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Abstract—In this work, we present a new fusion method that
uses fuzzy set theory. This method is applied to the diagnostic
system rule bases. It aims at combining all the rule bases
into only one rule base and then taking into consideration the
characteristics of this base. The fusion method is characterized
by a hybrid fusion which combines rule fusion approach with
knowledge fusion approach. Knowledge fusion relies on the
distortion measure of various bases. This distortion measure
is integrated into the rule fusion process in order to generate
one rule base for improving the diagnostic system performance.
It is defined as the confidence degrees associated to each rule
base parameter. The confidence degrees are then integrated into
prediction procedure of the new diagnostic system.
Keywords: Data mining, Data fusion, Rule fusion,
Knowledge-based systems, Diagnostic systems, Fuzzy set
theory.

I. INTRODUCTION

Nowadays, several institutions and organizations combine
homogeneous data coming from different sources and/or pro-
duced at different instants. This situation is faced, in particular,
by medical centers which have to store a new set of data
each year. On the one hand, the data have to be exploited to
extract new information while on the other hand, it have to be
amalgamated with its older versions. The fusion procedure is
important to tackle this kind of problems.

In this work, we have the rule bases coming from different
harmonized sources, i.e. the rule bases have a significant
number of parameters in common. The objective of our fusion
is not limited only to augment the rule base but also to allow to
the diagnostic system to have more precise and more relevant
results for the new case prediction. This is possible by taking
into account the conflict of the merged rule bases and then
integrating it into prediction procedure of the new diagnostic
system.

There are three main types of fusion methods which can be
distinguished according to the conceptual level of information
[1]: data fusion, decision fusion and model fusion.

• Data fusion is a fusion process operated on the first con-
ceptual level of information. It consists of combining raw
data resulting from several sources or various primitive
levels extracted from only one source in order to deduce
perfect and less noisy data.

• Decision fusion is the solution of the problem modeling
applied on a specific data set. Several data sources and

several types of processing can respectively provide a
decision for the same problem. Thus, when several sen-
sors observe the same scene or where several independent
approaches make it possible to provide a solution then,
the decision fusion consists of confronting the solutions
suggested by various systems in order to choose only the
most most realistic one, or to combine these decisions in
order to choose a more powerful, more reliable or more
careful decision.

• Model fusion is a concept which combines data process-
ing and artificial intelligence. A model characterizes and
represents in a more or a less complex way the knowledge
that composes the advanced system. The model fusion
either builds the new knowledge model or adopts a
compromise of the precedents.

In our case, the decision fusion is usually applied and
is based on the data source confidences and relevance [2];
however, we have to know the exact information about each
source. Many methods such as that of the vote [3], that
of the classifiers collaborate [4] and others could be used.
Nevertheless, even when these methods are efficient, they
are unable to get the synthesis knowledge provided by each
source.

The fusion type that we propose in this study is a hybrid
fusion combining two types of fusion: rule fusion and knowl-
edge fusion. Besides, our fusion method is a model fusion
because it combines knowledge bases and rule bases of several
diagnostic systems in order to build a new diagnostic system.

This rule fusion consists of grouping several sources of rule
bases to obtain only one rule base. The knowledge fusion
consists of attributing the confidence degree to each parameter
of the new rule base diagnostic system. The confidence degree
is produced by measuring the conflict of several sources of the
knowledge base.

In this work, we have tackled the regularly confronted
problem of integrating the new case bases into a diagnostic
system. As an example, we take a diagnostic system which is
applied to medical bases. These medical bases are of the same
type and contain descriptions of endoscopic lesions. However,
each one of them has its own features when describing the
lesions.

This article is organized in the following way: in the second
section, we describe the diagnostic system on which our



method of fusion is applied and the architecture on which
our system is based. In section three, we describe the fusion
method. In the section fourth, we analyze the results obtained
through our method. We finish finally with a conclusion in the
fifth section.

