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Abstract

This paper presents the development and validation of a three-dimensional numerical
wave tank devoted to studying wave-structure interaction problems. It is based on the
fully nonlinear potential �ow theory, here solved by a boundary element approach and
using unstructured triangular meshes of the domain's boundaries. Time updating is
based on a second-order explicit Taylor series expansion. The method is parallelized
using the Message Passing Interface (MPI) in order to take advantage of multi-processor
systems. For radiation problems, with cylindrical bodies moving in prescribed motion,
the free-surface is updated with a fully Lagrangian scheme, and is able to reproduce ref-
erence results for nonlinear forces exerted on the moving body. For di�raction problems,
semi-Lagrangian time-updating is used, and reproduces nonlinear e�ects for di�raction
on monopiles. Finally, we study the nonlinear wave loads on a �xed semi-submersible
structure, thereby illustrating the possibility to apply the proposed numerical model for
the design of o�shore structures and �oaters.

Keywords: Nonlinear wave-structure interaction, O�shore structures, Ocean
engineering, Boundary element method

1. Introduction1

The numerical modeling of fully nonlinear interactions between �oating structures and2

waves in three dimensions (3D) is of great importance for the design of ocean engineering3

structures such as o�shore wind turbines or wave energy converters, as realistic sea states4

may cause nonlinear motions of the structure. The problem is often addressed by means5

of the fully nonlinear potential �ow (FNPF) approach, and has had broad success for6

both radiation and di�raction problems.7
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Solving for FNPF involves the solution of Laplace's equation for a velocity potential,8

which can be treated with the boundary element method (BEM). For one example, Fer-9

rant [1] was able to get very good agreement for the loads on a vertical cylinder in regular10

waves, using linear triangular elements. More recently High Order Boundary Element11

Method (HOBEM) has seen more use, for its better properties in convergence, although12

it can be more complicated to produce an appropriate mesh for complex geometries.13

Boo [2] studied the e�ect of linear and nonlinear irregular waves on a �xed bottom14

mounted cylinder with an HOBEM. In the work of Liu et al. [3], a HOBEM with struc-15

tured meshes was used to compute the wave loads in forced motion and di�raction on a16

Wigley Hull and a truncated cylinder. A fair agreement with measurements performed17

at MARINTEK and the third order theory of Malenica and Molin [4], was found for18

the case of the truncated cylinder. Another HOBEM was recently developed by Bai and19

Eatock Taylor in [5] using unstructured grids and combined with a domain decomposition20

method in [6]. Various forced motions cases were investigated with a vertical cylinder.21

A remeshing step based on the Laplace smoothing technique was used. Typical nonlin-22

ear e�ects were outlined like the oscillation of the vertical force in surge at twice the23

frequency of the motion, occurring with symmetrical objects. An important nonlinear24

interaction between surge and pitch motion was also shown.25

Other approaches have also been considered for these wave-body interaction problems26

with fully nonlinear potential �ow. Ma et al. [7] developed an approach based on the27

�nite element method (FEM) and applied it to wave loads on �xed vertical cylinders.28

Similar work with FEM was made by Wang et al. [8]. Shao and Faltinsen [9] devel-29

oped the harmonic polynomial cell approach, which is another solution to potential �ow30

problems based on a volume discretization, but representing the local solution as a linear31

superposition of elementary solutions of the Laplace equation, resulting in improvements32

in accuracy and speed. Mola et al. [10] used a BEM, but with substantial innovations33

with adaptive mesh re�nement and stabilized by a Streamline Upwind Petrov�Galerkin34

(SUPG) scheme applied to the dominant transport term of the boundary condition, in35

case of a non-negligible advancing velocity.36

While theoretically much of the physics is well understood even for cases with free37

motion, numerical complexities of working with higher-order methods mean that they38

are more di�cult to work with in 3D for complex body shapes, hence even some recent39

works focus on 2D simulations, such as the FEM work by Yan and Ma [11] and by Wang40

and Wu [12]. Industrial design work can be done now though using such tools; the free41

motion of a simpli�ed Floating Production Storage and O�oading (FPSO) structure42

was studied in [13]. Free motion was also addressed in [6], where the e�ect of the shape43

of the cylinder was investigated. An extension of the QALE-FEM method developed44

in [11] has also been applied to free motions in [14]. Similar to the Laplace smoothing45

technique mentioned above used by Bai and Eatock Taylor [6], the QALE-FEM avoids46

remeshing of the free surface, but an adaptive mesh strategy is used based on a spring47

analogy for moving interior nodes of the free surface and the body surface. A validation48

of this scheme is performed with comparisons to experimental data for a barge-type and49

a spar-type �oating structure with a good agreement.50

Despite the many methods which exist, due to the numerous di�culties involved in51

fully nonlinear potential �ow modeling, the state-of-the-art has not yet converged on a52

single approach, and industry models such as AEGIR [15] are normally used to only solve53

linear or second-order �ow.54
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This paper presents a variation of the 3D model of Grilli et al. [16], focusing on55

working with surface-piercing bodies with arbitrary geometry. Additionally, the code is56

parallelized to work on modern computer clusters. Notably, we continue to use Taylor57

series expansions for the time-stepping, shown by Machane and Canot [17] to be faster58

than Runge-Kutta for the same accuracy. In the approach of Grilli et al., however, they59

used higher-order elements on a structured grid, which they refer to as mid-interval inter-60

polation (MII). Unfortunately, this is best suited for simple wave propagation problems,61

whereas complex surface piercing objects may not always be well-suited for structured62

grids. As a result, this is reformulated for unstructured 3D meshes; although often struc-63

tured high-order grids will be more accurate, we believe that it will be important to have64

the capability to consider any mesh, as increasingly complex o�shore structures may not65

be easily adapted to a structured or block structured mesh.66

For the present study, the general theory is presented in Section 2, and the discrete67

equations are detailed in Section 3, including the derivation of the time-stepping scheme,68

the assembly of the BEM system matrix, and the representation of rigid body surfaces69

in our numerical model. Section 4 shows applications including the veri�cation and the70

validation of the numerical model with a bottom-mounted cylinder, a truncated cylin-71

der and �nally a complex structure representing a simpli�ed semi-submersible �oater.72

Concluding remarks follow in Section 5.73

2. Mathematical model74

We assume the �uid to be incompressible and inviscid and the �ow to be irrotational.75

We thus introduce a velocity potential φ which satis�es mass conservation, expressed as76

Laplace's equation within the entire �uid domain Ωf (t). We assume that the boundary of77

the �uid domain ∂Ωf (t) is divided into four parts, on which di�erent types of boundary78

conditions can be applied, ∂Ωf (t) = Γf (t) ∪ Γc(t) ∪ Γb ∪ Γl(t) described later, including79

the free-surface, Γf , the bottom boundary, Γb, the far-�eld edges (i.e., wavemaker or80

sidewall boundary), Γl, and the surface of a �xed or �oating body under consideration,81

