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Abstract

With the objective of simulating wave propagation in the nearshore zone for
engineering-scale applications, a two dimensional (2DV) model based on the
Euler-Zakharov equations (Yates and Benoit, 2015; Raoult et al., 2016) is ex-
tended to three dimensions (3D). To maintain the flexibility of the approach
with the goal of applying the model to irregularly shaped domains, the hor-
izontal plane is discretized with scattered nodes. The horizontal derivatives
are then estimated using the Radial Basis Function - Finite Difference (RBF-
FD) method, while a spectral approach is used in the vertical dimension. A
sensitivity analysis examined the robustness of the RBF-FD approach as a
function of RBF parameters when estimating the derivatives of a representa-
tive function. For a targeted stencil size between 20 and 30 nodes, Piecewise-
Smooth (PS) polyharmonic spline (PHS) functions are recommended, avoid-
ing the use of Infinitely-Smooth (IS) RBFs, which are less appropriate for
the desired applications because of their dependence on a shape parameter.
Comparisons of simulation results to observations from two wave basin exper-
iments show that nonlinear effects induced by complex bottom bathymetries
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are reproduced well by the model with the recommended RBF approach,
validating the use of this method for 3D simulations of wave propagation.

Keywords: nonlinear, dispersive, water waves, potential theory, Zakharov
equations, Radial Basis Functions
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1. Introduction

Accurate wave propagation models are required for a wide range of coastal
management and engineering applications, including the design of coastal
structures and the evaluation of coastal risks. In the nearshore zone, nonlin-
ear and dispersive effects, characterized by the wave steepness and relative
water depth, respectively, can be particularly important. The wave steepness
ε = kH/2 and relative wave height H/h (where H, k, and h are the character-
istic local wave height, wave number, and water depth, respectively) increase
significantly as waves shoal in shallow water and approach the breaking point.
The relative water depth µ = kh is often large in deep and intermediate wa-
ter, or for the shorter waves in the sea state, indicating the importance of
dispersive effects. Wave propagation models thus need to capture properly
nonlinear and dispersive effects to simulate accurately offshore and coastal
engineering problems. Two-dimensional cross-shore (2DV) wave models can
be used as a preliminary step in coastal studies, but 3D models are needed to
capture fully the effects of alongshore bathymetric variations, variable wave
incidence, the presence of coastal or harbor structures, etc.

A wide variety of mathematical models exist to simulate nearshore wave
propagation, and Yates and Benoit (2012) and Benoit et al. (2013) chose to
develop a 2DV fully nonlinear and dispersive potential flow model based on
the Euler-Zakharov equations as a compromise between accuracy, mathemat-
ical complexity, and computational time. A variety of other approaches exist,
and recent non-exhaustive reviews are summarized by Raoult et al. (2016)
and Gouin et al. (2016), for example. The chosen approach, based on fully
nonlinear potential flow (FNPF) theory, requires solving the Laplace bound-
ary value problem (BVP), which is implemented numerically in the model
using a spectral approach in the vertical direction (Tian and Sato, 2008)
and finite difference schemes in the horizontal direction. The nonlinear and
dispersive capacities of the 2DV version of the model were demonstrated
in Yates and Benoit (2012, 2015) and Raoult et al. (2016). The accuracy
of a similar approach using the Chebyshev-Tau method in the vertical and
a Fourier collocation method in the horizontal was demonstrated in Chris-
tiansen et al. (2013).

Extending 2DV modeling approaches to 3D increases significantly the
number of numerical challenges to overcome, including but not limited to
the computational time, domain geometry, and boundary condition specifi-
cation or far-field representation. Therefore, a variety of different numerical
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approaches have been used to solve the 3D FNPF problem by reducing the
dimension of the problem (e.g. boundary element (Romate and Zandber-
gen, 1989; Grilli et al., 2001; Fochesato et al., 2007; Nimmala et al., 2013) or
High-Order Spectral (HOS) methods (Ducrozet et al., 2007, 2012)), discretiz-
ing the whole domain but taking local derivatives only (e.g. finite element
(Wu et al., 1998) or finite difference schemes (Engsig-Karup et al., 2009)), or
searching for fast numerical methods for solving the Laplace problem (e.g.
integral equations (Fructus et al., 2005) or coupled modes (Belibassakis et al.,
2014)), each approach having its own advantages and disadvantages.

