Isolating the two room-temperature polymorphs of NaNbO₃: structural features, optical band gap and reactivity

Guillaume Gouget,^{a,†,*} Mathieu Duttine,^a Etienne Durand,^a Antoine Villesuzanne,^a Vincent Rodriguez,^b Frédéric Adamietz,^b Thierry Le Mercier,^c Marc-David Braida^c and Alain Demourgues^{a,*}

^a CNRS, Université de Bordeaux, ICMCB, UMR 5026, 87 Avenue du Dr. Albert Schweitzer, 33608 F Pessac Cedex, France

^b Université de Bordeaux, Institut des Sciences Moléculaires, UMR 5255 CNRS, 351 Cours de la Libération, 33405, Talence Cedex, France

° Solvay, Research and Innovation Center Paris, F-93308, Aubervilliers, France

*,† : Corresponding authors : <u>alain.demourgues@icmcb.cnrs.fr</u> ; <u>gougetguillaume@gmail.com</u>

Figure S1. Rietveld refinements of NaNbO₃ powder obtained after hydrothermal synthesis (no annealing).

Table S1. Na-Oi distances in NaNbO3 structures in the Pbma and P21ma space groups.

Figure S2. XRD pattern of NaNbO_{3-x} after exposure of P2₁ma-NaNbO₃ to Ar:H₂ (95:5 %vol.) at 1000 °C during 1 h, and refinement using profile matching method with Pbma structural hypothesis.

Figure S1. Rietveld refinements of NaNbO₃ powder obtained after hydrothermal synthesis (no annealing), considering a) the Pbma space group, b) the P2₁ma space group and c) the two polymorphs in a phase mixture. In this last case, the refinement converges with a fraction of 67(3) % of the Pbma structure and 33(3) % of P2₁ma network. Rietveld refinements were performed with locked atomic positions of pure phases, that can be found in Table 1.

	d(Na1-Oi) (Å)			d(Na2-Oi) (Å)		
	Pbma	P2₁ma		Pbma	P2₁ma	
avg	2.806	2.781	avg	2.746	2.786	
01	2.408(13)	2.526(3)	02	2.414(14)	2.277(3)	
01	2.794(1)	2.549(3)	02	2.627(12)	2.301(2)	
01	2.794(1)	3.009(3)	02	3.021(12)	3.348(3)	
01	3.097(13)	3.026(3)	02	3.105(14)	3.369(2)	
O3ª	2.805(8)	2.734(2)	O3ª	2.418(9)	2.511(2)	
O3ª	3.144(8)	3.061(2)	O3ª	2.601(9)	2.764(2)	
O4ª	2.433(9)	2.465(2)	O4ª	2.627(9)	2.659(2)	
O4ª	2.910(9)	2.871(2)	O4ª	3.248(9)	3.132(2)	

Table S1. Na-Oi distances in NaNbO₃ structures in the Pbma and P2₁ma space groups. ^a Two oxygens at the same distance to the sodium site.

Figure S2. XRD pattern of NaNbO_{3-x} after exposure of P2₁ma-NaNbO₃ to Ar:H₂ (95:5 %vol.) at 1000 °C during 1 h (black crosses), refinement using profile matching method with Pbma structural hypothesis (red curve) and difference between experiment and calculation (blue curve). The XRD powder sample was prepared in a nitrogen-filled glovebox and maintained in a sealed sample holder to prevent any oxidation. Kapton walls were positioned along the XRD beam path to ensure data collection. Relatively high reliability factors (GOF = 1.52, Rp = 6.16 % and wRp = 8.59 %) are attributed to a lower signal-to-noise ratio, due to acquisition with a sealed sample-holder mounted with Kapton walls.