Γc. The bottom boundary Γb is assumed to be time independent.82

Denoting the Green's function, G(x,y) = 1
4π‖x−y‖ , the fundamental solution of

Laplace's equation in 3D (i.e., R3), the velocity potential obeys the following bound-
ary integral equation (BIE), for every point, x, on the boundary:

c(x, t)φ(x, t) =

∫
∂Ωf (t)

(
∂φ

∂n
(y, t)G(x,y)− φ(y, t)

∂G

∂n
(x,y)

)
dSy (1)

where the function c(x, t) denotes the inner solid angle seen from the boundary (�eld)83

point x, and y is taken to be the source point on the boundary, ∂Ωf (t).84

On the free surface Γf (t), the kinematic and dynamic boundary conditions state that:
φt(x, t) = −gz − 1

2
∇φ(x, t) · ∇φ(x, t) for x ∈ Γf (t)

dx

dt
= ∇φ(x, t) for x ∈ Γf (t)

(2)

The time-integration of these equations is described in the next section.85
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On the solid boundary of the �oating body Γc(t), we specify a free-slip condition,
which expresses the normal derivative of the potential equal to the normal component of
the body velocity on that boundary:

φn(x, t) ≡ ∂φ

∂n
(x, t) = vb(x, t) · nb(x, t), ∀x ∈ Γf (t) (3)

where nb(x, t) denotes the unit normal vector pointing inward to the solid surface Γc(t),86

at point x, and vb(x, t) is the body velocity. This condition remains valid on the �xed87

bottom and lateral boundaries, Γb ∪ Γl, using a zero velocity, i.e., ∂φ∂n = 0.88

To avoid the evaluation of the time derivative of the potential by use of a �nite
di�erence scheme, we apply the same BIE technique for computing φt. Indeed φt satis�es
the same �eld equation, and requires the associated boundary conditions. Following
Dombre et al. [18], the Neumann boundary condition satis�ed by φt on Γc(t) is expressed
as:

φtn(x, t) ≡ ∂φt
∂n

(x, t) =
dn

dt
· (vb(x, t)−∇φ) + ab(x, t)·n− vb(x, t)· (∇∇φ·n) (4)

with ab(x, t) the solid acceleration vector at the position x and time t.89

3. Numerical scheme90

3.1. Boundary Element Discretization91

At each time-step, we solve the BIE problems associated to φ and to φt by using an
isoparametric BEM with �at triangles. The whole set of boundaries of the domain is
meshed with non-overlapping triangles. On each triangular element Γk, we assume the
�eld variables and the geometry to have linear variations, described as:

φk(ξ1, ξ2) =
∑

{j;xj∈Vk}
φjNj(ξ1, ξ2)

xk(ξ1, ξ2) =
∑

{j;xj∈Vk}
xjNj(ξ1, ξ2)

(5)

where Vk is the set of the vertices of Γk and (ξ1, ξ2) denotes the co-ordinates in the refer-92

ence element Γξ. The functions Nj are the so-called shape functions, i.e., N1(ξ1, ξ2) = ξ1,93

N2(ξ1, ξ2) = ξ2, and N3(ξ1, ξ2) = 1− ξ1 − ξ2.94

Using a collocation method, we write that for any xi belonging to the discrete bound-
ary of the �uid domain Γj = ∂Ωj at time tj , we have:

c(xi, tj)φ(xi, tj) =

∫
Γj

(
φn(yk, tj) G(yk,xi)dSk − φ(yk, tj)

∂G

∂n
(yk,xi)

)
dSk (6)

which can be, upon replacing the integral by a discrete sum over the vertices of the mesh,
rewritten as: δij ci +

Ndof∑
j=1

Kn
ij

φj =

Ndof∑
j=1

Kd
ijφ

j
n (7)
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with Ndof the number of vertices of the mesh. Adopting notations used in [19], we can
show that the sub-matrices of this system are de�ned as:

Kn
ij =

∑
k∈Sj

∫
Γξ

(
Nlk(j)(ξ)

∂G

∂n
(xk(ξ),xi)J

k(ξ)

)
dξ

Kd
ij =

∑
k∈Sj

∫
Γξ

(
Nlk(j)(ξ)G(xk(ξ),xi)J

k(ξ)

)
dξ

(8)

where lk(j) is a local index varying from 1 to 3, Sj denotes the set of elements containing95

the node of global index j and Jk(ξ) is the Jacobian of the transformation which maps96

Γξ to Γk. lk(j) thus associates to each Γk in Sj the local index of the node xj in97

Γk. We also de�ne the notation Sk as the set of vertices belonging to the element Γk.98

When assembling the matrix of the system (7), two situations may arise. If the source99

point xp is not belonging to the element Γk, both Kd
ij and Kn

ij are regular and we100

use a quadrature formula de�ned by a Dunavant rule [20] in order to perform numerical101

integration. Otherwise, the source point is belonging to Γk, i.e. there exists xj ∈ Sk such102

that xi = xj , in which case we treat the singularity by applying a Du�y transformation,103

similar to the polar change of coordinates presented in Grilli et al. [16].104

In case of body motions, the velocity vb is non zero and the present model re-
quires to evaluate the high-order term vb· (∇∇φ·n) in Eq.(4), which is not trivial. This
calculation may be simpli�ed by transforming the second-derivative when computing

the integral
∫

Γb(t)
GφtndSy. This integral is decomposed into I1 =

∫
Γb(t)

Gφ
(1)
tn dSy and

I2 =
∫

Γb(t)
Gφ

(2)
tn dSy with φ

(1)
tn = dn

dt · (vb −∇φ)+ab·n and φ
(2)
tn = vb· (∇∇φ·n). Following

Bai and Teng [21], the use of the Stokes formula and basic vector analysis manipulations
lead to the relationship:

I2 =

∫
Γb(t)

G (vb·∇(∇φ)) · ndSy =

∫
∂Γb(t)

G(∇φ× vb) · dy+∫
Γb(t)

G [(Ω×∇φ) + (∇G · ∇φ)vb − (∇G · vb)∇φ] · ndSy
(9)

assuming the rigid body velocity is given by vb(x) = vG + Ω × (x − xG) with vG the105

translational and Ω the rotational velocity vectors of the rigid body. We recall that, by106

convention, the unit normal vector n is oriented towards the inside of the rigid body. In107

this respect, the line integral
∫
∂Γb(t)

G(∇φ× vb) · dy must be evaluated considering that108

the tangent vector to the waterline dy is such that the vector dy × n(y) points outside109

of the rigid body.110

3.2. Time-stepping111

As in the original 2D-FNPF code of [22], we update both the position and the potential
on the free surface Γf (t) by an explicit scheme based on a second-order explicit Taylor
series expansion. In this scheme, the values of the potential φ and the position x at time
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ti+1 may be expressed as follows:

φi+1 = φ(xi+1, ti+1)

= φ(xi, ti) +
dφ

dt
(xi, ti)∆t+

d2φ

dt2
(xi, ti)

∆t2

2

xi+1 = xi +
dx

dt
(xi, ti, φi, φin)∆t+

d2x

dt2
(xi, ti, φi, φin)

∆t2

2

(10)

From system (10), several numerical schemes can be devised according to the choice of
the advection velocity used in the material derivative d·

dt . Let vp be a velocity �eld which
is chosen to advect the free surface particles. When using the velocity vp for moving the
free surface nodes, we obtain the following �rst-order derivatives:

dφ

dt
= φt + vp · ∇φ

dx

dt
= vp

(11)

Then, if we take again the material derivative of the �rst-order coe�cients along the
velocity vector vp, we obtain:

d2x

dt2
=
∂vp
∂t

+∇vp · vp
d2φ

dt2
=
dφt
dt

+
dvp
dt
· ∇φ+ vp ·

d∇φ
dt

(12)

Given the free surface dynamic boundary condition φt = −gz− 1
2∇φ ·∇φ, we can derive:

dφt
dt

= g · vp −∇φ · (∇φt +∇∇φ · vp) (13)

We also have:

dvp
dt
· ∇φ+ vp ·

d∇φ
dt

=
∂vp
∂t
· ∇φ+ (∇vp · vp) · ∇φ

+ vp · ∇φt + (∇∇φ · vp) · vp
(14)

Summing all of these contributions, we obtain:

d2φ

dt2
= g · vp + (vp −∇φ) · ∇φt

+
∂vp
∂t
· ∇φ+ (∇∇φ · vp) · (vp −∇φ) + (∇vp · vp) · ∇φ

(15)

One can easily check that setting vp = ∇φ in Eq. (15) gives the Lagrangian second-order
development:

d2φ

dt2
= g · ∇φ+∇φt · ∇φ+ (∇∇φ · ∇φ) · ∇φ (16)

as can be found e.g. in Appendix A of [23].112
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We recall that the nonlinear conditions on the free surface read:
∂η

∂t
= φz − ηxφx − ηyφy

∂φ

∂t
= −gη − 1

2
∇φ · ∇φ

(17)

When dealing with �xed vertical cylinders or fully submerged bodies (or cases without113

any body), it can be useful to consider a semi-Lagrangian scheme, allowing only vertical114

motion of the �uid particles. For this, we consider the de�nition vp = ∂η
∂t ez. (For the115

equivalent material derivative with curved structures, see Zhang and Kashiwagi [24].)116

While expanding this scheme, we �rst make the assumption that the function (x, y) ∈
R2 7→ η ∈ R is single-valued (i.e., the waves are not overturning), which allows to get the
relationships:

∂η

∂t
=
∂φ

∂z
− ∂η

∂x

∂φ

∂x
− ∂η

∂y

∂φ

∂y
=
∂φ

∂z
+
nx
nz

∂φ

∂x
+
ny
nz

∂φ

∂y
(18)

where n = (nx, ny, nz) is the outward unit normal vector to the free surface. We can
thus work out the following formula:

∂η

∂t
=
φn
nz

(19)

which is simpler to evaluate numerically as the present model relies on the distribution117

of the variables φ and φn on the boundary.118

3.2.1. Discrete velocity on unstructured grids119

For �rst-order elements, the velocity in a triangle is computed using a relationship
found in Meyer et al. [25]. In the triangle number j, called Tj , the gradient of any linear
function is calculated as follows:

∇φTj =
1

2Aj
((φj,i+1 − φj,i)nj × (xj,i − xj,i−1)

+(φj,i−1 − φj,i)nj × (xj,i+1 − xj,i))

(20)

where Aj denotes the area of Tj , nj the unit outward normal vector to Tj and the index
(j, i) corresponds to the local index of the node number i located on the triangle Tj . The
indices (j, i − 1) and (j, i + 1) refer to local indices of the nodes in the triangle Tj such
that the arc xj,i−1xj,ixj,i+1 is positively oriented with respect to the local normal vector
nj . According to these de�nitions, we can further derive the following relationships:

nj =
(xj,i+1 − xj,i)× (xj,i−1 − xj,i)

‖(xj,i+1 − xj,i)× (xj,i−1 − xj,i)‖

Aj =
1

2
‖(xj,i+1 − xj,i)× (xj,i−1 − xj,i)‖

(21)

We then take an average of Eq. (20) over the 1-ring neighborhood of the vertex i, which
is the set of triangles containing xi and denoted by Si (see Fig. (1)). Taking into account

7



xj,i

xi

Tj

xj,i+1xj,i−1

Figure 1: Sketch of the set of elements Si, also called the 1-ring neighborhood of the vertex xi.

the contribution of φn to the gradient, we obtain an approximation of the velocity vector:

∇φi =
1∑

j∈Si Aj

∑
j∈Si

Aj∇φTj + φn
1∑

j∈Si Aj

∑
j∈Si

Ajnj (22)

Eq. (20) has been, for example, used in the �eld of computer graphics [25] in order to120

evaluate geometric quantities such as the principal curvature on irregular meshes. It is121

shown in [25] to achieve a comparable accuracy to �nite di�erences schemes and has the122

advantage to be less sensitive to the mesh con�guration.123

3.2.2. Discrete acceleration on unstructured grids124

For evaluating the terms related to second-order derivatives of φ, we try to take
advantage of the previous methodology. This is made possible by expressing the second-
order tensor ∇∇φ in a local basis attached to the vertex under consideration. In matrix
form, this term reads:

V ikl = (∇∇B(xi)φ)
kl

= ∇(∇φ · sk) · sl (23)

with B(xi) = (s1, s2, s3) an orthonormal basis such that s3 is the normal vector to the
discrete surface at the node xi. We de�ne the vector:

βijk =
1

2Aj
((∇φj,i+1 · sk −∇φj,i · sk)nj × (xj,i − xj,i−1)

+(∇φj,i−1 · sk −∇φj,i · sk)nj × (xj,i+1 − xj,i))

(24)

The components of the matrix V i can be calculated as:

V ikl =
1∑

j∈Si Aj
(
∑
j∈Si

Ajβijk) · sl, k ∈ {1, 2, 3}, l ∈ {1, 2}

V i13 = V i31

V i23 = V i32

V i33 = −V i11 − V i22

(25)
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Figure 2: Irregular triangular grid of a torus with a mean radius of R1 = 2m and a cross-section of
radius R2 = 1m generated by the algorithm NETGEN2D in the SALOME platform [26].