II. DIAGNOSIS SYSTEM

The diagnostic system is composed of two bases: the
internal knowledge base and the external knowledge base.
The internal knowledge base is a rule base which enables
the diagnostic system to make a diagnosis. This rule base is
generated from a case base.
The external knowledge base is the representation of the case
base characteristics. It is considered as an interface that permits
to compare the rule bases of various systems.

Case
base

IKB

Fusion interfaceUser interface

Diagnostic System

IKB: Internal Knowledge Base
EKB: External Knowledge Base

EKB

Figure 1. Diagnostic system architecture.

Figure 1 represents the system architecture on which fusion
procedure is applied.

A. Internal knowledge base

The internal knowledge base is generated from the case base
which is a normal relation table consisting of N elements,
and each element is described by its own item set. An item
is composed of a discrete value. Each case of this case base
belongs to a single class label. The rules of internal knowledge
base are composed of item set and class label as the database
element. So the internal knowledge base is the rule base.

The rule is an implementation of the form X → c, where
X is the item set, and c is a label class. This rule is kind
of class-association rule and it is generated by the associative
classification method [5], [6].

The internal knowledge base is used by the diagnostic
system in order to predict the class of the new instance (the

new element) whose class label is undefined. The prediction
procedure used by the diagnostic system is described as in the
following way: Given a rule set from the internal knowledge
base which covers the new instance. This rule set contains the
rules of each class and the diagnostic system uses the best rules
of each class for prediction [7], with the following procedure:

1) Select all the rules whose conditions are satisfied by the
new instance.

2) From the rules selected in step (1), select the best k rules
for each class (i.e. the rules have the high weight).

3) Compare the expected average accuracy of the best k
rules of each class and choose the class with the highest
expected accuracy as the prediction class.

The diagnostic system uses multiple rules in prediction where
(a) the accuracy of rules cannot be precisely estimated, and (b)
one expects that any single rule can perfectly predict the class
label of every new instance satisfying its body. Moreover, the
diagnostic system uses the best rules instead of using all the
rules because there are different number of rules for different
classes and the diagnostic system doesn’t need to use low
ranked rules in the prediction when there are already enough
rules to make a prediction [6], [7].

B. External knowledge base

The external knowledge base is generated from the case
base like the rule base. It designed to be a fusion interface
to a diagnostic system. It is used to estimate the divergence
of different sources of a diagnostic system. The external
knowledge base attributes a linguistic value of uncertainty to
each item that composes the rule base in order to define the
importance of these items in the characterization of different
classes of a rule base.

The linguistic characterization is, in general, less specific
than the numerical one and more significant.

Before going to the presentation of the method external
knowledge base construction, we illustrate an example of
divergence between two rule bases. We take a item t which
is contained in a rule base A. It has a high frequency of
appearance in the representation of a class ci which can be
expressed by a strong degree of membership of the “very-
frequent” term of the class ci. In the rule base B, the same item
has a very low frequency of appearance in the representation
of the same previously mentioned class which is expressed by
a strong degree of membership of the “exceptional” term of
the class ci. In this example, we can remark a great disparity
in the consideration of the item t in the definition of the same
class of two distinct sources. So, the item t can be regarded
as an ambiguous one for defining the class ci.

The procedure of setting the external knowledge base is
composed of 3 steps (Figure 2): the first step regroups the
items according to their class label, then it generates a group
of items for each class label. The second, measures the
occurrence number of the items for each group (i.e. for each
class). In the last step, for each class, the membersip functions
for several frequency terms are generated. These membership
functions attribute a degree of membership of the specific
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Figure 2. The procedure of setting the external knowledge base

frequency term to an item. This step assigns, for each item, a
frequency term to each class.

Hence, the external knowledge base is composed of mem-
bership functions to each class label. To Define these mem-
bership functions, we denote:

• B = {X1, · · · , Xn} is a set of n cases.
• Ω = {ω1, · · · , ωm} is a set of m items which compose

the cases of B.
• C = {c1, · · · , cp} is a set of p class labels which also

compose the cases of B.
• A case Xi ∈ B is the k+1− tuple and its representation

is Xi = {x1, · · · , xk, c} where xi ∈ {xi1, · · · , xil} or
xi ∈ ∅ and xij ∈ Ω and x ∈ C.

