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Abstract. In supervised learning, many measures are based on the concept of
entropy. A major characteristic of the entropies is that they take their maximal
value when the distribution of the modalities of the class variable is uniform. To
deal with the case where the a priori frequencies of the class variable modalities
are very imbalanced, we propose an off-centered entropy which takes its maximum
value for a distribution fixed by the user. This distribution can be the a priori
distribution of the class variable modalities or a distribution taking into account
the costs of misclassification.
Keywords: supervised learning, entropy, imbalanced class.

1 Motivations

In supervised learning on categorical variables, for example in induction tree,
many learning algorithms use predictive association measures based on the
entropy proposed by [Shannon, 1948]. Let us consider a class variable Y
having q modalities and a categorial predictor X having k modalities. The
joint relative frequency of the couple (xi, yj) is denoted pij , i = 1, 2, . . . k; j =
1, 2, . . . q. What is more, we denote by h(Y ) = −

∑q
j=1 p.j log2 p.j the a priori

Shannon’s entropy of Y and by h(Y/X) = E(h(Y/X = xi)) the conditional
expectation of the entropy of Y with respect to X. Amongst the usual mea-
sures based on Shannon’s entropy, studied in particular by [Wehenkel, 1996],
we especially wish to point out:

• the entropic gain ([Quinlan, 1975]), which values h(Y ) − h(Y/X);
• the u coefficient of [Theil, 1970], which is the relative gain of Shannon’s

entropy. In other words, it is the entropic gain, normalised on the a priori

entropy of Y , and thus values h(Y )−h(Y/X)
h(Y ) ;

• the gain-ratio ([Quinlan, 1993]) which relates the entropic gain of X to
the entropy of X, rather than to the a priori entropy of Y in order to

discard the predictors having many modalities. It values h(Y )−h(Y/X)
h(X) ;
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• the [Kvalseth, 1987] coefficient, which normalises the entropic gain by the

mean of the entropies of X and Y . It then values 2(h(Y )−h(Y/X))
h(X)+h(Y ) .

The peculiarity of these coefficients is that the Shannon’s entropy of a
distribution reaches its maximum when this distribution is uniform. Even
though it is the entropic gain with respect to the a priori entropy of Y which
is used in the numerator part of the previously mentioned coefficients, the
entropies of Y and Y/X = xi used in this gain are evaluated on a scale for
which the “zero” corresponds to the uniform distribution of classes.

It would seem more logical to evaluate directly the entropic gain through
the use of a scale for which the “zero” would correspond to the a priori dis-
tribution of classes. The above-mentioned characteristic of the coefficients
based on the entropy is particularly questionable when the classes to be
learned have highly imbalanced frequencies in the data, or when the classifi-
cation costs differ largely.

We propose in this paper an off-centered version of the entropy, which
enables one to directly estimate the degree at which a candidate predictor
enhances the distribution of the class variable. After having presented the
reference works dealing with the goal followed (section 2), we expose in detail
the principles of the off-centered Shannon’s entropy when used on a boolean
variable (section 3). We then generalise the proposed method to the case
of a variable having any number of modalities (section 4) and show how to
extend the approach to the construction of a generalised off-centered entropy
(section 5). We finally conclude (section 6).

2 State of the art

The construction of an off-centred entropy principle is sketched out in the
case of a boolean class variable in [Lallich et al., 2005]. In this previous work,
we proposed a parameterised version of several statistical measures assessing
the interest of association rules of the form A → B, in particular the inclusion
index and the entropic intensity of implication ([Gras et al., 2001]). In order
to build a statistical measure which compares the confidence of the rule with
a parameter θ instead of the a priori probability of B, we constructed an
off-centered entropy centered on θ (see section 3).

With an alternative goal, directly related to the construction of a predic-
tive association measure, especially in the context of decision trees, Zighed,
Ritschard and Marcellin proposed a consistent and asymmetric entropy. This
measure is asymmetric in the sense that one may choose the distribution for
which it will reach its maximum ; and consistent since it takes into account
the size of the sampling scheme.

