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Abstract

This paper presents the development and validation of a three-dimensional numerical
wave tank devoted to studying wave-structure interaction problems. It is based on the
fully nonlinear potential flow theory, here solved by a boundary element approach and
using unstructured triangular meshes of the domain’s boundaries. Time updating is
based on a second-order explicit Taylor series expansion. The method is parallelized
using the Message Passing Interface (MPI) in order to take advantage of multi-processor
systems. For radiation problems, with cylindrical bodies moving in prescribed motion,
the free-surface is updated with a fully Lagrangian scheme, and is able to reproduce ref-
erence results for nonlinear forces exerted on the moving body. For diffraction problems,
semi-Lagrangian time-updating is used, and reproduces nonlinear effects for diffraction
on monopiles. Finally, we study the nonlinear wave loads on a fixed semi-submersible
structure, thereby illustrating the possibility to apply the proposed numerical model for
the design of offshore structures and floaters.

Keywords: Nonlinear wave-structure interaction, Offshore structures, Ocean
engineering, Boundary element method

1. Introduction

The numerical modeling of fully nonlinear interactions between floating structures and
waves in three dimensions (3D) is of great importance for the design of ocean engineering
structures such as offshore wind turbines or wave energy converters, as realistic sea states
may cause nonlinear motions of the structure. The problem is often addressed by means
of the fully nonlinear potential flow (FNPF) approach, and has had broad success for
both radiation and diffraction problems.
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Solving for FNPF involves the solution of Laplace’s equation for a velocity potential,
which can be treated with the boundary element method (BEM). For one example, Fer-
rant [I] was able to get very good agreement for the loads on a vertical cylinder in regular
waves, using linear triangular elements. More recently High Order Boundary Element
Method (HOBEM) has seen more use, for its better properties in convergence, although
it can be more complicated to produce an appropriate mesh for complex geometries.

Boo [2] studied the effect of linear and nonlinear irregular waves on a fixed bottom
mounted cylinder with an HOBEM. In the work of Liu et al. [3], a HOBEM with struc-
tured meshes was used to compute the wave loads in forced motion and diffraction on a
Wigley Hull and a truncated cylinder. A fair agreement with measurements performed
at MARINTEK and the third order theory of Malenica and Molin [4], was found for
the case of the truncated cylinder. Another HOBEM was recently developed by Bai and
Eatock Taylor in [5] using unstructured grids and combined with a domain decomposition
method in [6]. Various forced motions cases were investigated with a vertical cylinder.
A remeshing step based on the Laplace smoothing technique was used. Typical nonlin-
ear effects were outlined like the oscillation of the vertical force in surge at twice the
frequency of the motion, occurring with symmetrical objects. An important nonlinear
interaction between surge and pitch motion was also shown.

Other approaches have also been considered for these wave-body interaction problems
with fully nonlinear potential flow. Ma et al. [7] developed an approach based on the
finite element method (FEM) and applied it to wave loads on fixed vertical cylinders.
Similar work with FEM was made by Wang et al. [§]. Shao and Faltinsen [9] devel-
oped the harmonic polynomial cell approach, which is another solution to potential flow
problems based on a volume discretization, but representing the local solution as a linear
superposition of elementary solutions of the Laplace equation, resulting in improvements
in accuracy and speed. Mola et al. [10] used a BEM, but with substantial innovations
with adaptive mesh refinement and stabilized by a Streamline Upwind Petrov—Galerkin
(SUPG) scheme applied to the dominant transport term of the boundary condition, in
case of a non-negligible advancing velocity.

While theoretically much of the physics is well understood even for cases with free
motion, numerical complexities of working with higher-order methods mean that they
are more difficult to work with in 3D for complex body shapes, hence even some recent
works focus on 2D simulations, such as the FEM work by Yan and Ma [I1] and by Wang
and Wu [12]. Industrial design work can be done now though using such tools; the free
motion of a simplified Floating Production Storage and Offloading (FPSO) structure
was studied in [I3]. Free motion was also addressed in [6], where the effect of the shape
of the cylinder was investigated. An extension of the QALE-FEM method developed
in [11] has also been applied to free motions in [I4]. Similar to the Laplace smoothing
technique mentioned above used by Bai and Eatock Taylor [6], the QALE-FEM avoids
remeshing of the free surface, but an adaptive mesh strategy is used based on a spring
analogy for moving interior nodes of the free surface and the body surface. A validation
of this scheme is performed with comparisons to experimental data for a barge-type and
a spar-type floating structure with a good agreement.

Despite the many methods which exist, due to the numerous difficulties involved in
fully nonlinear potential flow modeling, the state-of-the-art has not yet converged on a
single approach, and industry models such as AEGIR [15] are normally used to only solve
linear or second-order flow.
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This paper presents a variation of the 3D model of Grilli et al. [16], focusing on
working with surface-piercing bodies with arbitrary geometry. Additionally, the code is
parallelized to work on modern computer clusters. Notably, we continue to use Taylor
series expansions for the time-stepping, shown by Machane and Canot [I7] to be faster
than Runge-Kutta for the same accuracy. In the approach of Grilli et al., however, they
used higher-order elements on a structured grid, which they refer to as mid-interval inter-
polation (MII). Unfortunately, this is best suited for simple wave propagation problems,
whereas complex surface piercing objects may not always be well-suited for structured
grids. As a result, this is reformulated for unstructured 3D meshes; although often struc-
tured high-order grids will be more accurate, we believe that it will be important to have
the capability to consider any mesh, as increasingly complex offshore structures may not
be easily adapted to a structured or block structured mesh.

For the present study, the general theory is presented in Section 2, and the discrete
equations are detailed in Section 3, including the derivation of the time-stepping scheme,
the assembly of the BEM system matrix, and the representation of rigid body surfaces
in our numerical model. Section 4 shows applications including the verification and the
validation of the numerical model with a bottom-mounted cylinder, a truncated cylin-
der and finally a complex structure representing a simplified semi-submersible floater.
Concluding remarks follow in Section 5.