A number of 3D Numerical Wave Tanks (NWTs) have been developed us-
ing high-order Boundary Element Methods (BEM) (Romate and Zandbergen,
1989; Grilli et al., 2001; Fochesato et al., 2007; Nimmala et al., 2013), which
are an efficient and accurate approach for solving the Laplace BVP by reduc-
ing the dimensionality of the discretized problem. However, standard BEM
techniques yield nonsymmetric and fully populated matrices that require
fast solution methods (e.g. fast multipole algorithm (Nishimura, 2002)) or
advanced numerical implementations (e.g. pre-corrected Fast Fourier Trans-
form methods (Yan and Liu, 2011)) to avoid becoming computationally pro-
hibitively expensive to solve. This is especially the case for simulating irreg-
ular nonlinear waves that span a wide range of wavelengths, thus requiring
fine grids.

In the literature, two other methods have been used to extend 2DV ap-
proaches to 3D with Finite Element Methods (FEM) (e.g. 2DV (Wu and
Eatock Taylor, 1994) to 3D (Wu et al., 1998)) or finite difference schemes
(e.g. 2DV (Bingham and Zhang, 2007) to 3D (Engsig-Karup et al., 2009)).
These approaches require discretizing the entire fluid domain, but the only
non-zero elements in the coefficient matrix are the neighboring points (with
the number of points depending on the chosen order of the numerical scheme).
While the full 3D Laplace problem still must be solved at each time step,
recent work has improved the numerical efficiency of such codes (e.g. using
preconditioned defect correction methods in 2DV (Christiansen et al., 2013)
or in 3D in the OceanWave3D code (Engsig-Karup, 2014)) that may then be
used for coastal and offshore engineering applications.

Another even more computationally efficient approach uses the HOS
method (e.g. Dommermuth and Yue (1987); West et al. (1987); Craig and
Sulem (1993)), which is based on a Taylor series expansion of the velocity
potential about a reference water level (often the mean water line). This
approach was originally developed for unbounded domains and then for fi-
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nite depth cases, with periodic lateral boundary conditions. Ducrozet et al.
(2007, 2012) developed an open-source model, HOS-ocean, which is an exten-
sion of this method to take into account the generation and propagation of
regular and irregular, multidirectional waves. Recently, HOS-ocean was also
extended to simulate wave propagation over variable bottom bathymetries
by Gouin et al. (2016).

Additional approaches for solving the BVP include a fast Laplace equa-
tion solver using integral equations and an iterative solution procedure that
converges rapidly (in 2DV (Clamond and Grue, 2001) and then 3D (Fructus
et al., 2005)), or a fully dispersive coupled-mode model (in 2DV (Belibassakis
and Athanassoulis, 2011) and then 3D (Belibassakis et al., 2014)).

Here, the objective is to extend the two dimensional model developed
by Yates and Benoit (2015) and Raoult et al. (2016) to three dimensions,
maintaining the efficient and accurate spectral approach used in the vertical.
The 2DV code used finite difference schemes to estimate horizontal deriva-
tives. This approach is still applicable in two horizontal dimensions for simple
domain geometries that can be discretized by regular meshes. However, the
model cannot then be applied easily to complex domains. Therefore, to over-
come these limitations, a meshless approach based on Radial Basis Functions
(RBF) is implemented in the code and tested to propagate highly nonlinear
and dispersive waves. The RBF method has been used extensively in other
fields of research for a variety of physical and engineering problems, includ-
ing, for example, diffusion (S̆arler and Vertnik, 2006; Chen et al., 2010),
radiative transport (Kindelan et al., 2010), combustion (Kansa et al., 2009),
shallow-water models (Zhou et al., 2004; Hon et al., 2014), and flow simula-
tions using the Navier-Stokes equations (Shu et al., 2003). Here, the RBF
method is applied to evaluate its capacity to simulate accurately nonlinear
wave propagation.

This paper presents a brief literature review of RBF methods (Section 2),
before describing the mathematical model and its numerical implementation
in the code (Section 3), focusing on the RBF Finite Difference (RBF-FD)
method used to estimate the horizontal derivatives. A sensitivity analysis
then evaluates the accuracy and stability of the RBF-FD method as a func-
tion of the RBF parameters for a representative test function (Section 4).
These tests help to identify the optimal method parameters for simulating
waves. Then, the 3D version of the model is validated by simulating two sets
of experiments conducted in wave basins with variable bathymetries (Section
5). Finally, an analysis of the advantages and disadvantages of using the
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RBF-FD approach to simulate nonlinear wave propagation is summarized,
including propositions for future work (Section 6).