• fci is the function which gives the standardized frequency
of the ωj to the label class ci :

fci(ωj) =
gci(ωj)

maxωk∈Ω(gci(ωk))

where:

gci(ωj) =
|{X ∈ B|ci ∈ Xandωj ∈ X}|

|{X ∈ B|ci ∈ X}|

The linguistic variable is characterized by a quintuple [8]–
[10]: (x, T (x), U, G,M)

• x is the frequency and is the name of the linguistic
variable.

• T (x) is the set of terms associated with the linguistic
value, in which the frequency is represented according
to the following set {Never, Exceptional, Rare, Usual,
Frequent, Very Frequent, Always}.

• U is a universe of discourse and U = {ωj ∈ Ω|fci(wj)}.

The terms of T (x) are characterized by fuzzy subsets defined
by the following functions of membership [11]:

• K: is the set of centroids of fuzzy sets obtained by the
algorithm of fuzzy c-means (FCM) [12] which is applied
to U such as K = {0, · · · , Ci−1, Ci, Ci+1, · · · , 1}.

• νi,α : corresponds to the membership function in the
linguistic term α. It is built from a set of instance

frequencies which belong to the class label i.

νci,α(fci(ωj)) =



1− (fci(ωj)− Ci)/(Ci − Ci−1)
if Ci−1 < fci(ωj) ≤ Ci

1− (fci
(ωj)− Ci)/(Ci+1 − Ci)

if Ci ≤ fci(ωj) < Ci+1

0 otherwise.

• µci,α : corresponds to µci,α(ωj) = νci,α(fci
(ωj)).

The functions of membership of the set T (x) are presented in
Figure 3.

frequency

µvery frequentµ frequentµ usualµ rare
µ except

Figure 3. Linguistic values of the variable “frequency”.

III. FUSION PROCEDURE

The fusion of the rule sets which are produced from differ-
ent data sets is little studied in the data fusion literature con-
trary to the artificial intelligence and more precisely in: non-
monotonic logic, belief merging, belief revision, etc. which
propose many combination operators of knowledge bases [13].

There are some applications combining the rule sets which
are produced from the case bases coming from several sources.
The merging operator proposed by these methods selects only
the rules which are shared by their sets. It can also regroup
all association rules of these sets.

Other applications defined by Zhang et al. [14] and Cheung
et al. [15] propose to integrate the new rules in order to update
the rule set which is considered as knowledge base.

Another one [16] compares the generated rules with the
existing knowledge in order to find out what is right and what
is wrong about this knowledge and it detects what has changed
since the last learning.

Fromont et al. [17] investigate the problem of learning
by inductive logic programming, symbolic rules that char-
acterize cardiac arrhythmia from multisource data such as
electrocardiograms or arterial blood pressure measures. They
propose a two-step strategy that uses monosource learning to
automatically bias and reduce the search space for multisource
learning. This approach is considered as monitoring search
rules.

Herein, an efficient and powerful knowledge fusion method
is proposed. This process merges rule bases in order to produce
a single one. Thereafter, in order to simplify the explanation,



an example of our fusion method is given where the fusion
procedure is applied on two rule bases (Figure 4). This method
merges two knowledge bases produced from two diagnostic
systems.

This fusion method consists of three steps: the first
measures the conflict betwen knowledge bases of several
diagnostic systems. The second step searches the similar
rules between the rule bases of several diagnostic systems.
The third step builds the new rule bases from the last rule
bases by adding, removing and changing rules of the last rule
bases.