2. Mathematical model

We assume the fluid to be incompressible and inviscid and the flow to be irrotational.
We thus introduce a velocity potential ¢ which satisfies mass conservation, expressed as
Laplace’s equation within the entire fluid domain Q;(t). We assume that the boundary of
the fluid domain 0€Q(t) is divided into four parts, on which different types of boundary
conditions can be applied, 0Q¢(t) = T'f(t) UT:(t) UT, UT(¢) described later, including
the free-surface, I'y, the bottom boundary, I'y, the far-field edges (i.e., wavemaker or
sidewall boundary), I';, and the surface of a fixed or floating body under consideration,
T'.. The bottom boundary I’y is assumed to be time independent.

Denoting the Green’s function, G(x,y) = m, the fundamental solution of
Laplace’s equation in 3D (i.e., R3), the velocity potential obeys the following bound-
ary integral equation (BIE), for every point, x, on the boundary:

cxotx.t) = [

00 (1)

d¢ oG
—(y, )G — t)— ds 1
(5ot nGiey) - o050y ) s, ()
where the function ¢(x,t) denotes the inner solid angle seen from the boundary (field)
point x, and y is taken to be the source point on the boundary, 0 (t).

On the free surface I';(¢), the kinematic and dynamic boundary conditions state that:

Pr(x,t) = —gz — %V(b(x, t) - Vo(x,t) for x € Ty(t)
dx (2)

i Vo(x,t) for x € T'y(¢)

The time-integration of these equations is described in the next section.
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On the solid boundary of the floating body T'.(t), we specify a free-slip condition,
which expresses the normal derivative of the potential equal to the normal component of
the body velocity on that boundary:

9¢
On(x,t) = 8—n(x,t) =vy(x,1) - np(x,t), Vx € T'f(¢) (3)
where ny(x,t) denotes the unit normal vector pointing inward to the solid surface T'.(¢),
at point x, and v(x,t) is the body velocity. This condition remains valid on the fixed
bottom and lateral boundaries, I', U T, using a zero velocity, i.e., % =0.

To avoid the evaluation of the time derivative of the potential by use of a finite
difference scheme, we apply the same BIE technique for computing ¢;. Indeed ¢; satisfies
the same field equation, and requires the associated boundary conditions. Following
Dombre et al. [18], the Neumann boundary condition satisfied by ¢; on T'.(¢) is expressed

as:

96

¢tn(xa t) = 871

(c,1) = T (valo6.1) — V) + au(x, ) — v, 1) (V96m)  (4)

with ap(x, ) the solid acceleration vector at the position x and time ¢.

3. Numerical scheme

3.1. Boundary Element Discretization

At each time-step, we solve the BIE problems associated to ¢ and to ¢; by using an
isoparametric BEM with flat triangles. The whole set of boundaries of the domain is
meshed with non-overlapping triangles. On each triangular element I'*, we assume the
field variables and the geometry to have linear variations, described as:

FEL&) = D N6, &)

{gix;€VF}

x"(61,6) = Z x;N; (&1, &2)

{ix;€V*}

(5)

where V¥ is the set of the vertices of T* and (£, £2) denotes the co-ordinates in the refer-
ence element I'¢. The functions N; are the so-called shape functions, i.e., N1(&1,&2) = &1,
Na(&1,&2) = &2, and N3(61,&) =1-& — &.

Using a collocation method, we write that for any x; belonging to the discrete bound-
ary of the fluid domain I'; = 9€); at time ¢;, we have:

c(xi, t)p(xi, t5) = /

Ly

(%(Yk,tj) G(yr,%x;)dSy — ¢(yi,tj) gf(yk,xi)) dS,  (6)

which can be, upon replacing the integral by a discrete sum over the vertices of the mesh,

rewritten as:
Ndof Ndof

Sijeit > K| ¢i=Y Kiel (7)
Jj=1 j=1
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with Ngos the number of vertices of the mesh. Adopting notations used in [19], we can
show that the sub-matrices of this system are defined as:

K= 3 [ (MG 6400040 )

keS;

Kf=>" /F 5 (lem&)G(x’“(f),x»Jk(f))df

keS;

(8)

where [;(j) is a local index varying from 1 to 3, S; denotes the set of elements containing
the node of global index j and J*(£) is the Jacobian of the transformation which maps
I'e to I'y. Ilix(y) thus associates to each T'y in S; the local index of the node x; in
T'x. We also define the notation Sy as the set of vertices belonging to the element I'y.
When assembling the matrix of the system ([7), two situations may arise. If the source
point x,, is not belonging to the element I'*, both Kidj and K are regular and we
use a quadrature formula defined by a Dunavant rule [20] in order to perform numerical
integration. Otherwise, the source point is belonging to I'*, i.e. there exists x; € Sy such
that x; = x;, in which case we treat the singularity by applying a Duffy transformation,
similar to the polar change of coordinates presented in Grilli et al. [16].

In case of body motions, the velocity v, is non zero and the present model re-
quires to evaluate the high-order term v, (VV¢-n) in Eq., which is not trivial. This
calculation may be simplified by transforming the second-derivative when computing

the integral be ) G¢ndSy. This integral is decomposed into I; = be o) G(bi,ll)dSy and

Iy = [y, Gt dS, with ¢f,) = 9. (vi, — Vo) +a,m and f, = v, (VV¢n). Following
Bai and Teng [21], the use of the Stokes formula and basic vector analysis manipulations
lead to the relationship:

L= [ GV(V$)) - nds, - / GV x vy) - dy+
Ty(t) ATy (t) 9)
G(Q % Vo) + (VG - Vé)vy — (VG -v3) V] - ndS,
Ty (t)

assuming the rigid body velocity is given by vi(x) = vg + Q X (x — xg) with vg the
translational and €2 the rotational velocity vectors of the rigid body. We recall that, by
convention, the unit normal vector n is oriented towards the inside of the rigid body. In
this respect, the line integral fBFb(t) G(V¢ x vp) - dy must be evaluated considering that
the tangent vector to the waterline dy is such that the vector dy x n(y) points outside
of the rigid body.