2. Brief review of RBF methods

RBFs were first introduced by Hardy (1971) for interpolating surfaces.
A function f̃(x) is sought to approximate a given function f(x), for which
the values fi (i = 1, ..., N) are known for a given set of N data points xi
(i = 1, ..., N) using a set of basis functions ψi(x) (i = 1, ..., N):

f̃(x) ≈
N∑
i=1

λi ψi(x), (1)

with x = (x, y). The interpolation coefficients λi are determined by solving
the set of linear equations obtained by enforcing the interpolation conditions:
f̃(xi) = fi for i = 1 to N . For one-dimensional data, a variety of different
basis functions (independent of the data points) lead to non-singular linear
systems as long as the N data points are distinct (i.e. Fourier and polynomi-
als series). However, this property is no longer guaranteed when the problem
is extended to two dimensions (Wright, 2003). Hardy (1971) proposed using
a basis of functions composed of a single radial function ψ(r) centered at
each data point : ψi(x) = ψ(||x− xi||) (i = 1, ..., N).

The initial work of Hardy (1971) used the multiquadric (MQ) radial func-
tion ψ(r) =

√
r2 + C2, with r the radial distance from the center xi to node

x and C a strictly positive shape parameter to obtain a continuously differ-
entiable basis function (even when r = 0), where C controls the narrowness
of the RBF. A wide variety of radial functions may be used. In a study of
scattered data interpolation, Franke (1982) tested 29 interpolation methods
for six different test functions. The results showed that MQ functions were
among the most accurate, together with inverse multiquadric (IMQ) and thin
plate spline (TPS) functions (Table 1).

Overall, the RBF method demonstrated good results for spatial interpo-
lation. Therefore the approach was tested further for estimating derivatives
in domains with scattered nodes. Stead (1984) compared the errors obtained
in estimating partial derivatives when using MQ or weighted least square
quadratic approximate interpolants. Since RBF interpolants do not have
polynomial precision (except when polynomial terms are added), the author

6



recommended using the MQ interpolant for surfaces with significant curva-
ture. Later, Kansa (1990) was the first to use the MQ function to solve partial
differential equations (PDEs), namely a Poisson equation, with a collocation
method. The coefficients of the RBF approximation of the solution are found
by solving the linear system obtained by applying the differential operators
to the interpolant for the interior nodes and boundary conditions to the in-
terpolant for the boundary nodes. The resulting matrix is not symmetric
and is not proven to be unisolvent. Several improvements to this approach
were made, by recovering the symmetry of the matrix using Hermite interpo-
lation to modify the basis functions (Fasshauer, 1997), or by imposing both
the PDE and the boundary conditions at boundary nodes to increase the
constraints where errors are larger (Fedoseyev et al., 2002).

Many different functions can be used in the RBF approach, and as shown
in the preliminary study by Franke (1982), the results are sensitive to the
choice of function. The most commonly used functions (Table 1) can be
broken into two families: piecewise-smooth (PS) and infinitely-smooth (IS)
functions.

Name (Acronyme) Function ψ(r) Condition Regularity

Polyharmonic Spline (PHS) rm m odd integer PS

Thin Plate Spline (TPS) rm log r m even integer PS

Multiquadric (MQ)
√
r2 + C2 C > 0 IS

Inverse Multiquadric (IMQ) 1√
r2+C2 C > 0 IS

Inverse Quadratic (IQ) 1
r2+C2 C > 0 IS

Gaussian (GA) e−r
2/C2

C > 0 IS

Table 1: Summary of commonly used RBFs describing the function, the constraints on
the free parameters, and the regularity of the function (PS stands for Piecewise-Smooth
and IS for Infinitely-Smooth).

For IS-RBFs (with a shape parameter C), the interpolation system will
not be singular if the scattered nodes are distinct. PS-RBFs do not depend on
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a shape parameter, but they present a singularity at the origin. To ensure the
unique solvability of the linear system, the interpolant has to be modified by
including polynomial terms, requiring additional constraints for the linear
system to be well-posed. In this case, the non-singularity of the matrix
becomes more restrictive since it requires that the nodes are not only distinct
but are also unisolvent in the appended polynomial space (Fornberg and
Flyer, 2015a).