Rule
Base

Internal Knowledge

External Knowledge

Diagnostic System A

Rule
Base

Internal Knowledge

Confidence Knowledge

Diagnostic System 
            A & B

Rule
Base

Internal Knowledge

External Knowledge

Diagnostic System A

Knowlege Fusion

Rule Fusion

Figure 4. Fusion process integrated in a diagnostic systems

In order to search similar rules in two rule bases, an
operator of computing similarity is defined. This operator
takes into account the distortion of the case bases from where
these rule bases are produced by measuring the conflict of
these case bases. In order to measure the conflict, we need to
define external knowledge.

A. Conflict measure of several sources

We propose a global measurement operator of conflict be-
tween p+1 sources. This operator applies to p knowledge bases
(BCE) deduced from p sources and to another knowledge base
which is deduced from the coupling of the aforementioned p
bases. This knowledge base is called F for simplification.

Our operator works in the following way: for an item t
and a class c, it recovers the uncertainty term α from F of
which the item t has the greatest degree of membership for
the class c. The linguistic term α is taken as a reference mark
for the calculation of disparity of p knowledge bases. Then for
each p base, the operator calculates the membership degree of
the item t to the linguistic term α and to the other linguistic
terms which are the direct neighbors of α for the class c and
we recover the highest degree of membership of one of these
linguistic terms. For example, the usual linguistic terms for
direct neighbors are ’rare’ and ’frequent’. Thereafter, we keep
the lowest value of the degrees of membership obtained from

p bases. In this context, the goal is to find a base in the p
bases which gives the level of representation of the parameter
t for the class c which is the farthest one from the average of
p bases. Then we deduce the degree of reliability (degree of
confidence) of a parameter after the fusion of p bases.

The whole above-mentioned procedure is followed by
the measurement of conflict between p sources (p bases).
This measurement is inspired by the method proposed by
Dubois and Prade [18]. In this work, a conflict is defined as
the distance that separates the classification of a parameter
between the new base (base resulting from fusion) and p
bases (bases which were amalgamated). We propose a global
measurement operator for the conflict between p sources (p
knowledge bases defined previously) of a class c.

In the following sections, we present how the new knowledge
base is set up, thereafter; we define how the referent linguistic
term is selected. Then we define the conflict operator and
finally we present the measurement of confidence.

Definition of the new external knowledge base which is
deduced from the p source coupling:

• B = {B1, · · · , Bp} is set of p case bases.
• Bi = {Xi

1, · · · , Xi
n} is the case base of n cases.

• Ω = {ω1, · · · , ωm} is a set of m items which compose
the cases of Bi ∈ B.

• C = {c1, · · · , cl} is a set of l class labels which composes
also the cases of Bi ∈ B.

• A case Xi
j ∈ Bi is the k+1−tuple and its representation

is Xi
j = {x1, · · · , xk, c} where xi ∈ {xi1, · · · , xil} or

xi ∈ ∅ and xij ∈ Ω and x ∈ C.
• fci is the function that gives the standardized frequency

of the ωj to the label class ci in all case bases of B:

fci(ωj) =
gci(ωj)

maxωk∈Ω(gci(ωk))

where:

gci(ωj) = |{X∈B1 | ci∈X and ωj∈X}|
|{X∈B1 | ci∈X}|

+ · · ·+
|{X∈Bl | ci∈X and ωj∈X}|

|{X∈Bl | ci∈X}|

The membership functions of this new external knowledge
base have the same definition as given in section II-B; never-
theless, some notations are modified in order to integrate the
notion of multisource.

νl
ci,α: represents the function of membership in the

linguistic term α for the class ci of the knowledge
base l.
µl

ci,α : corresponds to µl
ci,α(ωj) = νl

ci,α(fci(ωj)).
F : corresponds to the knowledge base deduced
from p knowledge bases.

Selecting the referent linguistic term
As we defined previously, the linguistic term α is considered



as a reference mark of the base F to measure the disparity
between p bases.