3.2. Time-stepping

Asin the original 2D-FNPF code of [22], we update both the position and the potential
on the free surface I'f(t) by an explicit scheme based on a second-order explicit Taylor
series expansion. In this scheme, the values of the potential ¢ and the position x at time
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t*t1 may be expressed as follows:

¢i+1 _ ¢(Xi+17 ti+1)

iy B0 PO A
:¢(Xat)+a(x7t)At+ﬁ(x7t)7 (].0)
X . dx L. . . d2X . . . Atz
141 7 T 4% 4T Al T 4% 4T Al
X =x +E(Xata¢a¢n)At+w(x7t’¢’¢n)7

From system , several numerical schemes can be devised according to the choice of
the advection velocity used in the material derivative 4. Let v, be a velocity field which
is chosen to advect the free surface particles. When using the velocity v, for moving the
free surface nodes, we obtain the following first-order derivatives:

d

ﬁ = ¢y +v,- Vo
dx

@V

Then, if we take again the material derivative of the first-order coefficients along the
velocity vector v,,, we obtain:

d*x  Ov,
PR AL 12)
d*¢  dée  dv, dVe
@ w a0t
Given the free surface dynamic boundary condition ¢y = —gz — %V¢ -V ¢, we can derive:
dor
E—g-vp—Vq’)-(V(bt—kVV(b-vp) (13)
We also have:
dvp dVe¢  Ov,
el Vo+v,- P Vé+ (Vvy-vy,) Vo (14)
+vp Vor +(VVo-vy) - v,
Summing all of these contributions, we obtain:
d2
O =g vy + (v~ V) Vo .
0
+ 5L YO+ (VY- v,) - (v, = Vo) + (Vv, - v,) - Vo

One can easily check that setting v, = V¢ in Eq. gives the Lagrangian second-order
development:

2
O =& V64 V6, Vo + (VV6-V6) - Vo (16)

as can be found e.g. in Appendix A of [23].
6
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We recall that the nonlinear conditions on the free surface read:

15]

87;] = ¢, — Moo — 77y¢y

o X (17)
ot =—9n- §V¢‘V¢

When dealing with fixed vertical cylinders or fully submerged bodies (or cases without
any body), it can be useful to consider a semi-Lagrangian scheme, allowing only vertical
motion of the fluid particles. For this, we consider the definition v, = %ez. (For the
equivalent material derivative with curved structures, see Zhang and Kashiwagi [24].)

While expanding this scheme, we first make the assumption that the function (x,y) €
R? + 1 € R is single-valued (i.e., the waves are not overturning), which allows to get the
relationships:

on_99 Onog omdp _0¢  n. 09 , ny0d

= 1
ot 0z Oxdxr Oydy Iz n,0x n,0y (18)

where n = (ng,ny,n,) is the outward unit normal vector to the free surface. We can
thus work out the following formula:

0

on _ on (19)
ot n,

which is simpler to evaluate numerically as the present model relies on the distribution

of the variables ¢ and ¢,, on the boundary.

3.2.1. Discrete velocity on unstructured grids

For first-order elements, the velocity in a triangle is computed using a relationship
found in Meyer et al. [25]. In the triangle number j, called T}, the gradient of any linear
function is calculated as follows:

1
Vor, = E(((bj,iﬂ — @505 X (X, —Xji-1) (20)

(g1 = G0y X (X1 = Xj.0))
where A; denotes the area of T}, n; the unit outward normal vector to 7T and the index
(4,1) corresponds to the local index of the node number i located on the triangle 7. The
indices (j,7 — 1) and (j,7 + 1) refer to local indices of the nodes in the triangle T; such

that the arc X;;_1X;;X; ;41 is positively oriented with respect to the local normal vector
n;. According to these definitions, we can further derive the following relationships:

(X041 — X5.0) X (Xji-1 — Xj4)

(%41 = %5,) X (Xj,i-1 — X5,0) | (21)

n; =
1
Ay = Sl = x54) X (Xgi-1 = x5) |

We then take an average of Eq. over the 1-ring neighborhood of the vertex ¢, which
is the set of triangles containing x; and denoted by S; (see Fig. ) Taking into account

7



Xji—1 Xj,i+1

Xjg

Xi

Figure 1: Sketch of the set of elements S;, also called the 1-ring neighborhood of the vertex x;.

the contribution of ¢,, to the gradient, we obtain an approximation of the velocity vector:

- AV, +¢"Z N ZAnj (22)
JjE

Vo =
Z]’ES 7 jes;

Eq. has been, for example, used in the field of computer graphlcs [25] in order to
evaluate geometric quantities such as the principal curvature on irregular meshes. It is
shown in [25] to achieve a comparable accuracy to finite differences schemes and has the
advantage to be less sensitive to the mesh configuration.

3.2.2. Discrete acceleration on unstructured grids

For evaluating the terms related to second-order derivatives of ¢, we try to take
advantage of the previous methodology. This is made possible by expressing the second-
order tensor VV¢ in a local basis attached to the vertex under consideration. In matrix
form, this term reads:

Vi = (VVBx)®),, = VIV - sk) - s (23)

with B(x;) = (s1,S2,s3) an orthonormal basis such that s3 is the normal vector to the
discrete surface at the node x;. We define the vector:

1
24 s (V@)1 8k — V- si)ny x (x5, — Xj,i-1) (24)

(V¢j,i—1 Sk — Vo, ;- SNy X (X041 — Xj4))

The components of the matrix V* can be calculated as:

/Bijk

v,;’lzzi > AiBiy) s ke {1,238}, 1e{1,2}

JES: JES;

V1i3 :V& (25)
Vaz = Vi,

Vag = —Vii — Vo
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Figure 2: Irregular triangular grid of a torus with a mean radius of R1 = 2m and a cross-section of
radius Rz = 1m generated by the algorithm NETGEN2D in the SALOME platform [26].

The relationships V5 = V4, and V33 = V4, are obtained by symmetry of the matrix V*
which comes from the fact that its components are second-order partial derivatives. The
last relationship Vi; = =V}, — VJ, stems from the Laplace equation.