In [Marcellin et al., 2006], the authors deal with a boolean class variable,
of frequency p for Y = 1 and 1 − p for Y = 0. They recall the classical
properties defined on Shannon’s entropy, here valuing h(p) = −p log2(p) −
(1 − p) log2(1 − p). It is a real positive function of p, verifying notably:
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1. Invariance by permutation of modalities: h(p) does not change
when the modalities of Y are permuted.

2. Maximality: the value of h(p) reaches its maximum when the distri-
bution of Y is uniform, in other words when each modality of Y has a
frequency of 1/2.

3. Minimality: the value of h(p) reaches its minimum when the distribu-
tion of Y is sure, centered on one modality of Y , the others being of null
frequency.

4. Strict concavity: the entropy h(p) is a strictly concave function.

[Marcellin et al., 2006] preserve the strict concavity property but alter the
maximality one in order to let the entropy reach its maximal value for a user
chosen distribution (i.e. maximal for p = θ, where θ is fixed by the user).
This implies revoking the invariance by permutation of modalities. They
propose:

hθ(p) =
p(1 − p)

(1 − 2θ)p + θ2

It can be noticed that for θ = 0.5, this asymmetric entropy corresponds to
the quadratic entropy of Gini. In [Zighed et al., 2007], the same authors ex-
tend their approach to the situation where the class variable has q modalities.
What is more, since one may only make an estimation of the real distribu-
tion (pj)j=1,2...,q with an empirical distribution (fj)j=1,2...,q, they wish that
for same values of the empirical distribution, the value of the entropy should
decrease as n rises (property 5, a new property called consistency). They
thus are led to modify the third property (minimality) in a new property 3′

(asymptotic minimality): the entropy of a sure variable is only required to
tend towards 0 as n → ∞. In order to comply with these new properties, they
suggest to estimate the theoretical frequencies pj by their Laplace estimator,

p̂j =
nfj+1
n+q . They thus propose a consistant asymmetric entropy as:

hθ(p) =
∑q

j=1

p̂j(1 − p̂j)

(1 − 2θj)p̂j + θ2
j

One of the particularities of the off-centering we here propose, compared
to the approach proposed by [Zighed et al., 2007] is that rather than defining
a single off-centered entropy, it adapts to whichever kind of entropy, may it
be Shannon’s entropy or more generally to a Daroczy entropy of order beta
([Daroczy, 1970]).

3 Off-centered entropy for boolean variables

3.1 Construction principle

Let us consider a class variable Y made of q = 2 modalities. The frequencies
distribution of Y for the values 0 and 1 is noted (1−p, p). We wish to define an
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off-centered entropy associated with (1−p, p), noted ηθ(p), which is maximal
when p = θ, θ being fixed by the user and not necessarily equal to 0.5 (in the
case of a uniform distribution). In order to define the off-centered entropy,
following the proposition described in [Lallich et al., 2005], we propose that
the (1−p, p) distribution should be transformed into a (1−π, π), distribution,
such that:

• π increases from 0 to 1/2, when p increases from 0 to θ;
• π increases from 1/2 to 1, when p increases from θ to 1.

By looking for an expression of π as π = p−b
a , on both intervals 0 ≤ p ≤ θ

and θ ≤ p ≤ 1, we obtain:

π =
p

2θ
if 0 ≤ p ≤ θ, π =

p + 1 − 2θ

2(1 − θ)
if θ ≤ p ≤ 1

To be precise, the thus transformed frequencies should be denoted as
1 − πθ et πθ. We will simply use 1 − π and π for clarity reasons. They do
correspond to frequencies, since 0 ≤ π ≤ 1. The off-centered entropy ηθ(p) is
then defined as the entropy of (1 − π, π):

ηθ(p) = −π log2 π − (1 − π) log2(1 − π)

With respect to the distribution (1− p, p), clearly ηθ(p) is not an entropy
strictly speaking. Its properties must be studied considering the fact that
ηθ(p) is the entropy of the transformed distribution (1 − π, π), i.e. ηθ(p) =
h(π). The behavior of this entropy is illustrated in figure 1 for θ = 0.2.
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Fig. 1. Off-centered, asymmetric and Shannon’s entropies
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3.2 Properties

The off-centered entropy preserves various properties of the entropy, among
those studied in particular by [Zighed and Rakotomalala, 1998] in a datamin-
ing context. Those properties are easy to prove since ηθ(p) is defined as an
entropy on π and thus possess such characteristics.