The linguistic term of frequency α for the parameter ωj in
the class ci is selected as referent if µf

ci,α(ωk) presents the
greatest value such as:

µF
ci,α(ωk) = maxj∈T (x)(µF

ci,j(ωk))

Operator of the conflict measure:
The operator of conflict seeks in p bases the lowest value of
membership degrees of ωj to the linguistic reference α for the
class ci:

hα
ci

(ωj) = I(µ1
ci,α(ωj), · · · , µp

ci,α(ωj)) (1)

We note that this operator is strict, i.e, if one base of p
bases has the value of membership of ωj to the linguistic
referent α equal to zero, we can induce that the value given
by operator of conflict is also equal to null, even if this base
has the membership value of ωj to the linguistics neighbor at
the linguistic referent α which is different from zero.

In certain cases, it is necessary to be less strict so we mod-
ified the conflict operator in order to integrate the tolerance
parameter that is parametrized according to our needs.

hα
ci

(ωj) = I(maxα−d≤k≤α+d(µ1
ci,k

(ωj)),
· · · ,
maxα−d≤k≤α+d(µ

p
ci,k

(ωj)))

• d is the tolerance index. It is used by the conflict operator
in order to take into account the membership of ωj to the
referent linguistics term α and also the d linguistic terms
close to the referent linguistics term. d is an integer and
∈ [0, |T (x)|/2− 1].

• α− d indicates the linguistic that is at position d on the
left of the referent linguistic term α. Example: if α is
equivalent to the linguistic frequent and T (x) ={never,
exceptional, habitual, very frequent, always } then α− 2
indicates the linguistic term “rare”.

• α + d: indicates the linguistic that is at position d on the
right of the referent linguistic term α.

Confidence measure:
We define a confidence measurement function of all parame-
ters in the new base:

µconf,ci(ωj) =
{

1 if hα
ci

(ωj) ∈ [0, ε]
hα

ci
(ωj)/(1− ε) if hα

ci
(ωj) ∈ [ε, 1[

where :
ε ∈]0, 1], which is used as threshold in order to estimate the
confidence of a parameter from the conflict value.

µconf,ci(ωj) considers the agreement measurement and is
completely reliable if the agreement degree is higher than a
certain threshold, i.e. the parameter is reliable if its appearance
frequencies in the various bases belong to the same linguistic
term or a close linguistic with the referent linguistic which is
obtained from F .

B. Rule similarity measure

The fusion procedure needs to measure the similarity rules
in order to aggregate them. Hence, the number of rules is
reduced. The similarity measure of rules should take into
account the confidences of parameters which compose the
rules.

Before presenting this function of similarity, some notations
have to be specified:

• ra and rb are two rules of class association (definition to
see §II-A) which come respectively from the rule base of
system A and the rule base of system B.

• itemset(ra ∩ rb): common items in both rules.
• itemset(ra ∪ rb) : all items which compose both rules.
• class label(ra, rb) : common class label in both rules.
• wci(ra, rb, wj) : matching degree of the rules ra and rb

to the item ωj for the class ci.

wci
(ra, rb, ωj) =

1 if ci ∈ class label(ra, rb)
and if ωj ∈ itemset(ra ∩ rb)

1− µconf,ci
(ωj) if ci ∈ class label(ra, rb)

and if ωj /∈ itemset(ra ∩ rb)
and if ωj ∈ itemset(ra ∪ rb)

0 otherwise

We denote by simci
(ra, rb) the degree of matching between

ra and rb for the class ci. simci(ra, rb) is the average of
all wci(ra, rb, ωj) derived from itemset(ra, rb). This function
measures the similarity between two rules of the same class
and it takes into account the matching items of these rules and
the reliability of these items.

simci(ra, rb) =

∑
ωj∈itemset(ra∪rb)

wci
(ra, rb, ωj)

|itemset(ra ∪ rb)|
This function is used in the fusion in order to find the best
similar rules between two rule sets coming from two different
sources.

C. Rule base fusion

In this section, it is described how several rule bases are
merged into one rule base. The fusion procedure is composed
of 3 phases, entitled: combining rule bases, clustering rules,
detecting ambiguous.