This scheme consists therefore in interpolating linearly the projections of V¢ on the
local basis B(x;) over the 1-ring neighbourhood of x;. The outward normal vector at x;
is evaluated by means of the following weighted sum:

>jes: Ajn;j
Zjes,; Aj

with the vector n; previously defined on each triangle of S;. This vector is then scaled to
define a unit normal vector, and from this we define two tangential vectors to the discrete
surface at x;. For this purpose, we need to define a first tangential vector by projecting
any point x; belonging to a triangle of the set §; and different from the point x; onto
the tangential plane oriented by ss and passing through x; by means of the following
formula:

S3 (Xl) = (26)

Xj — X; — Sg(Xl‘) . (Xj — Xi)

Sl(Xi) = (27)

1% — xi —ss(xi) - (x; — %)
A last vector of the basis B(x;) is then given by sa(x;) = s3(x;) xs1(x;). The performance
of these discrete differential operators is finally assessed on the case of the irregular mesh
of a torus with a mean radius of Ry = 2m and a cross-section of radius B> = 1m. An
example of discretization for the torus is represented on Fig. We use the function
¢ =expk,z sin(kyx + kyy) as a test case. We consider the following error indicators:

e The normalized maximum error of the vector V¢ (denoted by L in the figures)
maxX;—1..N |‘V¢*V¢r(’f”7
max;=1..N [|[Vérerll;

and defined as € =

e The normalized average error of the vector V¢ (denoted by L! in the figures) and
o IVe=Véresll,
il IVérerll,

defined as € =
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Figure 3: Maximum normalized error (left) and average normalized error (right) for the velocity vector
v associated to the potential ¢ = exp(k.2) sin(kyz + kyy) with ky = Ilm~1, ky = 0.5m™! and k, =

\/kz? + ky? on a torus.

L It
0 0
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Figure 4: Maximum normalized error (left) and average normalized error (right) for the acceleration
vector a associated to the potential ¢ = exp(k.z) sin(kzx + kyy) with ky = Im~!, ky, = 0.5m~! and

k., = \/m on a torus.
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The errors for the tested velocity field are represented on Fig. . The ones for the
acceleration is represented on Fig. . The parameters of the tested potential are set to

ky = 1m~', k, = 0.5m~! and k, = \/k,” + k,°. Tt can be concluded that the proposed

method converges in L' norm on a smooth surface. In this norm, the error is scaling, in

—1.940 —1.785
the root mean square sense, as (%‘f) for the velocity vector and as (%) for

the acceleration vector.

3.3. Parallel assembly of the system matrices

In order to speed-up the simulations for large-size problems, the nodes which make
up the BEM mesh are subdivided into nearly equal subsets based on a domain decom-
position. That is to say, the main simulation (e.g., time-stepping) is handled on a single
processor, but when many processors are available, the workload for solving the Laplace
equation is divided over the available processors. This is done by taking the linear system
of equations shown in Eq. [7) and only computing (and storing) part of this coefficient
matrix on any given processor. The resulting system is then solved solved with an itera-
tive linear solver, BICGSTAB. The Message Passing Interface (MPI) is used to exchange
data across the distributed computer cluster.

We test the efficiency of our parallelization by computing the solution of a mixed
Boundary Value Problem for the velocity potential ¢(z,y,2) = z. The geometry is a
box of size Ly X Ly x L, = 1lm x 1m x 1m. On the top surface, we impose a Dirichlet
boundary condition ¢ = x. On the remaining surfaces, we impose a Neumann boundary
condition ¢,, = n,, n, being the z-component of the outward normal vector to the box.
We test the solution process for a moderate grid of 16,743 collocation nodes with different
numbers of processors n, € {1,4,16,64}. The results are represented on Fig.

This approach is in contrast to Bai and Eatock Taylor [27], for example, where they
implement domain decomposition by adding extra boundary elements within the domain
to create individual subdomains. They therefore only scale up to around a 10x speed-up
compared to their solution on a single processor. This means that the discrete equations
that are being solved can change depending on the number of processors used. Here,
on the other hand, only the coefficient matrix is shared, so the same equation is being
considered. This is possible because the amount of information that needs to be shared
between processors is small compared to the size of the overall system matrix.

3.4. Mesh deformation

3.4.1. Time-updating of deformable surfaces

The velocity potential ¢ and the position x on the free-surface are updated using
Eq.. In order to avoid an incompatibility of velocity on the far-field edges, the free-
surface boundary conditions are corrected in a certain area near the exterior boundary
of the free surface. For a cylindrical fluid domain, as those which will be considered in
the validation presented hereafter, we consider an inner cylindrical domain of radius R)
and an outer cylindrical domain of radius Re,: (Fig. (6)). Then, the absorbing area is
defined by the set Dy = {x = (r,0,2) € T’y such that (r,8) € [Rx, Reqt] x [0,27]}. In
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Figure 5: Speed-up of the assembling step plus the solution of the system matrix with respect

the set Dy, the free surface and the potential are corrected as:

2
2" z — Atw; (ﬂ) (z — D(t)n;(r,6,1))
ext A (28)
" r— R,\ 2 *
¢ ¢ — Atw; (M) (¢ — D(t)¢i(r,0,2",1))

where 7; and ¢; correspond to a theoretical wave profile. For the absorption of the
incident waves, other techniques like that developed by Clamond et al. [28] could be
more efficient for irregular waves. The implementation of this method would require to
solve (in parallel with MPI) an additional linear system corresponding to the vertices of
the free surface mesh. This is left for future works.

For the bottom mounted cylinder, we will use a rectangular domain. In this case, the
absorbing beach defined above is divided into two parts. The first part lies in front of the
entrance of the tank and is defined as: D) 1 = {x = (21, z2,23) € I'y such that (z1,z2) €
[0, Ly] x [0,1,]} where [, is the length of the absorbing beach. In this domain, 7; and
¢; will be chosen to correspond to a desired incident wave profile. At the end of the
domain, a second beach is defined: Dy o = {x = (21,22,23) € I'y such that (z,22) €
[0,L,] x [Ly —Ix, L]} In this second domain, we set 7; = 0 and ¢; = 0.