The relationships V i13 = V i31 and V i23 = V i32 are obtained by symmetry of the matrix V i125

which comes from the fact that its components are second-order partial derivatives. The126

last relationship V i33 = −V i11 − V i22 stems from the Laplace equation.127

This scheme consists therefore in interpolating linearly the projections of ∇φ on the
local basis B(xi) over the 1-ring neighbourhood of xi. The outward normal vector at xi
is evaluated by means of the following weighted sum:

s3(xi) =

∑
j∈Si Ajnj∑
j∈Si Aj

(26)

with the vector nj previously de�ned on each triangle of Si. This vector is then scaled to
de�ne a unit normal vector, and from this we de�ne two tangential vectors to the discrete
surface at xi. For this purpose, we need to de�ne a �rst tangential vector by projecting
any point xj belonging to a triangle of the set Si and di�erent from the point xi onto
the tangential plane oriented by s3 and passing through xi by means of the following
formula:

s1(xi) =
xj − xi − s3(xi) · (xj − xi)

‖xj − xi − s3(xi) · (xj − xi)‖
(27)

A last vector of the basis B(xi) is then given by s2(xi) = s3(xi)×s1(xi). The performance128

of these discrete di�erential operators is �nally assessed on the case of the irregular mesh129

of a torus with a mean radius of R1 = 2m and a cross-section of radius R2 = 1m. An130

example of discretization for the torus is represented on Fig. 2. We use the function131

φ = exp kzz sin(kxx+ kyy) as a test case. We consider the following error indicators:132

� The normalized maximum error of the vector ∇φ (denoted by L∞ in the �gures)133

and de�ned as ε =
maxi=1..N ‖∇φ−∇φref‖i

maxi=1..N ‖∇φref‖i
134

� The normalized average error of the vector ∇φ (denoted by L1 in the �gures) and135

de�ned as ε =
∑N
i=1 ‖∇φ−∇φref‖i∑N
i=1 ‖∇φref‖i

136
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v associated to the potential φ = exp(kzz) sin(kxx + kyy) with kx = 1m−1, ky = 0.5m−1 and kz =√
kx

2 + ky
2 on a torus.
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Figure 4: Maximum normalized error (left) and average normalized error (right) for the acceleration
vector a associated to the potential φ = exp(kzz) sin(kxx + kyy) with kx = 1m−1, ky = 0.5m−1 and

kz =
√
kx

2 + ky
2 on a torus.
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The errors for the tested velocity �eld are represented on Fig. (3). The ones for the137

acceleration is represented on Fig. (4). The parameters of the tested potential are set to138

kx = 1m−1, ky = 0.5m−1 and kz =
√
kx

2 + ky
2. It can be concluded that the proposed139

method converges in L1 norm on a smooth surface. In this norm, the error is scaling, in140

the root mean square sense, as
(

∆x
R1

)−1.940

for the velocity vector and as
(

∆x
R1

)−1.785

for141

the acceleration vector.142

3.3. Parallel assembly of the system matrices143

In order to speed-up the simulations for large-size problems, the nodes which make144

up the BEM mesh are subdivided into nearly equal subsets based on a domain decom-145

position. That is to say, the main simulation (e.g., time-stepping) is handled on a single146

processor, but when many processors are available, the workload for solving the Laplace147

equation is divided over the available processors. This is done by taking the linear system148

of equations shown in Eq. 7, and only computing (and storing) part of this coe�cient149

matrix on any given processor. The resulting system is then solved solved with an itera-150

tive linear solver, BiCGSTAB. The Message Passing Interface (MPI) is used to exchange151

data across the distributed computer cluster.152

We test the e�ciency of our parallelization by computing the solution of a mixed153

Boundary Value Problem for the velocity potential φ(x, y, z) = x. The geometry is a154

box of size Lx × Ly × Lz = 1m × 1m × 1m. On the top surface, we impose a Dirichlet155

boundary condition φ = x. On the remaining surfaces, we impose a Neumann boundary156

condition φn = nx, nx being the x-component of the outward normal vector to the box.157

We test the solution process for a moderate grid of 16,743 collocation nodes with di�erent158

numbers of processors np ∈ {1, 4, 16, 64}. The results are represented on Fig. 5.159

This approach is in contrast to Bai and Eatock Taylor [27], for example, where they160

implement domain decomposition by adding extra boundary elements within the domain161

to create individual subdomains. They therefore only scale up to around a 10x speed-up162

compared to their solution on a single processor. This means that the discrete equations163

that are being solved can change depending on the number of processors used. Here,164

on the other hand, only the coe�cient matrix is shared, so the same equation is being165

considered. This is possible because the amount of information that needs to be shared166

between processors is small compared to the size of the overall system matrix.167

3.4. Mesh deformation168

3.4.1. Time-updating of deformable surfaces169

The velocity potential φ and the position x on the free-surface are updated using
Eq.(10). In order to avoid an incompatibility of velocity on the far-�eld edges, the free-
surface boundary conditions are corrected in a certain area near the exterior boundary
of the free surface. For a cylindrical �uid domain, as those which will be considered in
the validation presented hereafter, we consider an inner cylindrical domain of radius Rλ
and an outer cylindrical domain of radius Rext (Fig. (6)). Then, the absorbing area is
de�ned by the set Dλ = {x = (r, θ, z) ∈ Γf such that (r, θ) ∈ [Rλ, Rext] × [0, 2π]}. In
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Figure 5: Speed-up
Tnp=1

Tnp
of the assembling step plus the solution of the system matrix with respect

to the number of processors np, invoked with MPI, with a mesh of 16,743 collocation nodes. Tnp is the
CPU time of the process when using np processors.

the set Dλ, the free surface and the potential are corrected as:

z∗ ← z −∆tωi

(
r −Rλ

Rext −Rλ

)2

(z −D(t)ηi(r, θ, t))

φ∗ ← φ−∆tωi

(
r −Rλ

Rext −Rλ

)2

(φ−D(t)φi(r, θ, z
∗, t))

(28)

where ηi and φi correspond to a theoretical wave pro�le. For the absorption of the170

incident waves, other techniques like that developed by Clamond et al. [28] could be171

more e�cient for irregular waves. The implementation of this method would require to172

solve (in parallel with MPI) an additional linear system corresponding to the vertices of173

the free surface mesh. This is left for future works.174

For the bottom mounted cylinder, we will use a rectangular domain. In this case, the175

absorbing beach de�ned above is divided into two parts. The �rst part lies in front of the176

entrance of the tank and is de�ned as: Dλ,1 = {x = (x1, x2, x3) ∈ Γf such that (x1, x2) ∈177

[0, Ly] × [0, lλ]} where lλ is the length of the absorbing beach. In this domain, ηi and178

φi will be chosen to correspond to a desired incident wave pro�le. At the end of the179

domain, a second beach is de�ned: Dλ,2 = {x = (x1, x2, x3) ∈ Γf such that (x1, x2) ∈180