Global vs. local methods. The RBF method was first introduced as a
global method, in which estimates at each node depend on all nodes in the
domain, leading to a full coefficient matrix. When the matrix becomes too
large, it often becomes ill-conditioned. The interpolation coefficients (λi,
Eq.1) become oscillatory with large magnitudes that may lead to a poor in-
terpolation because of numerical cancellations. In this case, the size of the
matrix can be reduced by considering smaller domains using domain decom-
position algorithms (Beatson et al., 2001; Wong et al., 1999; Zhou et al.,
2003). In the limit, one can instead use a local approach by defining stencils
centered at each node of the domain and including only the Nsten−1 nearest
neighbors (for a total of Nsten nodes in each stencil) in the estimation of
the function (Eq.1). Tolstykh and Shirobokov (2003) were the first to con-
sider this method to estimate derivatives with a RBF-FD approach, followed
shortly by Wright (2003) and Shu et al. (2003). Wright and Fornberg (2006)
improved the accuracy of this method by including a linear combination of
derivatives of the function at the surrounding nodes. The local method has
the advantage of reducing considerably the computational time in comparison
to the global method, as well as being parallelized easily. The construction of
approximate formulas for the derivatives using RBF interpolants, also called
the RBF-FD method, will be presented in more detail in Section 3.3.

However, even when using local methods, the matrix may become ill-
conditioned for IS-RBFs when C → ∞ (i.e. in the limit of flat basis func-
tions). Several specific algorithms have been developed to obtain accurate
results even for large values of C (i.e. Contour Padé (Fornberg and Wright,
2004), RBF-QR (Fornberg and Piret, 2007), RBF-GA (Fornberg et al., 2013)
or more recently the RBF-RA algorithm (Wright and Fornberg, 2017)). Us-
ing a stable algorithm not only improves the derivative estimation accuracy
by allowing the use of larger values of C, but also makes the choice of opti-
mal C less critical. Nevertheless, the algorithms may be difficult to adapt to
a specific mathematical model or the modified RBFs may have much more
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complicated expressions.

PS vs. IS functions. The choice of RBF to obtain the most accurate
estimates is not straightforward, and some trade-offs must be considered
when using IS or PS functions. Errors when using either family of functions
in the RBF method depend on the specific choice of the radial function (e.g.
Table 1), the mesh resolution and spacing, and the stencil size Nsten. Two
main characteristics differentiate these two families of functions: (1) the type
of convergence as a function of the node spacing, and (2) the dependency on
a shape parameter C.

When using global RBF methods, IS-RBFs have spectral convergence,
while PS-RBFs have only algebraic convergence, which often leads to a pref-
erence for IS-RBFs (Fornberg and Flyer, 2015a). However, when using local
RBF methods (i.e. RBF-FD method), the spectral accuracy of IS-RBFs is
lost, minimizing their advantage over PS-RBFs with respect to convergence.
Additionally, stagnation errors exist. One type of PS-RBFs, PHS, require
the addition of a polynomial (with M terms) to the interpolant to guaran-
tee the unisolvency of the system. The PHS RBFs then have a convergence
rate corresponding to the degree of the added polynomial. For complex ap-
plications, Barnett (2015) and Bayona et al. (2017) recommended an added
polynomial of degree such that there are approximately twice as many RBFs
as polynomial terms in the interpolant (i.e Nsten ≈ 2M).