3.4.2. Time-updating of rigid surfaces
The nodes associated to the fluid particles on the body surface are updated following
the rigid body motion. We restrict ourselves to the forced motion of a rigid body. We
recall that, with a rigid body, for any material points x4 and xp belonging to the body,
we have the relationship {W}B = 0 in the reference frame of the body B.
Rotation matrices around the axes of the fixed global reference frame are defined in

the following fashion:

1 0 0
Ryo,=|0 cosf, —sinb, (29)
0 sinf, cosb,

12



192

193

194

195

cosf, 0 sinf,
Ry = 0 1 0 (30)
—sing, 0 cosb,

cosf, —sinf, O
Ry, = | sinf, cosf, 0 (31)
0 0 1

At any time, the link between the position expressed in R and the one expressed in
B is made with the equation:

(x(t) —xc(t))r = Ro, Ro, Ro. (x(t) — xc(t))5 (32)

with (x(t) — x¢(t))gz a time-invariant vector. We define the fixed basis R = (e, ey, e;)
and the moving basis B = (e, eyp, €25). The latter can be obtained by the transforma-
tion Ry, Ry, Ry, applied to the basis (e, e,,e.).

3.4.3. Merging of the meshes

As the free surface vertices are tracked in a Lagrangian manner during their motion,
the meshes of the free-surface and the body need to be reconnected. Since the distance
between the displaced waterline and the displaced body appears to be small, similarly to
Bai and Eatock Taylor [5], we make a projection of the nodes located on the waterline
onto the body geometry. Here we consider an application of this technique in the case of
a cylindrical body surface. The following procedure is used for each node of the waterline:

1. Apply the MEL time-stepping to the position X}

de d2Xf At?
Lt+ At) = t —At —
Xp(t+ At) = xp(t) + TR (33)
2. Express the vector x} in the body reference frame B:
x4 (t + At)[g = Xg(t + At)lg
g (34)

+R9_21R5lee_zl (x}(t + At) — xq(t + At))r

3. Express x}(t+At)g in a coordinate system suited to the shape under consideration
(for a cylinder, we choose the polar coordinate system):

X}(t + At)g =xg(t+ At)p

35
+rf(cost9femb +sin9feyb) + zreyp ( )

4. Replace the radial coordinate r¢ by the radius of the cylinder R; in the reference

frame B:
Xf(t—FAt)B ZXg(t+At)B (36)
+ Rb(COS efewb + sin Gfeyb) + zreyp
5. Transform the new coordinate x;(t + At)g into the global reference frame R:
x¢(t+ At)g = xg(t + At
1+ Ay = xa(t + At)r .

+ RezngRgz (Xf(t + At) — Xg(t + At))B
13
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For each geometric node of the waterline, we denote by x; the position vector of
the node belonging to the mesh of the free surface and by x; the position vector of
the node belonging to the mesh of the body surface. Prior to updating the position
of the nodes for the next time-step, x; and x; are equal. An interpolation of the free
surface elevation angular distribution found with the procedure described above, is made
on a fixed uniform angular distribution. In other words, for each double-node of the
intersection, we first express xy and x; in the basis (e, €yp, €21):

(xf —x¢)B = Rp(cosOreqy +sinfrey) + zre.p

. (38)
(Xb — XG)B = Rb(COS Opep + sin Gbeyb) + zre.p
Then, for each angle 6,;, we compute the indices:
i1 = argmin, Or;i — Opil; 0p; > Oy
€[1,N4] H f Jl J f] (39)

ig = argmin;epy n,p [|07i — Objl; 005 < 0y

with Ny the number of double-nodes at the intersection of the mesh of the body surface
and the mesh of the free surface. Afterwards, we interpolate linearly the values of the
potential ¢; and the values of the local free-surface elevation (x; — x3)5 - €, in the
interval [0;,,6;,].

3.4.4. Filtering of the waterline

When considering steep sea states, one often observes instabilities near the waterline,
which eventually propagate throughout the domain. As in many publications, we thus
filter, at each time step, the variables of the waterline defined previously. We apply,
similarly to [29] B0], a filtering formula with a moving stencil of 7 points for the variables
¢ and (x5 — Xp) - €2, along the waterline only. For the potential ¢, this formula reads:

¢ = 3%(—@—3 +9¢i-1 + 16¢; + 9pit1 — bit3). (40)
3.4.5. Remeshing step

In time-domain simulations with floating bodies, the geometry is always changing.
As a consequence it is necessary to change the mesh of the geometry. On the one hand,
in order to prevent the triangles to be distorted in the vicinity of the piercing surface
cylinder, a Laplace smoothing technique is applied, for the mesh of the free surface, on
the projection of the nodes onto an horizontal plane. This technique has also been used
by [7,[5]. On the other hand, the mesh of the body is generated with regular quadrangles
divided into triangles by their diagonal. For this part of the mesh, we modify only the
vertical position of the nodes to get a uniform vertical distribution.

4. Numerical results

4.1. Sway motion of a truncated vertical cylinder
4.1.1. Problem setup
We are concerned in this section with the imposed periodic motion in sway (i.e. along
x1 axis) of a truncated cylinder. The position vector of the center of gravity is given the
form:
xa(t) = (x1(t), 22(t), 23(t)) = (Asinwt, 0,0) (41)
14



Figure 6: Sketch of the decomposition of the domain with respect to the free surface boundary conditions,
noting boundary conditions for fully Lagrangian time-updating. In this case, Laplace smoothing is used
to maintain a well formed mesh on the free-surface.

with w the angular frequency of motion. The water depth of the numerical wave tank
is set to d = 1.5R, with R the radius of the cylinder, and the draft of the cylinder
is set to B = 0.5R. The shape of the fluid domain is also cylindrical, with a radius
Rezt- Moreover, the fluid domain is divided into two cylindrical parts, as represented on
Fig. @

An outer sub-domain is defined, where the boundary conditions include corrective
terms, e.g., v(x)(n — n"¢f) for the free surface elevation, with "¢/ an analytical free
surface elevation and +, a space-dependent factor. For the radiation, "¢/ = 0 and
¢"ef = 0 in order to damp the reflected waves radiated by the body motion. In the inner
domain, the fully nonlinear boundary conditions are used for determining the evolution
of the free surface elevation and potential. The radius of the inner cylinder is denoted
by Rx. Such a configuration has been employed for instance by Ferrant [31].