1) Combining rule bases: All rule bases of several systems
are combined into one base without any modification in
rules.

2) Clustering rules: This phase consists of isolating the
rules according to their similarity. The function simα

is used to measure the similarity between two rules.
We proceed step by step and in each step, the rules
have the value of the highest similarity which is higher
than a specific threshold. Thereafter these two rules
are amalgamated using the function equival(ra, rb) to



obtain one rule. This method of clustering is hierarchical
ascending classification (Figure 5).

ω1, ω2 → c1

ω1, ω2, ω4 → c1

ω1, ω3, ω4 → c3 ω1, ω2, ω3 → c3

ω1, ω2, ω3, ω4 → c3

ω1, ω2, ω3, ω4 → c3

ω1, ω2, ω4 → c1ω1, ω2 → c1ω1, ω2 → c1

ω1, ω2, ω4 → c1

Figure 5. Example of rule fusion by hierarchical ascending classification.

The function equival(ra, rb) merges ra and rand to
generate the rule req such as:
• simci(req, ra) ≥ simci(ra, rb)
• simci(req, rb) ≥ simci(ra, rb)
• itemset(ra ∩ rb) ⊆ itemset(req ∩ ra)
• itemset(ra ∩ rb) ⊆ itemset(req ∩ rb)
• itemset(req) ⊆ itemset(ra ∪ rb)

The rule req is the rule of the consensus of the rules ra

and rb.
3) Detecting ambiguous: The ambiguous rule is the rule

where confidences of its parameters are less than a
certain threshold. All the ambiguous rules are marked
as exception rules by the diagnostic system which will
be set up.

After the rule base fusion procedure, the new rule base
which is produced represents the new internal knowledge base
which is used by the diagnostic system in order to predict
the class label of the new instance. The diagnostic system
prediction procedure, which is described in the section §II-A
has to give the rules which cover the new instance, i.e. the rule
should have all its body items included in the new instance
items set. However, in this new rule base, the diagnostic system
could select the rules which cover the new instance with less
strictness than the procedure of section §II-A. The new rule
base is associated with confidence knowledge and each item,
which composes the rules of these bases, has its confidence
value to each class label. Thus, the diagnostic system retrieves
rules which cover the new instance by taking into account the
confidence value of its items.

The asymmetric similarity measure function selectci(e, r →
ci) has been defined in order to measure the matching between
the new instance and the rule by taking into account the item
confidence value.

selectci(e, r → ci) =

∑
k∈(r∩e)

√
µconf,ci

(ωk)µci
(ωk)∑

ωk∈e

√
µconf,ci

(ωk)µci
(ωk)

where:
• e : corresponds to the new instance.
• r → ci : corresponds to the rule with the label class ci.

After describing the fusion procedure, we will pass to the
evaluation of this procedure.

IV. EVALUATION

In this section, we evaluated our knowledge fusion approach
on four databases from an endoscopic image analysis system
[19] . This system is an assistant system for decision-making
of the endoscopic lesion diagnosis. These bases are composed
of endoscopic image description via symbolic terms which
are defined by the minimal standard terminology of the
SEGE (European Company of Gastro-Enterology). A case in
a base represents a description (a set of parameters) of an
endoscopic lesion. In all the bases, there are 206 parameters
and 89 types of lesions, (i.e. 89 label classes).

One of the four bases is used as the test base and the others
are used as the training bases. Each of these bases presents
specific characteristics as some parameters are used more than
the others or they are never used:

• The test database noted T : it is composed of 25 %
of usual descriptions, 25 % the rare ones, 25 % the
exceptional ones and 25 % the doubtful one.

• The first training database noted A: it is composed of 30
% of usual descriptions, 30 % the rare ones, 30 % the
exceptional ones and 10 % the doubtful ones.

• The second training database noted B: it is composed of
60 % of usual descriptions, 24 % the rare ones, 12 % the
exceptional ones and 4 % the doubtful ones.