[0, Ly]× [Lx − lλ, Lx]}. In this second domain, we set ηi = 0 and φi = 0.181

3.4.2. Time-updating of rigid surfaces182

The nodes associated to the �uid particles on the body surface are updated following183

the rigid body motion. We restrict ourselves to the forced motion of a rigid body. We184

recall that, with a rigid body, for any material points xA and xB belonging to the body,185

we have the relationship {d(xB−xA)
dt }B = 0 in the reference frame of the body B.186

Rotation matrices around the axes of the �xed global reference frame are de�ned in
the following fashion:

Rθx =

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 (29)
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Rθy =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 (30)

Rθz =

cos θz − sin θz 0
sin θz cos θz 0

0 0 1

 (31)

At any time, the link between the position expressed in R and the one expressed in
B is made with the equation:

(x(t)− xG(t))R = RθxRθyRθz (x(t)− xG(t))B (32)

with (x(t)− xG(t))B a time-invariant vector. We de�ne the �xed basis R = (ex, ey, ez)187

and the moving basis B = (exb, eyb, ezb). The latter can be obtained by the transforma-188

tion RθxRθyRθz applied to the basis (ex, ey, ez).189

3.4.3. Merging of the meshes190

As the free surface vertices are tracked in a Lagrangian manner during their motion,191

the meshes of the free-surface and the body need to be reconnected. Since the distance192

between the displaced waterline and the displaced body appears to be small, similarly to193

Bai and Eatock Taylor [5], we make a projection of the nodes located on the waterline194

onto the body geometry. Here we consider an application of this technique in the case of195

a cylindrical body surface. The following procedure is used for each node of the waterline:196

1. Apply the MEL time-stepping to the position x∗f :

x∗f (t+ ∆t) = xf (t) +
dxf
dt

∆t+
d2xf
dt2

∆t2

2
(33)

2. Express the vector x∗f in the body reference frame B:

x∗f (t+ ∆t)B = xG(t+ ∆t)B

+R−1
θz
R−1
θy
R−1
θx

(x∗f (t+ ∆t)− xG(t+ ∆t))R
(34)

3. Express x∗f (t+∆t)B in a coordinate system suited to the shape under consideration
(for a cylinder, we choose the polar coordinate system):

x∗f (t+ ∆t)B = xG(t+ ∆t)B

+ rf (cos θfexb + sin θfeyb) + zfezb
(35)

4. Replace the radial coordinate rf by the radius of the cylinder Rb in the reference
frame B:

xf (t+ ∆t)B = xG(t+ ∆t)B
+Rb(cos θfexb + sin θfeyb) + zfezb

(36)

5. Transform the new coordinate xf (t+ ∆t)B into the global reference frame R:

xf (t+ ∆t)R = xG(t+ ∆t)R
+RθxRθyRθz (xf (t+ ∆t)− xG(t+ ∆t))B

(37)
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For each geometric node of the waterline, we denote by xf the position vector of197

the node belonging to the mesh of the free surface and by xb the position vector of198

the node belonging to the mesh of the body surface. Prior to updating the position199

of the nodes for the next time-step, xf and xb are equal. An interpolation of the free200

surface elevation angular distribution found with the procedure described above, is made201

on a �xed uniform angular distribution. In other words, for each double-node of the202

intersection, we �rst express xf and xb in the basis (exb, eyb, ezb):203

(xf − xG)B = Rb(cos θfexb + sin θfeyb) + zfezb

(xb − xG)B = Rb(cos θbexb + sin θbeyb) + zfezb
(38)

Then, for each angle θbj , we compute the indices:

i1 = argmini∈[[1,Nd]] [|θfi − θbj |; θbj ≥ θfi]
i2 = argmini∈[[1,Nd]] [|θfi − θbj |; θbj < θfi]

(39)

with Nd the number of double-nodes at the intersection of the mesh of the body surface204

and the mesh of the free surface. Afterwards, we interpolate linearly the values of the205

potential φj and the values of the local free-surface elevation (xf − xb)B · ezb in the206

interval [θi1 , θi2 ].207

3.4.4. Filtering of the waterline208

When considering steep sea states, one often observes instabilities near the waterline,
which eventually propagate throughout the domain. As in many publications, we thus
�lter, at each time step, the variables of the waterline de�ned previously. We apply,
similarly to [29, 30], a �ltering formula with a moving stencil of 7 points for the variables
φ and (xf − xb)B · ezb along the waterline only. For the potential φ, this formula reads:

φi =
1

32
(−φi−3 + 9φi−1 + 16φi + 9φi+1 − φi+3). (40)

3.4.5. Remeshing step209

In time-domain simulations with �oating bodies, the geometry is always changing.210

As a consequence it is necessary to change the mesh of the geometry. On the one hand,211

in order to prevent the triangles to be distorted in the vicinity of the piercing surface212

cylinder, a Laplace smoothing technique is applied, for the mesh of the free surface, on213

the projection of the nodes onto an horizontal plane. This technique has also been used214

by [7, 5]. On the other hand, the mesh of the body is generated with regular quadrangles215

divided into triangles by their diagonal. For this part of the mesh, we modify only the216

vertical position of the nodes to get a uniform vertical distribution.217

4. Numerical results218

4.1. Sway motion of a truncated vertical cylinder219

4.1.1. Problem setup220

We are concerned in this section with the imposed periodic motion in sway (i.e. along
x1 axis) of a truncated cylinder. The position vector of the center of gravity is given the
form:

xG(t) = (x1(t), x2(t), x3(t)) = (A sinωt, 0, 0) (41)
14



Rext −Rλ Rλ −RR

dφ

dt
= −gz +

v2

2
− γ(x)(φ− φref )

dx

dt
= ∇φ− γ(x)(η − ηref )

dφ

dt
= −gz +

v2

2
dx

dt
= ∇φ

Figure 6: Sketch of the decomposition of the domain with respect to the free surface boundary conditions,
noting boundary conditions for fully Lagrangian time-updating. In this case, Laplace smoothing is used
to maintain a well formed mesh on the free-surface.

with ω the angular frequency of motion. The water depth of the numerical wave tank221

is set to d = 1.5R, with R the radius of the cylinder, and the draft of the cylinder222

is set to B = 0.5R. The shape of the �uid domain is also cylindrical, with a radius223

Rext. Moreover, the �uid domain is divided into two cylindrical parts, as represented on224

Fig. (6).225

An outer sub-domain is de�ned, where the boundary conditions include corrective226

terms, e.g., γ(x)(η − ηref ) for the free surface elevation, with ηref an analytical free227

surface elevation and γ, a space-dependent factor. For the radiation, ηref = 0 and228