4.1.2. Mesh convergence

In this section, we study the mesh convergence of the model for one of the frequencies
tested hereafter. We note that by having a damping region such as Eq. as used
before by Cointe [32], volume conservation is not inherently guaranteed, as the free-
surface boundary conditions are modified. We consider the non-dimensional wavenumber
kR = 1.4 (with a cylinder radius of 1 m), which gives a wavelength A ~ 4.48m and a
period T' =~ 1.72s. The radius of the external domain is chosen as R.;; = 8m. An
absorbing beach of radial length 4.5m is used. We check in this section the convergence
by looking at the conservation of the discrete water volume in the wave tank. The
characteristics of the meshes used for the convergence study are recalled in Table [T
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| Mesh ¢ Mesh b Mesh ¢ Mesh d  Mesh e

2 at 100 150 200 250 300
Tk 20 30 40 50 60
A 4 6 6 8 10
~ 8 12 14 18 20

minlip [m] | 0313 0.209  0.157  0.126  0.105
maxlip m] | 0505  0.335  0.251  0.201  0.168
Nrs 856 3141 3286 12437 12576
Niody 210 535 760 1116 1940

Table 1: Truncated cylinder in sway motion along the axis Ox: characteristics of the meshes used in the
volume conservation study. A, (respectively A;,) is the space-step of the mesh on the circumference
of the outer (respectively inner) cylinder. A, (respectively A.,) is the space-step of the mesh on the
vertical direction of the outer (respectively inner) cylinder. Npg is the number of nodes on the free
surface. Npoqy is the number of nodes on the truncated cylinder surface. [ p is the length of the edges
on the mesh of the free surface.

In Fig. |7, we represent the volume error defined as:

V(tt) =Vt =0)

Vi = 0) (42)

e(tt) =

as a function of the non-dimensional time t+ = % and the spatial discretization. For each
mesh, we enforce a Courant—Friedrichs—Lewy (CFL) condition by automatically adapting
the time-step as follows:

MmN )< js(xs,x, )€l (02 1% = X (43)
Vagd

where we choose Cy = 0.4, following Grilli et al. [33].

It is seen in Fig. [7] that the error ey stabilizes after 6 periods and decreases with the
time-step. More specifically, after 7 periods, the mean relative error is around 8.107°
for the time-step At, = 0.01227, while it is around 4.107° for the time-step At, =
0.0069T ~ %Ata. This shows that the error is decreasing linearly with the time-step.
Moreover we can observe that the amplitude of the high frequency oscillations decreases
also with the time-step.

At =Cy

—— Mesh a

1.0 x 1074 --- Mesh b

Mesh ¢

. . -----Mesh d

;tj/ 0.5 x 10 ---- Mesh e
&

0
—0.5x 1074 | I I I ‘\/ I I I I I .
0 1 2 3 4 5 [§ 7 8 9 10

Figure 7: Truncated cylinder in sway motion along the axis Ox: computation of the relative volume
error ey (t1) for various spatial and time discretizations.
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4.1.8. Force coefficients

The radius of the outer cylinder is set to Re,¢ = 2A where ) is the wavelength expected
from the linear theory at the water depth d and the angular frequency w (Fig. . The
entrance of the absorbing beach is located at a distance Ry = A from the origin (0,0,0).
This problem has been recently addressed by Zhou et al. [29], using a HOBEM devised
for structured quadrangular meshes. Our results are compared to the linear BEM of
Yeung [34], the second-order frequency BEM model of Teng et al. [35], and the nonlinear
method of Zhou et al.

For the amplitude of motion under consideration, % = 0.15, we observe on Fig. (E[)
a fair agreement between the added-mass computed with our model and the results of
Zhou et al. [29]. The discrepancy with the linear results of Yeung is reduced as the non-
dimensional wavenumber kR decreases. This behavior is not surprising as, for a given
choice of non-dimensional amplitude %, the associated wave steepness will increase with
increasing value of kR, resulting in larger nonlinear effects.

For the linear radiation damping coefficient Bj;, represented in Fig. a still closer
agreement with the linear theory is found. A similar agreement is observed for the non-
dimensional first-order coefficient of the horizontal force %, represented on Fig. ,
except a slight discrepancy which appears at kR = 1.

Despite the apparently linear behavior of the horizontal force, this case clearly shows
the interest of using a nonlinear model. As mentioned by Zhou et al. [29], according to
a theoretical result demonstrated by Wu [36], the vertical force oscillates at twice the
frequency of the motion 2w. As before, the discrepancy between the weakly nonlinear
model of Teng et al. [35] and the fully nonlinear model of Zhou et al. increases with

increasing values of the parameter kR. The existence of the second-order coefficient F, 2(2)
is well captured with our model as can be seen in Fig. We see that our method allows
us to find a very good agreement with the frequency analysis, for wavenumbers such that
kR < 0.8. For decreasing values of kR, the present results exhibit a closer convergence
towards the results of the second-order model in comparison with the model of Zhou et
al. For larger kR, our nonlinear model deviates from the weakly nonlinear model and

predicts higher values of FZ(Q), which is not the case of the model of Zhou et al.

I <SS
=

Figure 8: Computational domain (left panel) and close-up of grid near cylinder (right panel) for test
cases of waves moving cylinder.
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Figure 9: Truncated cylinder in sway motion along the axis Oz: computation of the added-mass with
respect to the non-dimensional wavenumber kR for various numerical models.
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Figure 10: Truncated cylinder in sway motion along the axis Oz: computation of the radiation damping
coefficient with respect to the non-dimensional wavenumber kR for various numerical models.
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Figure 11: Truncated cylinder in sway motion along the axis Ox: first-order Fourier coefficient associated
to the horizontal force F, with respect to the non-dimensional wavenumber kR for various numerical
models.
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Figure 12: Truncated cylinder in sway motion along the axis Ox: second-order Fourier coefficient associ-
ated to the vertical force F, with respect to the non-dimensional wavenumber kR for various numerical
models.
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Figure 13: Truncated cylinder in sway motion along the axis Oz: zero-order Fourier coeflicient associated
to the vertical force F, with respect to the non-dimensional wavenumber kR for various numerical models.
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Figure 14: Truncated cylinder in sway motion along the axis Ox: first-order Fourier coefficient associated

to the overturning moment M, with respect to the non-dimensional wavenumber kR for various numerical
models.
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On Fig. the non-dimensional difference between the zero-order coefficient FZ(O)
and the hydrostatic force pgVy, Vi being the discretized wet volume of the body, is
represented. Our method predicts very well the load for kR = 0.4 and the trend of this
quantity is correctly reproduced.