First, in order to prove some of the properties of ηθ(p) in function of p,
we must express its first and second derivatives with respect to p, knowing
that ηθ(p) = h(π) is a concave function of π (entropy), where π is a piecewise
linear increasing fonction of p. We thus consider the function η(x) = h(f(x)),
where h is concave, f(x) = ax + b is linear and increasing (a > 0, f ′(x) = a,
f ′′(x) = 0). Then, the first and second derivatives of η(x) with respect to x
are η′(x) = h′(f(x))f ′(x) = ah′(f(x)) and η′′(x) = a2h′′(f(x)).

1. Invariance by permutation of modalities: this property is voluntar-
ily abandoned, since we want to construct an off-centered entropy.

2. Maximality: ηθ(p) is maximal and values 1 for π = 0.5, thus when
p = 0.5 × 2θ = θ. Its first derivative with respect to θ is:

• η′

θ(p) = 1
2θ h′(π) = 1

2θ (log2(1 − π) − log2 π), for 0 ≤ p ≤ θ,

• η′

θ(p) = 1
2(1−θ)h

′(π) = 1
2(1−θ) (log2(1 − π) − log2 π), for θ ≤ p ≤ 1

The derivative is null for π = 0.5, i.e. p = θ.

3. Minimality: ηθ(p) is minimal for π = 0 (p = 0) and π = 1 (p = 1).

4. Concavity: from the previous expression:

• η′′

θ (p) = 1
4θ2 h′′(π) = −1

4θ2Ln2
1

π(1−π) , when 0 ≤ p ≤ θ,

• η′′

θ (p) = 1
4(1−θ)2 h′′(π) = −1

4(1−θ)2Ln2
1

π(1−π) , when θ ≤ p ≤ 1

Thus, ηθ(p) is a concave function of p. It is to be noticed that when
p = θ, the left second derivative differs from the right one.

4 Off-centered entropy for a class variable having q

modalities

To extend the definition of the off-centered entropy to the case of a variable
Y having q modalities, q > 2, we follow a similar way as in the boolean
case. Let p = (p1, p2, ...pq) be the vector of frequencies of Y and θ =
(θ1, θ2, ...θq) the reference distribution frequencies vector, for example the
a priori distribution of Y in supervised learning. The entropy of p is h(p) =
−

∑q
j=1 pj log2 pj whereas we want to express the off-centered entropy of p

by η(p) = −
∑q

j=1 πj log2 πj where:

• 0 ≤ πj ≤ 1,
∑q

j=1 πj = 1 (πj should be analogous to frequencies)

• πj increases from 0 to 1/q, when pj increases from 0 to θj

• πj increases from 1/q to 1, when pj increases from θj to 1
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In [Lallich et al., 2007], by looking for an expression of πj as πj =
pj−b

a ,
on both intervals 0 ≤ pj ≤ θ and θ ≤ pj ≤ 1, we show that :

πj =
pj

qθj
if 0 ≤ pj ≤ θj , πj =

q(pj − θj) + 1 − pj

q(1 − θj)
if θj ≤ pj ≤ 1

It is easy to check that all desirable properties are satisfied except the
normalization one. We then normalize the πj to obtain π∗

j =
πj∑
q

j=1
πj

. This

normalization preserve the properties and thus we define the off-centered
entropy for a variable with q modalities by ηθ(p) = h(π∗).

5 Off-centered generalised entropies

Shannon’s entropy is not the only diversity or uncertainty function usable
to build coefficients of predictive association. [Goodman and Kruskal, 1954]
already proposed a unified view of the three usual coefficients which are the
λ of Guttman, the u of Theil and the τ of Goodman and Kruskal, under
the name of Proportional Reduction in Error coefficient. In a more general
way (cf. [Lallich, 2002] for details on the coefficients quoted here) we built
the Proportional Reduction in Diversity coefficients, which are the analogue
of the standardized gain when Shannon’s entropy is replaced by whichever
function of uncertainty. As pointed out by C. d’Aubigny ([d’Aubigny, 1980]),
such a construction is justified since the function of uncertainty is concave,
so the average reduction of diversity of Y with respect to X is positive, using
Jensen’s inequality. If the selected function I is the quadratic entropy of
Gini, I(Y ) = 2(1 −

∑q
j=1 p2

j ) (diversity index of Gini-Simpson) the relative
gain corresponds to the coefficient τ of Goodman and Kruskal, whereas if
I is I(Y ) = q − 1 (index of diversity of the number of species, in ecology)
the relative gain corresponds to the coefficient λ of Guttman, Goodman and
Kruskal.

