92%)
	Audace Entr.	225	26 (12%)	199 (88%)
	JavaScript	8105	1803 (22%) 6302 (78%)
	Gestion Projet	1808	666 (36%)	1142 (64%))
	Twitter	817	328 (40%)	489 (60%)
	Web	7947	3502 (44%) 4445 (56%)

Table 2 :

 2 Features used for our experiments: this set is composed of features identified in our litterature review, adapted to the characteristics of our dataset (* indicates the features defined by a set of values).

	Category	name	description	abbrev.
		total duration	total time spent on the course	totalDuration
		window duration	time spent from the first event to the last	windowDuration
			one	
		linearity	ratio between the number of correct transi-	linearityRatio
			tions, w.r.t. the structure of the course and	
			the number of transitions in the sequence	
	Activity	# events per resource	# of accesses per resource	#eventPerR
		duration per resource	total time spent on each resource	durationPerR
		average duration per resource	avg duration spent on each resource	avgDurationPerR
		average session duration	avg duration of user sessions	avgSessionDuration
		average # events in session	avg number of events in each user session	avg#eventSession
		median of intertime	median of the time spent between sessions	medianInterTime
		duration before assessment *	time spent before each assessment	durationBeforeA
		# events before assessment *	# of events before each assessment	#eventBeforeA
		# sessions before assessment *	# of sessions between each assessment	#sessionBeforeA
	Inter-	# events per day before assessment *	average number of events per day between	#eventPerDayBeforeA
	activity		each assessment	
	periods			
		# sessions per day before assessment * avg # of sessions per day between each as-	#sessionPerDayBeforeA
			sessment	
		time since last event *	time without activity after 1, 2,. . . , n	timeSinceLastEvent
			weeks (n=7 weeks in our experiment)	
		PDH	measure of user activity concentration	PDH
			around a particular hour of the day	
		PWD	measure of user activity concentration	PWD
			around a particular day of the week	
		WS1	measure of how user regularly works on the	WS1
			same weekdays	
		WS2	measure of similar distribution of workload	WS2
			among weekdays, in different weeks	
	Regularity	WS3	similarity of time spent on each day of the	WS3
			week for different weeks	
		FDH	measure of the repetition of hourly pat-	FDH
			terns of activity over days	
		FWH	measure of the repetition of hourly pat-	FWH
			terns of activity over weeks	
		FWD	measure of the repetition of the daily pat-	FWD
			tern of activity over weeks	
	Assignment	marks *	all marks obtained for each quiz	marks

Table 3 :

 3 Best features for the different sequence lengths for random forest, AdaBoost, SVM and logistic regression models. This result is an aggregation of the best features obtained on each course separately. For each model and sequence length, features are ordered from most to least pertinent.

	Sequence	Random forest	AdaBoost		SVM			Logistic regression
	length							
	25%	marks,	durationPerR,	marks,		marks,	#eventPerR,	#eventPerR,	marks,
		#sessionPerDayBe-	avg#eventSession,	#sessionPerDayBe-	durationBeforeA, #ses-
		foreA, #eventBeforeA,	durationPerR, avgDura-	foreA, durationBeforeA	sionBeforeA,	#event-
		avgDurationPerR	tionPerR					PerDayBeforeA
	50%	marks, #sessionPerDay-	marks,	avgDura-	#eventPerR,	marks,	#sessionBeforeA,
		BeforeA, #eventPerDay-	tionPerR, durationPerR,	#eventBeforeA, #event-	#eventPerR,	marks,
		BeforeA		#eventPerR		PerDayBeforeA		#eventBeforeA
	75%	marks, #sessionPerDay-	marks,	avgDura-	marks, #eventPerDay-	marks, #eventPerR
		BeforeA, #eventPerDay-	tionPerR, durationPerR	BeforeA, #eventPerR,
		BeforeA				#sessionBeforeA	
	100%	marks		marks		marks			marks

Table 4 :

 4 Accuracies of the different models tested. A., P. and F. stand respectively for All, Pass and Fail

				25%			50%			75%			100%
			A.	P.	F.	A.	P.	F.	A.	P.	F.	A.	P.	F.
		Random forest	91% 28% 96%	93% 36% 96%	94% 47% 96%	98% 77% 98%
		AdaBoost	91% 41% 94%	93% 48% 95%	94% 59% 96%	99% 96% 99%
		SVM	88% 61% 90%	91% 64% 92%	92% 69% 93%	98% 89% 99%
	Basic	Logistic Reg.	88% 66% 89%	91% 71% 91%	93% 84% 93%	99% 100% 99%
	features	Dense NN	91% 37% 94%	93% 47% 95%	94% 59% 95%	98% 82% 99%
		LSTM	90% 38% 93%	91% 47% 93%	93% 55% 95%	97% 78% 98%
		Process mining	66% 47% 64%	72% 49% 71%	67% 54% 65%	64%	54%	58%
		Seq. mining	24% 85% 13%	24% 88% 9%	22% 95% 5%	18% 100% 0%
		Random forest	92% 9% 99%	92% 11% 99%	92% 12% 98%	92% 11% 99%
	Temporal features	AdaBoost SVM Logistic Reg.	90% 42% 94% 88% 60% 90% 87% 58% 91%	92% 46% 95% 89% 65% 90% 91% 67% 92%	92% 46% 96% 92% 72% 92% 92% 76% 92%	95% 55% 98% 99% 87% 99% 99% 90% 99%
		Dense NN	89% 36% 93%	90% 41% 93%	92% 48% 94%	94% 59% 96%
	Temporal features with stacking	Random forest AdaBoost SVM Logistic Reg. Dense NN	89% 16% 97% 91% 43% 94% 91% 66% 93% 89% 64% 90% 88% 36% 92%	90% 22% 98% 92% 47% 95% 87% 23% 95% 90% 61% 92% 83% 18% 88%	91% 24% 97% 93% 51% 96% 91% 57% 92% 92% 76% 92% 79% 17% 82%	92% 29% 96% 97% 67% 99% 91% 61% 92% 98% 91% 98% 78% 18% 83%