Finally, we represent on Fig. [14] the variation of the first-order coefficient associated
. MY
to the overturning moment —t=. Our results are very close to those of Zhou et al. [29]

for wavenumbers kR smaller than kR = 1. For larger values of kR, we observe with
our model a clear deviation from the linear theory, suggesting a significant influence of
nonlinear effects at high frequencies, although this is contrary to the results of Zhou et
al..

4.2. Diffraction of long waves on a bottom-mounted cylinder

In this section, we analyze the diffraction of a long wave on a bottom mounted vertical
cylinder of radius R = 0.25m (Fig. . The wavenumber £ is chosen such that kR =
0.245, which gives for linear theory a wave period 7' = 2.03s. Simulations are repeated
for 6 different wave amplitudes such that kA = {0.025,0.05,0.075,0.10,0.125,0.150}.
The signal is analyzed with a discrete Fast Fourier Transform on the time-interval ¢+ =
% € [5, 13]. For this case, the wavelength in deep-water may be estimated as A ~ 6.41m.
The domain is a box with the dimensions L, x L, x L, = 26m X 6m x 3.2m. The
mesh used for that study contains N4,y = 16,743 nodes. When generating the mesh
of the free surface with the algorithm NETGEN2D in the SALOME platform [26], we
used N, = 150 segments in the longitudinal direction, N, = 45 segments in the lateral
direction and N, = 20 segments around the circumference of the cylinder. This makes,
for the direction of wave propagation, a discretization of approximately 30 nodes per
wavelength. In addition, N, = 10 nodes are used in the vertical direction on the tank
sides and IV} = 30 nodes are used for the vertical discretization of the cylinder. Incident
wave conditions are imposed using the fifth-order Stokes theory. Fourier coefficients of
the potential up to fourth-order are represented on Fig. [I6] where they are compared to
the experiments carried out by Huseby and Grue [37]. Results match the experiments
well, with a slight difference seen in the second harmonic, but this is quite consistent with
other fully nonlinear computations, such as those by Ferrant [I] and Shao and Faltinsen
[9]. Obtaining such an agreement for harmonics of the wave force signal up to the fourth-
order clearly demonstrates the nonlinear capabilities of the proposed modeling approach.
Note that contrary to Ferrant [I], we do not decompose the velocity potential into an
incident component plus a diffraction component.

Note that the simulations performed here lead to simulated values for the forces
which vary smoothly in time. The free surface pattern, can be noisy near the waterline
without the filtering described by Eq. [0} As this test case is for a fixed body, we do
not need to invoke the Laplace smoothing or regridding described earlier, simply this
filtering along the waterline. Recent experimental tests of interactions between regular
waves and vertical cylinders [38], however, suggest that waves near the waterline may
physically be causing local breaking, or be damped by viscous effects. Calibrating the
amount of dissipation required will be further investigated in future work; here we simply
remove high-frequency waves, similar to Longuet-Higgins and Cokelet [39], which does
not significantly affect waves which are well-resolved.
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Figure 15: Computational domain (upper panel) and close-up of grid near cylinder (lower panel)
cases of waves interacting with a fixed cylinder, in the case of kR = 0.245 and kA = 0.10.

4.8. Diffraction on a modified fixzed Dutch Tri-floater platform

4.8.1. Setup of the model

We now consider a more complicated test case with a semi-submersible structure,
hereafter referred to as the Dutch Tri-floater [40], which is a proposed structure for
offshore wind turbines. The shape of the floater involves three surface piercing cylinders,
rigidly connected. Moreover, each cylinder is equipped at its base with a heave plate.
This geometry is a slight simplification of original the Dutch Tri-floater geometry [40],
as we do not consider here the smaller supporting struts, but they should not constitute
a significant source of hydrodynamic forces with an inviscid model. A sketch of the
geometry adopted in this work, also studied by Antonutti et al. in [41], is represented
on Fig. .

For the numerical wave tank, we again use a cylindrical domain such as the one
represented in Fig. @ This time, the reference free surface elevation 77¢/ and the
reference potential ¢"¢/ correspond to the solution of the fifth-order Stokes theory. The

Design draft (m) 12.0
Column centre-to-center spacing (m) 68.0
Column diameter (m) 8.0
Column depth including plate (m) 24.0
Plate diameter 2r (m) 18.0
Plate thickness (m) 1.0

Table 2: Geometric parameters of the Dutch Tri-floater chosen as in the study [41].
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Figure 16: First through fourth-order Fourier coefficients associated to the time-series of F; for a bottom-
mounted cylinder with a period 7' = 2.03s, kR = 0.245 and the water depth kd = 7.

coefficients requested to evaluate this solution are computed at the beginning of the
simulation.

For the size of the domain, trial and error showed that a choice of parameters Re,; =
3N+ A, Ry = A+ A with A = 70m and vy = 1, leads to a stable value of wave loads
after a duration of 40 wave periods, except for nondimensional wavenumbers kr > 2.5,
for which longer time simulations are needed. On the contrary, by choosing (Ry, Regt) =
@A+ A BN+ A) or (Ry,Rext) = (A + A, 2\ + A), that is, with an absorbing beach of
radial length A, we cannot obtain a convergence of the wave loads towards a periodic
state.