More generally, we noticed that the functions of uncertainty usable were
either the generalized entropies of order β of [Daroczy, 1970], or either rank
diversities of order ρ introduced by [Patil and Taillie, 1982]. [Lallich, 2002]
proposed a unique way of writing most of the usual coefficients in the form
of a standardized reduction of generalized entropies or diversity of ranks:

λα(Y/X) =
I(Y ) − I(Y/X)

αI(Y ) + (1 − α)I(X)

In this formula, I refers to the entropies of order β or to their equivalent
in terms of diversity of ranks of order ρ, whereas α is at the disposal of the
user to choose between the two usual normalizations. This expression allows
to recover the usual coefficients (α = 1) founded on a generalized entropy
(β = 0: number of categories; β = 1: Theil; β = 2: Gini) or on ranks (ρ = 0:
Guttman; ρ = 1: Utton), as well as the gain-ratio (α = 0) and Kvalseth’s
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coefficient (α = 0.5). It also allows to generalize new ones. The strategy
of decentring that we proposed applies without difficulties if the function of
uncertainty is a generalized entropy or an entropy of ranks.

For instance, the general formula of the generalized entropies of order β

is Hβ(p) = 2β−1

2β−1
−1

(
1 −

∑q
j=1 pβ

j

)
. To decentre this entropy, one first has to

transform the frequencies pj to πj , and second to normalize these πj , in order
to obtain the pseudo-frequencies π∗

j , as described in the previous section. We
obtain the distribution p by the off-centered entropy of order β, forming:

ηβ(p) = Hβ(π∗) =
2β−1

2β−1 − 1

(
1 −

∑q

j=1
π∗β

j

)

The off-centered versions of the entropies of ranks are built in the same
way. For instance, Hρ=0(p) = 2 (1 − max {pj , j = 1, 2, ..., q}), thus:

ηρ=0(p) = Hρ=0(π
∗) = 2

(
1 − max

{
π∗

j , j = 1, 2, ..., q
})

Figure 2 well illustrates the behaviour of the off-centered generalized en-
tropies we propose (β = 0, 0.5, 1, 2, 5, ρ = 0 and the asymmetrical entropy
proposed by [Zighed et al., 2007]) where the a priori distribution of the class
variable is (0.8, 0.2) that corresponds to θ = 0.2. We propose a decentring
framework that one can apply to any measure of predictive association based
on a gain of uncertainty. The choice of the value of β or ρ depends on the
reactivity one expects from the measure.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

E
n
tr

o
p
ie

s

p

H1

3

3

3

3

3

3

3

3
3

3333333333333333333
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

3

3

3

3

3

3

3

3

H2

+

+

+

+

+

+

+

+
+
++++++++++++++++++++++

+
+
+
+

+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+

+
H0.5

2

2

2

2

2

2

2
2

222222222222222222222222222
2

2
2

2
2

2
2

2
2

2
2

2

2

2

2

2

2

HGuttman

×

×

×

×

×

×

×

×

×

×

×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×
×

×

HAsymmetrical
△

△

△

△

△

△
△
△△

△△△△△△△△△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△

△

Fig. 2. Off-centering of generalised entropies

6 Conclusion and future works

Usual predictive association measures may be expressed in terms of nor-
malised gains, which is associated to an uncertainty function, generalised
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entropy or diversity of ranks. We proposed an off-centering methodology
associating an entropy with whichever generalised previous expressions (es-
pecially β order entropies and ρ orders liking-ranks).

Further investigations should sure be carried out on data, and thus show
the interest of such an approach, especially when the class variable is quite
imbalanced. The predictive performances of supervised learning algorithms
should hence be enhanced in that way.
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