With IS-RBFs, the estimation error depends strongly on the value of the
shape parameter C: for small values of C, the error is generally high, decreas-
ing with an increase in C. A minimum is often reached for an intermediate
value of C = Copt (called the optimal value of C in the following). When
C is increased beyond this optimal value, the error increases and large oscil-
lations may be observed as the matrix becomes ill-conditioned. The matrix
may already become ill-conditioned for values of C smaller than Copt: in this
case, the minimal error is just at the limit of ill-conditioning. In the limit
of C → ∞, Fornberg et al. (2004) showed that when the interpolant limit
is finite, it tends to a multivariate polynomial. Finding Copt is a difficult
task. For global methods, there is no existing mathematical theory to deter-
mine the optimal choice of C. Often, this choice is based on the inter-node
spacing for convenience. However, based on a series of tests, Carlson and
Foley (1991) and then Rippa (1999) concluded that the optimal value of C
depends on the shape of the interpolated function and not on the node po-
sitions or spacing. When the RBF method is used to interpolate data, the
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value of C is chosen by cross-validation methods. For example, Rippa (1999)
developed a method based on the minimization of a cost function calculated
as the error between the interpolant and the desired function. Fasshauer
and Zhang (2007) adapted this algorithm for the resolution of PDEs with
RBF pseudospectral methods. For RBF-FD, Bayona et al. (2010) derived
an expression of the estimated error as a function of C, showing that Copt
depends on the shape of the function and its derivatives. They also showed
that it is independent of the node spacing at first order, but can vary with
node locations in 2D. Given an expression of the estimated error, Bayona
et al. (2011) proposed an algorithm to find the optimal value of C. However,
this requires first estimating the derivatives at each point with another less
accurate method (since the values of the derivative of the function are nec-
essary to compute the error estimates), before re-estimating the derivatives
with the RBF-FD method and newly obtained optimal value of C.

The selection of an optimal or even “good” value for the shape parameter
C can be challenging. Thus, RBFs without shape parameters, such as PHS,
recently have become more attractive, noting furthermore that they produce
relatively well-conditioned matrices (Bayona et al., 2010; Flyer et al., 2016).

For more details on RBF methods and numerous application examples,
see the recently published book of Fornberg and Flyer (2015a).

3. Model description

3.1. Mathematical model

The fluid domain is delimited in the vertical by the free surface at z =
η(x, t) and the bottom at z = −h(x), with the vertical axis z pointing up-
wards and the origin at the still water level. The fluid is accelerated by
gravity g. At the free surface, the atmospheric pressure is assumed uniform
and constant in time (chosen to be 0 by convention), and surface tension is
neglected. Potential flow theory is adopted by further considering the irro-
tational flow of an inviscid and homogeneous fluid of constant density. The
kinematics of the fluid are obtained from the velocity potential Φ(x, z, t) such
that v = (u, v, w) = (∇Φ,Φz), where ∇f ≡ (fx, fy) is the horizontal gradient
operator, and partial derivatives are denoted with subscripts.

If the free surface is assumed to be single-valued in x (no overturning
waves), the evolutions of η(x, t) and Φ̃(x, t) ≡ Φ(x, z = η(x, t), t) are governed
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by the nonlinear kinematic and dynamic free surface boundary conditions,
expressed as functions of free surface quantities only (Zakharov, 1968):

ηt = −∇η.∇Φ̃ + w̃
(
1 + (∇η)2

)
, (2)

Φ̃t = −gη − 1

2
(∇Φ̃)2 +

1

2
w̃2
(
1 + (∇η)2

)
, (3)

where w̃(x, t) ≡ Φz|z=η(x,t) is the vertical velocity at the free surface.

To integrate these equations in time, w̃ is determined from η and Φ̃ by
solving the Laplace BVP for the velocity potential Φ in the entire domain
(Laplace equation) supplemented by the free surface and bottom boundary
conditions (BCs):

∇2Φ + Φzz = 0, −h(x) ≤ z ≤ η(x, t), (4)

Φ = Φ̃(x, t), z = η(x, t), (5)

∇Φ · ∇h+ Φz = 0, z = −h(x). (6)

At the lateral boundaries, periodic, Dirichlet or Neumann BCs are imposed
to close the problem.

The Laplace BVP is solved using a spectral approach in the vertical di-
mension following the work of Tian and Sato (2008). The method is described
for the case of a single horizontal dimension (i.e. x = x) in Yates and Benoit
(2015) and Raoult et al. (2016). The extension to two horizontal dimensions
is quite straightforward, and only the main steps are presented here.

First, a change of the vertical coordinate from z ∈ [−h(x), η(x, t)] to
s ∈ [−1, 1] is made to project the time-varying domain to a constant height
domain extending from the bottom at s = −1 to the free surface at s = +1:

s(x
¯
, z, t) =

2z + h−(x
¯
, t)

h+(x
¯
, t)

, (7)

where h+(x
¯
, t) ≡ h(x

¯
) + η(x

¯
, t) and h−(x

¯
, t) ≡ h(x

¯
)− η(x

¯
, t).