We study below the diffraction of monochromatic waves on the floater. The waves
are generated by imposing the velocity and acceleration of fifth-order Stokes waves on
the far-field lateral sides. In addition, as already mentioned earlier, the wave profile
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Figure 17: Geometry of the modified Dutch Tri-floater taken into account in the potential flow model.
Above the mean free surface level, each cylinder is assumed to be infinite.

is damped out near the external boundary. With the methodology exposed above, we
were able to simulate successfully the waves whose characteristics are given in Table ({3
of the Appendix A. We note that for the steepest waves, the convergence of the wave
loads toward a periodic state is slower, which suggests that in the future, it could be
worth computing the Response Amplitude Operator (RAO) curve with a fixed steepness
rather than with a fixed wave height (as done here in the traditional manner). The
meshes used in this study are always adapted to the wavelength under consideration.
The unstructured mesh of the free surface is done with the algorithm NETGEN2D in
the SALOME platform [26]. Each simulation used a mesh with a number of degrees of
freedom in the range: Ngof € [18000,23000].

4.8.2. Zero and first order loads

We analyze the time-series of the forces F, and F), and the overturning moment
M, over a window of 6 periods. Details on the time intervals considered for the Fourier
analysis are given in Table [3] of Appendix A. For each frequency, we define the RAO of
the temporal signal F as the ratio between the first-order Fourier coefficient F(!) and
the wave height H, and we assume that the density of the water is py = 1025 kg/ m?.

The RAO of the longitudinal force, F,., agrees very well with the open-source linear
wave model NEMOH [42] (Fig. [1§). In particular, we find that the oscillations of the
curve are well reproduced for the small periods. Similar agreements are found for the
vertical force (Fig. , using reference values published in [41]. There are some deviations
between the two results, even for these moderate wave amplitudes, at the peaks, as
one might expect between linear and nonlinear models. Similarly, the nonlinear model

described here predicts a lower maximum overturning moment, as compared to the linear
model NEMOH (Fig. [20).
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In addition, we show in Fig. the horizontal drift force, defined as the zero-order

coefficient ngo) of the Fourier series F,., with respect to the wave period T'. Our results are
compared to a frequency model computing the Quadratic Transfer Functions described
in [43]. Except for the smallest periods, a very good agreement with the weakly nonlinear
model is observed. For the highest frequencies tested in this study, our semi-Lagrangian
scheme exhibits important deviations from the theory. This calculation provides further
confidence in the ability of our numerical model to represent nonlinear features of the
wave-structure interaction problem.

As an illustration of the importance of nonlinear effects, we choose to represent on
Fig. , the ratio of second-order to first-order coefficients for the quantities of interest:
F,, F, and M,. Whereas this ratio does not exceed 20% for F, it may reach 60% for
F, and M,, for the smallest periods of this study. This shows that nonlinearities become
important for these shorter wavelengths with the Dutch Tri-floater.

5. Conclusions

We presented in this paper an implementation of a fully nonlinear potential wave
model to simulate wave-structure interactions using unstructured triangular meshes, im-
portant for being able to handle future industrial applications with arbitrary problem
geometry. The assembling of the system matrix is made with an efficient use of paral-
lelization on distributed computer systems. Two time-stepping schemes, based on dis-
crete derivatives with first-order shape functions, are derived. The accuracy of the whole
algorithm could be easily enhanced by using high-order elements.

The model is applied to various problems involving surface piercing cylinders. The
forces on a truncated cylinder in finite water depth, subjected to a prescribed sway mo-
tion, using a fully Lagrangian motion of the free surface mesh, is found to agree reasonably
well with reference results. Similarly, forces on a bottom-mounted vertical cylinder re-
sulting from diffraction of regular waves, using a semi-Lagrangian time-stepping scheme,
capture higher-order nonlinear effects (i.e., up to the fourth harmonic of the horizontal
force).

Finally, in order to show the potential of the method in dealing with complex struc-
tures, we also successfully compute both linear diffraction loads and nonlinear drift forces
for a geometry inspired by the Dutch Tri-floater [40]. Other important features, such as
improving computational speed (i.e., with the fast multipole method), such as started by
Harris et al. [44], will be considered in upcoming works, as well as using improved accu-
racy (i.e., cubic B-spline elements), or including more physics (i.e., coupling to Navier-
Stokes solvers). Moreover, the case of arbitrary geometries for the rigid body needs to
be addressed.
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Figure 18: Nonlinear diffraction of a wave of height H = 2 m around the modified Dutch Tri-floater for
various periods T' with a water depth of d = 50 m: RAO of the horizontal force F.
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Figure 22: Nonlinear diffraction of a wave of height H = 2 m around the modified Dutch Tri-floater:
ratio between second-order to first-order coefficients for the quantities Fi;, F, and M.

Appendix A. Characteristics of the waves and the wave load analysis for the
nonlinear diffraction around the modified Dutch Tri-floater.

In Table , the parameters of the waves used in the model and the time-interval of
the Fourier analysis are detailed for the test-case of the Dutch Tri-floater.

kr wlrad/s] ?TI;I [t t3]
0.3 0.564 0.010 [13.47,19.47
0.4 0.658 0.014 [15.71,21.71
0.6 0.809  0.021 [12.88,18.88
0.7 0.873  0.025 [13.90,19.90
0.75 | 0.904  0.027 [14.39,20.39
0.8 0.934 0.028 [16.35,22.35
1.0 1.044 0.036

[ ]
[ ]
[ ]
[ ]
[ |
[ |
[24.93,30.93]
1.25 | 1.167  0.044 [24.15,30.15]
[ ]
[ |
[ |
[ |
[ ]
[ ]
[

1.50 1.279 0.053 [24.43,30.43
1.75 1.381 0.063 [26.38,32.38
2.0 1.476 0.071  [29.36, 35.36
2.25 1.566 0.080 [31.16,37.16
2.50 1.651 0.089 163.07,69.07
2.75 1.731 0.098 163.37,69.37
3.00 1.808 0.108 [63.31,69.31]

Table 3: Nonlinear diffraction for a wave height H = 2 m around the modified Dutch Tri-floater:
characteristics of the waves simulated with respect to the non-dimensional wavenumber. The parameter
r denotes the radius of the heave plates and is set to r = 9 m. d is the water-depth, such that % = 0.04.
w is the angular wave frequency. k is the wave number. T is the wave period. tf = % and t; = %
with [t1,t2] the time interval on which the Fourier analysis is performed.
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