• The third training database noted C: it is composed of
65 % of usual descriptions, 25 % the rare ones and 10
% the exceptional ones.

We have conducted an extensive performance study to eval-
uate accuracy and efficiency of the fusion procedure and com-
pared it with naive multisource and monosource approach. The
first involves learning directly from the aggregated databases.
The experimentation takes the training databases and sets up
the diagnostic system database from them. We use the test
bases related before to derive the classifiers and the error rates
in the experiments.

The following notation A ⊗ B means the the fusion pro-
cedure is applied to the diagnostic system based on database
A and the diagnostic system based on database B and then
the generated system is evaluated by the test database T . The
notation A ⊕ B means the diagnostic system is applied to
the aggregated databases A and B (naive multisource) and
evaluated by the test database T . At last, the notation AT

means the diagnostic system is applied to the training database
A (monosource approach) and evaluated by the test database
T .

We note that the diagnostic system based on the training
basis A has the higher rate of accuracy than other systems
based on other training bases (in the monosource approach).

The prediction values of diagnostic system based on the
monosource approach are regarded as thresholds that the
prediction values of the diagnostic systems based on the fusion
procedure must exceed if the procedure of fusion wouldn’t be



Database accuracy number of rules time (s)
AT 93.14 62 33
BT 77.14 45 27
CT 76.14 37 24
A⊕B 94 30 38
A⊗B 97.71 96 40
A⊕ C 94.85 60 40
A⊗ C 96.57 91 39
B ⊕ C 81.14 52 39
B ⊗ C 78.85 71 42
A⊕B ⊕ C 93.71 52 38
A⊗B ⊗ C 96 100 63

Table I
CLASSIFICATION ACCURACY OF THE FUSION PROCEDURE.

regarded as unadapted for these systems. In the actual case,
this appears in all the cases in our evaluation: (A⊗B) > AT ,
(A⊗B) > BT , (A⊗C) > AT , (B⊗C) > BT , (B⊗C) > CT .

The prediction values of the diagnostic systems based on
the naive multisource approach are them reference thresholds.
If these thresholds are exceeded by the fusion based diagnostic
systems, that means that the fusion procedure is very well
adapted. This appears in all the cases except in one case in
our evaluation: (A ⊗ B) > (A ⊕ B), (A ⊗ C) > (A ⊕ C),
(B ⊗ C) < (B ⊗ C) , (A⊕B ⊗ C) > (A⊕B ⊕ C).

We note also that the fusion procedure generates more rules
than the naive multisource approach but the fusion procedure
outperforms the naive multisource approach in terms of ac-
curacy rate. Besides, the sum of rules number generated by
monosource approach is always upper than that of the fusion
approach. That proves that the fusion approach is efficient.
And in certain cases, the the fusion procedure is faster than
the multisource approach when generating the rule base. That
proves also that the fusion approach is able to gain time.

V. CONCLUSIONS

We proposed a new fusion method which is applied on the
rule based diagnostic system. This fusion method combines
two fusion types: the knowledge base fusion and the rule base
fusion. The knowledge bases refer to the diagnostic system
rule bases and are used in order to measure the conflict of the
diagnostic system rule bases. Thereafter, the conflict measure
is integrated in the rule base fusion. The rule base fusion
combines the rules of several bases into one rule base and
then the most similar rules are merged into one rule. This
fusion approach is new and is very fast and efficient. The
fusion method evaluation outperforms the naive multisource
and monosource approach.

Our fusion method is quite interesting because unlike the
other methods, it is adapted to any domain.

As future work, we aim to adapt the fusion method in order
to apply it on heterogeneous rule bases. The fusion method
should integrate the similarity measure method in order to
detect the parts of base rules which are homogeneous or
heterogeneous. The homogeneous parts should be applied to

fusion approach in order to take into account the distortion
of these parts. The heterogeneous parts should be applied to
aggregation approach in order to cover the entire event space.
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