The BVP is then reformulated in the transformed space (x, s) for Φ(x, z, t) ≡
ϕ(x, s(x, z, t), t).
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Second, the vertical variation of the velocity potential is approximated
by a linear combination of Chebyshev polynomials of the first kind, Tn(s):

ϕ(x, s) ≈
NT∑
n=0

an(x)Tn(s), (8)

where n = 0, 1, 2, ... indicates the order of the polynomial, and NT is the
maximum order of the Chebyshev polynomials. These polynomials are easy
to compute, form an orthogonal basis over the range [−1, 1], and converge
rapidly over a large domain. Yates and Benoit (2015) and Raoult et al.
(2016) have shown that values of NT smaller than 10 (typically in the range
[5, 8]) are sufficient to obtain high accuracy for a variety of 2DV nonlinear
wave propagation test cases.

The approximation Eq.(8) is then introduced in the BVP, and a Chebyshev-
Tau method (Boyd, 2001) is applied to eliminate the dependence on the ver-
tical coordinate s. The Laplace equation (4) is projected on polynomials Tp
for p ranging from 0 to NT − 2, supplemented by the boundary conditions,
Eq.(5) and (6), respectively. For nodes located on a lateral boundary, the
Laplace equation (4) is replaced, either by a Neumann condition for an im-
permeable boundary ∇Φ.nlat = 0 (where nlat is the unit normal vector at
the lateral wall) or by a Dirichlet condition for wave generation, imposing
the velocity potential from linear theory (generally supplemented with a re-
laxation zone). The final set of equations is a linear system for the an(x),
which depends only on x at a given time:
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ap,xx + ap,yy +

NT∑
n=0

Cx
pn an,x +

NT∑
n=0

Cy
pn an,y+

NT∑
n=0

Dpnan = 0 for p = 0, ..NT − 2

NT∑
n=0

an = Φ̃(x
¯
, t)

h+hx

NT∑
n=0

(−1)nan,x + h+hy

NT∑
n=0

(−1)nan,y+

2 (1 + h2x + h2y)

NT∑
n=0

(−1)n−1n2an = 0

(9a)

(9b)

(9c)

where
Cx
pn = (m0101Bp01n +m1101Bp11n)/m0220, (10)

Cy
pn = (m0011Bp01n +m1011Bp11n)/m0220, (11)

Dpn = (m0002Bp02n −m1002Bp12n +m2002Bp22n +m0001Bp01n +m1001Bp11n)/m0220.(12)

The mijkl terms depend only on h+, h−, and their spatial derivatives (up
to order two). The expressions for these terms are shown in Appendix A.

The Bpikn terms are introduced to express the projection of the terms si d
kTn
dsk

on the polynomial Tp, and they can be determined analytically as a function
of n and p (see Appendix B). These terms are constant and can be computed
once at the beginning of each simulation, after NT is chosen.

For each node x, NT +1 unknown coefficients an in Eq.(8) must be deter-
mined. With the RBF-FD method, the horizontal spatial derivatives of the
an coefficients are approximated as linear combinations of the values in the
vicinity of the node considered, leading to a set of coupled linear equations.

Once the an(x) coefficients are determined, the vertical velocity at the
free surface w̃(x) is obtained readily from:

w̃(x) = Φz(x
¯
, z = η) = sz ϕs(s = +1) ≈ 2

h+(x
¯
)

NT∑
n=1

an(x
¯
) n2 (13)

The vertical velocity can then be used to evaluate the right hand side of
Eq.(2) and Eq.(3), required by the numerical scheme to integrate in time.
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3.2. Numerical implementation

A classical, explicit fourth-order Runge Kutta (RK4) scheme with a con-
stant time step is used to integrate Eq.(2) and Eq.(3) in time. At each
sub-step of the RK4 scheme, the Laplace BVP is solved. The domain is
discretized with NPXY nodes in the horizontal (x, y)-plane, and NT is the
maximum order of the Chebyshev polynomials in Eq.(8). Horizontal deriva-
tives are approximated with the local RBF-FD method (described in section
3.3) using a stencil consisting of a fixed number of neighboring nodes. There-
fore, for nodes far from the boundaries, the stencil dimensions are symmet-
ric, while they become asymmetric at and near the boundaries. The effect of
this asymmetry will be studied further in section 4. The RBF-FD method
is chosen for its ease of implementation, with an algorithm similar to finite
difference methods, and for its flexibility with scattered nodes enabling the
simulation of complicated domain geometries and the possibility of local re-
finement. The linear system corresponding to the Laplace BVP is composed
of NPXY (NT + 1) equations for the coefficients an(xi), with n = 0, ..., NT

and i = 1, ..., NPXY . The associated matrix is sparse, and the system is
currently solved using the direct solver MUMPS (“MUltifrontal Massively
Parallel Solver”, v4.10.0) (Amestoy et al., 2001, 2006), using the default set-
tings.