φref = 0 in order to damp the re�ected waves radiated by the body motion. In the inner229

domain, the fully nonlinear boundary conditions are used for determining the evolution230

of the free surface elevation and potential. The radius of the inner cylinder is denoted231

by Rλ. Such a con�guration has been employed for instance by Ferrant [31].232

4.1.2. Mesh convergence233

In this section, we study the mesh convergence of the model for one of the frequencies234

tested hereafter. We note that by having a damping region such as Eq. 28, as used235

before by Cointe [32], volume conservation is not inherently guaranteed, as the free-236

surface boundary conditions are modi�ed. We consider the non-dimensional wavenumber237

kR = 1.4 (with a cylinder radius of 1 m), which gives a wavelength λ ≈ 4.48m and a238

period T ≈ 1.72s. The radius of the external domain is chosen as Rext = 8m. An239

absorbing beach of radial length 4.5m is used. We check in this section the convergence240

by looking at the conservation of the discrete water volume in the wave tank. The241

characteristics of the meshes used for the convergence study are recalled in Table 1.242
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Mesh a Mesh b Mesh c Mesh d Mesh e
2πRext

∆re
100 150 200 250 300

2πR
∆re

20 30 40 50 60
h

∆ze
4 6 6 8 10

B
∆zi

8 12 14 18 20

min l1D [m] 0.313 0.209 0.157 0.126 0.105
max l1D [m] 0.505 0.335 0.251 0.201 0.168
NFS 856 3141 3286 12437 12576
Nbody 210 535 760 1116 1940

Table 1: Truncated cylinder in sway motion along the axis Ox: characteristics of the meshes used in the
volume conservation study. ∆re (respectively ∆ri ) is the space-step of the mesh on the circumference
of the outer (respectively inner) cylinder. ∆ze (respectively ∆zi ) is the space-step of the mesh on the
vertical direction of the outer (respectively inner) cylinder. NFS is the number of nodes on the free
surface. Nbody is the number of nodes on the truncated cylinder surface. l1D is the length of the edges
on the mesh of the free surface.

In Fig. 7, we represent the volume error de�ned as:

ε(t+) =
V (t+)− V (t+ = 0)

V (t+ = 0)
(42)

as a function of the non-dimensional time t+ = t
T and the spatial discretization. For each

mesh, we enforce a Courant�Friedrichs�Lewy (CFL) condition by automatically adapting
the time-step as follows:

∆t = C0
min(i,j);i<j;(xi,xj)∈Γf (t)2 ‖xi − xj‖√

gd
(43)

where we choose C0 = 0.4, following Grilli et al. [33].243

It is seen in Fig. 7 that the error εV stabilizes after 6 periods and decreases with the244

time-step. More speci�cally, after 7 periods, the mean relative error is around 8.10−5
245

for the time-step ∆ta = 0.0122T , while it is around 4.10−5 for the time-step ∆tb =246

0.0069T ≈ 1
2∆ta. This shows that the error is decreasing linearly with the time-step.247

Moreover we can observe that the amplitude of the high frequency oscillations decreases248

also with the time-step.249

0 1 2 3 4 5 6 7 8 9 10
−0.5× 10−4

0

0.5× 10−4

1.0× 10−4

t+

ε V
(t

+
)

Mesh a
Mesh b
Mesh c
Mesh d
Mesh e

Figure 7: Truncated cylinder in sway motion along the axis Ox: computation of the relative volume
error εV (t+) for various spatial and time discretizations.
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4.1.3. Force coe�cients250

The radius of the outer cylinder is set to Rext = 2λ where λ is the wavelength expected251

from the linear theory at the water depth d and the angular frequency ω (Fig. 8). The252

entrance of the absorbing beach is located at a distance Rλ = λ from the origin (0, 0, 0).253

This problem has been recently addressed by Zhou et al. [29], using a HOBEM devised254

for structured quadrangular meshes. Our results are compared to the linear BEM of255

Yeung [34], the second-order frequency BEM model of Teng et al. [35], and the nonlinear256

method of Zhou et al.257

For the amplitude of motion under consideration, AR = 0.15, we observe on Fig. (9)258

a fair agreement between the added-mass computed with our model and the results of259

Zhou et al. [29]. The discrepancy with the linear results of Yeung is reduced as the non-260

dimensional wavenumber kR decreases. This behavior is not surprising as, for a given261

choice of non-dimensional amplitude A
R , the associated wave steepness will increase with262

increasing value of kR, resulting in larger nonlinear e�ects.263

For the linear radiation damping coe�cient B11, represented in Fig. 10, a still closer264

agreement with the linear theory is found. A similar agreement is observed for the non-265

dimensional �rst-order coe�cient of the horizontal force
F (1)
x

ρAR2 , represented on Fig. 11,266

except a slight discrepancy which appears at kR = 1.267

Despite the apparently linear behavior of the horizontal force, this case clearly shows268

the interest of using a nonlinear model. As mentioned by Zhou et al. [29], according to269

a theoretical result demonstrated by Wu [36], the vertical force oscillates at twice the270

frequency of the motion 2ω. As before, the discrepancy between the weakly nonlinear271

model of Teng et al. [35] and the fully nonlinear model of Zhou et al. increases with272

increasing values of the parameter kR. The existence of the second-order coe�cient F
(2)
z273

is well captured with our model as can be seen in Fig. 12. We see that our method allows274

us to �nd a very good agreement with the frequency analysis, for wavenumbers such that275

kR ≤ 0.8. For decreasing values of kR, the present results exhibit a closer convergence276

towards the results of the second-order model in comparison with the model of Zhou et277

al. For larger kR, our nonlinear model deviates from the weakly nonlinear model and278

predicts higher values of F
(2)
z , which is not the case of the model of Zhou et al.279

Figure 8: Computational domain (left panel) and close-up of grid near cylinder (right panel) for test
cases of waves moving cylinder.
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Figure 9: Truncated cylinder in sway motion along the axis Ox: computation of the added-mass with
respect to the non-dimensional wavenumber kR for various numerical models.
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Figure 10: Truncated cylinder in sway motion along the axis Ox: computation of the radiation damping
coe�cient with respect to the non-dimensional wavenumber kR for various numerical models.
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Figure 11: Truncated cylinder in sway motion along the axis Ox: �rst-order Fourier coe�cient associated
to the horizontal force Fx with respect to the non-dimensional wavenumber kR for various numerical
models.
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Figure 12: Truncated cylinder in sway motion along the axis Ox: second-order Fourier coe�cient associ-
ated to the vertical force Fz with respect to the non-dimensional wavenumber kR for various numerical
models.
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Figure 13: Truncated cylinder in sway motion along the axis Ox: zero-order Fourier coe�cient associated
to the vertical force Fz with respect to the non-dimensional wavenumber kR for various numerical models.

0

0.02

0.04

0.06

0.08

0.1

0 0.5 1 1.5 2

M
(
1
)

y

ρ
g
A
R

3

kR

linear, Yeung (1981)
FNPF model, AR = 0.15, Zhou et al. (2013)

present FNPF model, AR = 0.15

Figure 14: Truncated cylinder in sway motion along the axis Ox: �rst-order Fourier coe�cient associated
to the overturning momentMy with respect to the non-dimensional wavenumber kR for various numerical
models.
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On Fig. 13, the non-dimensional di�erence between the zero-order coe�cient F
(0)
z280

and the hydrostatic force ρgVb, Vb being the discretized wet volume of the body, is281

represented. Our method predicts very well the load for kR = 0.4 and the trend of this282

quantity is correctly reproduced.283

Finally, we represent on Fig. 14 the variation of the �rst-order coe�cient associated284

to the overturning moment
M(1)
y

ρAR3 . Our results are very close to those of Zhou et al. [29]285

for wavenumbers kR smaller than kR = 1. For larger values of kR, we observe with286

our model a clear deviation from the linear theory, suggesting a signi�cant in�uence of287

nonlinear e�ects at high frequencies, although this is contrary to the results of Zhou et288

al..289

4.2. Di�raction of long waves on a bottom-mounted cylinder290

In this section, we analyze the di�raction of a long wave on a bottom mounted vertical291

cylinder of radius R = 0.25m (Fig. 15). The wavenumber k is chosen such that kR =292

0.245, which gives for linear theory a wave period T = 2.03s. Simulations are repeated293

for 6 di�erent wave amplitudes such that kA = {0.025, 0.05, 0.075, 0.10, 0.125, 0.150}.294

The signal is analyzed with a discrete Fast Fourier Transform on the time-interval t+ =295

t
T ∈ [5, 13]. For this case, the wavelength in deep-water may be estimated as λ ≈ 6.41m.296

The domain is a box with the dimensions Lx × Ly × Lz = 26m × 6m × 3.2m. The297

mesh used for that study contains Ndof = 16, 743 nodes. When generating the mesh298

of the free surface with the algorithm NETGEN2D in the SALOME platform [26], we299

used Nx = 150 segments in the longitudinal direction, Ny = 45 segments in the lateral300

direction and Nr = 20 segments around the circumference of the cylinder. This makes,301

for the direction of wave propagation, a discretization of approximately 30 nodes per302

wavelength. In addition, Nz = 10 nodes are used in the vertical direction on the tank303

sides and N∗z = 30 nodes are used for the vertical discretization of the cylinder. Incident304

wave conditions are imposed using the �fth-order Stokes theory. Fourier coe�cients of305

the potential up to fourth-order are represented on Fig. 16, where they are compared to306

the experiments carried out by Huseby and Grue [37]. Results match the experiments307

well, with a slight di�erence seen in the second harmonic, but this is quite consistent with308

other fully nonlinear computations, such as those by Ferrant [1] and Shao and Faltinsen309

[9]. Obtaining such an agreement for harmonics of the wave force signal up to the fourth-310

order clearly demonstrates the nonlinear capabilities of the proposed modeling approach.311

Note that contrary to Ferrant [1], we do not decompose the velocity potential into an312

incident component plus a di�raction component.313

Note that the simulations performed here lead to simulated values for the forces314

which vary smoothly in time. The free surface pattern, can be noisy near the waterline315

without the �ltering described by Eq. 40. As this test case is for a �xed body, we do316

not need to invoke the Laplace smoothing or regridding described earlier, simply this317

�ltering along the waterline. Recent experimental tests of interactions between regular318

waves and vertical cylinders [38], however, suggest that waves near the waterline may319

physically be causing local breaking, or be damped by viscous e�ects. Calibrating the320

amount of dissipation required will be further investigated in future work; here we simply321

remove high-frequency waves, similar to Longuet-Higgins and Cokelet [39], which does322

not signi�cantly a�ect waves which are well-resolved.323
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Figure 15: Computational domain (upper panel) and close-up of grid near cylinder (lower panel) for test
cases of waves interacting with a �xed cylinder, in the case of kR = 0.245 and kA = 0.10.

4.3. Di�raction on a modi�ed �xed Dutch Tri-�oater platform324

4.3.1. Setup of the model325

We now consider a more complicated test case with a semi-submersible structure,326

hereafter referred to as the Dutch Tri-�oater [40], which is a proposed structure for327

o�shore wind turbines. The shape of the �oater involves three surface piercing cylinders,328

rigidly connected. Moreover, each cylinder is equipped at its base with a heave plate.329

This geometry is a slight simpli�cation of original the Dutch Tri-�oater geometry [40],330

as we do not consider here the smaller supporting struts, but they should not constitute331

a signi�cant source of hydrodynamic forces with an inviscid model. A sketch of the332

geometry adopted in this work, also studied by Antonutti et al. in [41], is represented333

on Fig. (17).334

For the numerical wave tank, we again use a cylindrical domain such as the one335

represented in Fig. (6). This time, the reference free surface elevation ηref and the336

reference potential φref correspond to the solution of the �fth-order Stokes theory. The337

Design draft (m) 12.0
Column centre-to-center spacing (m) 68.0
Column diameter (m) 8.0
Column depth including plate (m) 24.0
Plate diameter 2r (m) 18.0
Plate thickness (m) 1.0

Table 2: Geometric parameters of the Dutch Tri-�oater chosen as in the study [41].
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Figure 16: First through fourth-order Fourier coe�cients associated to the time-series of Fx for a bottom-
mounted cylinder with a period T = 2.03s, kR = 0.245 and the water depth kd = π.

coe�cients requested to evaluate this solution are computed at the beginning of the338

simulation.339

For the size of the domain, trial and error showed that a choice of parameters Rext =340

3λ + Λ, Rλ = λ + Λ with Λ = 70m and γ0 = 1, leads to a stable value of wave loads341

after a duration of 40 wave periods, except for nondimensional wavenumbers kr ≥ 2.5,342

for which longer time simulations are needed. On the contrary, by choosing (Rλ, Rext) =343

(2λ + Λ, 3λ + Λ) or (Rλ, Rext) = (λ + Λ, 2λ + Λ), that is, with an absorbing beach of344

radial length λ, we cannot obtain a convergence of the wave loads towards a periodic345

state.346

We study below the di�raction of monochromatic waves on the �oater. The waves347

are generated by imposing the velocity and acceleration of �fth-order Stokes waves on348

the far-�eld lateral sides. In addition, as already mentioned earlier, the wave pro�le349
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Figure 17: Geometry of the modi�ed Dutch Tri-�oater taken into account in the potential �ow model.
Above the mean free surface level, each cylinder is assumed to be in�nite.

is damped out near the external boundary. With the methodology exposed above, we350

were able to simulate successfully the waves whose characteristics are given in Table (3)351

of the Appendix A. We note that for the steepest waves, the convergence of the wave352

loads toward a periodic state is slower, which suggests that in the future, it could be353

worth computing the Response Amplitude Operator (RAO) curve with a �xed steepness354

rather than with a �xed wave height (as done here in the traditional manner). The355

meshes used in this study are always adapted to the wavelength under consideration.356

The unstructured mesh of the free surface is done with the algorithm NETGEN2D in357

the SALOME platform [26]. Each simulation used a mesh with a number of degrees of358

freedom in the range: Ndof ∈ [[18000, 23000]].359

4.3.2. Zero and �rst order loads360

We analyze the time-series of the forces Fx and Fy, and the overturning moment361

My, over a window of 6 periods. Details on the time intervals considered for the Fourier362

analysis are given in Table 3 of Appendix A. For each frequency, we de�ne the RAO of363

the temporal signal F as the ratio between the �rst-order Fourier coe�cient F (1) and364

the wave height H, and we assume that the density of the water is ρf = 1025 kg/m
3
.365

The RAO of the longitudinal force, Fx, agrees very well with the open-source linear366

wave model NEMOH [42] (Fig. 18). In particular, we �nd that the oscillations of the367

curve are well reproduced for the small periods. Similar agreements are found for the368

vertical force (Fig. 19), using reference values published in [41]. There are some deviations369

between the two results, even for these moderate wave amplitudes, at the peaks, as370

one might expect between linear and nonlinear models. Similarly, the nonlinear model371

described here predicts a lower maximum overturning moment, as compared to the linear372

model NEMOH (Fig. 20).373
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In addition, we show in Fig. (21) the horizontal drift force, de�ned as the zero-order374

coe�cient F
(0)
x of the Fourier series Fx, with respect to the wave period T . Our results are375

compared to a frequency model computing the Quadratic Transfer Functions described376

in [43]. Except for the smallest periods, a very good agreement with the weakly nonlinear377

model is observed. For the highest frequencies tested in this study, our semi-Lagrangian378

scheme exhibits important deviations from the theory. This calculation provides further379

con�dence in the ability of our numerical model to represent nonlinear features of the380

wave-structure interaction problem.381

As an illustration of the importance of nonlinear e�ects, we choose to represent on382

Fig. (22), the ratio of second-order to �rst-order coe�cients for the quantities of interest:383

Fx, Fz and My. Whereas this ratio does not exceed 20% for Fx, it may reach 60% for384

Fz and My, for the smallest periods of this study. This shows that nonlinearities become385

important for these shorter wavelengths with the Dutch Tri-�oater.386

5. Conclusions387

We presented in this paper an implementation of a fully nonlinear potential wave388

model to simulate wave-structure interactions using unstructured triangular meshes, im-389

portant for being able to handle future industrial applications with arbitrary problem390

geometry. The assembling of the system matrix is made with an e�cient use of paral-391

lelization on distributed computer systems. Two time-stepping schemes, based on dis-392

crete derivatives with �rst-order shape functions, are derived. The accuracy of the whole393

algorithm could be easily enhanced by using high-order elements.394

The model is applied to various problems involving surface piercing cylinders. The395

forces on a truncated cylinder in �nite water depth, subjected to a prescribed sway mo-396

tion, using a fully Lagrangian motion of the free surface mesh, is found to agree reasonably397

well with reference results. Similarly, forces on a bottom-mounted vertical cylinder re-398

sulting from di�raction of regular waves, using a semi-Lagrangian time-stepping scheme,399

capture higher-order nonlinear e�ects (i.e., up to the fourth harmonic of the horizontal400

force).401

Finally, in order to show the potential of the method in dealing with complex struc-402

tures, we also successfully compute both linear di�raction loads and nonlinear drift forces403

for a geometry inspired by the Dutch Tri-�oater [40]. Other important features, such as404

improving computational speed (i.e., with the fast multipole method), such as started by405

Harris et al. [44], will be considered in upcoming works, as well as using improved accu-406

racy (i.e., cubic B-spline elements), or including more physics (i.e., coupling to Navier-407

Stokes solvers). Moreover, the case of arbitrary geometries for the rigid body needs to408

be addressed.409
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Figure 19: Nonlinear di�raction of a wave of height H = 2 m around the modi�ed Dutch Tri-�oater for
various periods T with a water depth of d = 50 m: RAO of the vertical force Fz .
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Figure 20: Nonlinear di�raction of a wave of height H = 2 m around the modi�ed Dutch Tri-�oater for
various periods T with a water depth of d = 50 m: RAO of the overturning moment My .

−20

0

20

40

60

80

100

120

140

4 6 8 10 12 14

F
x
(0

)
[k

N
]

T [s]

2nd order frequency model
present FNPF model, H = 2m

Figure 21: Nonlinear di�raction of a wave of height H = 2 m around the modi�ed Dutch Tri-�oater for
various periods T with a water depth of d = 50 m: horizontal drift force Fx(0).

27



0

0.2

0.4

0.6

0.8

1

4 8 12
0

0.2

0.4

0.6

0.8

1

4 8 12
0

0.2

0.4

0.6

0.8

1

4 8 12

T [s]

|F (2)
x |

|F (1)
x |

T [s]

|F (2)
z |

|F (1)
z |

T [s]

|M(2)
y |

|M(1)
y |

Figure 22: Nonlinear di�raction of a wave of height H = 2 m around the modi�ed Dutch Tri-�oater:
ratio between second-order to �rst-order coe�cients for the quantities Fx, Fz and My .

Appendix A. Characteristics of the waves and the wave load analysis for the416

nonlinear di�raction around the modi�ed Dutch Tri-�oater.417

In Table (3), the parameters of the waves used in the model and the time-interval of418

the Fourier analysis are detailed for the test-case of the Dutch Tri-�oater.419

kr ω[rad/s] 2πH
gT 2 [t+1 , t

+
2 ]

0.3 0.564 0.010 [13.47, 19.47]
0.4 0.658 0.014 [15.71, 21.71]
0.6 0.809 0.021 [12.88, 18.88]
0.7 0.873 0.025 [13.90, 19.90]
0.75 0.904 0.027 [14.39, 20.39]
0.8 0.934 0.028 [16.35, 22.35]
1.0 1.044 0.036 [24.93, 30.93]
1.25 1.167 0.044 [24.15, 30.15]
1.50 1.279 0.053 [24.43, 30.43]
1.75 1.381 0.063 [26.38, 32.38]
2.0 1.476 0.071 [29.36, 35.36]
2.25 1.566 0.080 [31.16, 37.16]
2.50 1.651 0.089 [63.07, 69.07]
2.75 1.731 0.098 [63.37, 69.37]
3.00 1.808 0.108 [63.31, 69.31]

Table 3: Nonlinear di�raction for a wave height H = 2 m around the modi�ed Dutch Tri-�oater:
characteristics of the waves simulated with respect to the non-dimensional wavenumber. The parameter
r denotes the radius of the heave plates and is set to r = 9 m. d is the water-depth, such that H

d
= 0.04.

ω is the angular wave frequency. k is the wave number. T is the wave period. t+1 = t1
T

and t+2 = t2
T

with [t1, t2] the time interval on which the Fourier analysis is performed.
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