3.3. RBF-FD method

3.3.1. Theoretical background

Similar to finite difference methods, applying a linear differential operator
L to a given function f at x1 is expressed as a linear combination of the
values of the function f at the nodes in the stencil:

L f(x1) ≈
Nsten∑
i=1

αL
i f(xi). (14)

The stencil is composed of the node itself and its Nsten− 1 nearest neigh-
bors (x2, x3, ..., xNsten

)
The weights αL

i , for i = 1 to Nsten, are determined by requiring the
approximation in Eq.(14) to be satisfied by the set of radial functions centered
at each node of the stencil ψi(x) ≡ ψ(||x− xi||), i ∈ [1, Nsten]. This leads to
the resolution of a linear set of Nsten equations for Nsten unknowns, which
can be written as:

14




ψ(||x1 − x1||) · · · ψ(||xNsten

− x1||)
ψ(||x1 − x2||) · · · ψ(||xNsten

− x2||)
...

...
. . .

...
ψ(||x1 − xNsten

||) · · · ψ(||xNsten
− xNsten

||)


 αL

1
...

αL
Nsten



=

 L ψ(||x− x1||)(x1)
...

L ψ(||x− xNsten
||)(x1)

 (15)

As mentioned in the introduction, several different forms of RBF ψ(r) can
be used (Table 1).

To improve the accuracy of the estimation, especially at the boundaries
of the domain (Fornberg et al., 2002), the RBF can be supplemented with a
polynomial of degree l:

∑M
j=1 bjpj(x), where pj(x)Mj=1 is a basis of polynomials

up to degree l in R2 and M =
(
l+2
2

)
. In this case, M additional constraints

minimizing the far-field growth must be enforced to close the system:

Nsten∑
i=1

λipj(xi − x1) = 0 j = 1, 2, 3...,M. (16)

Finally, the system to be solved to obtain the αL
i coefficients becomes:[

Γ P
P T 0

] [
α
β

]
=

[
L ψ
L p

]
(17)

where Γ is the matrix of ψ in the left hand side of Eq.(15), P is a M ×Nsten

matrix formed by the pj, j = 1, ...,M basis of polynomials up to degree l in
R2, and β and L p are the M × 1 vectors formed by βi and L pi(x1).

The application of the method depends on the non-singularity of the

matrix

[
Γ P
P T 0

]
. The matrix Γ is guaranteed non singular for IS-RBFs

provided that the nodes are distinct. For PS-RBFs Γ is no longer guaranteed
to be nonsingular, and a polynomial of degree l must be added to ensure that
the system is uniquely solvable (Wright, 2003). Barnett (2015) showed that
for PHS of the form rm, the degree l of the added polynomial must satisfy
l ≥ (m − 1)/2. The addition of a polynomial also requires the use of an
unisolvent set of nodes (Wright, 2003).
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3.3.2. Numerical implementation

The weights αL
i must be calculated at all nodes in the domain for each

differential operator L required for the discretization of the PDEs. In the
present model, first and second-order derivatives in the two horizontal dimen-
sions are calculated. At each node x of the horizontal mesh, the following
steps are carried out. First, the Nsten − 1 nearest neighbors of the selected
node are identified. The size of the stencil and the degree of the augmented
polynomial are defined at the beginning of the simulation and are constant
for all nodes. Then, the linear system Eq.(17) is solved by completing a
LU decomposition. The weights are computed once at the beginning of the
simulation and are subsequently used to estimate all spatial derivatives in
the model, including, but not limited to, the free surface elevation η, the free
surface potential Φ̃, the water depth h, and the an coefficients.

The implementation of the RBF-FD method is first tested to evaluate
its accuracy in approximating spatial derivatives of a representative wave
function (Section 4), and then it is applied for the simulation of wave tank
experiments with variable bathymetries (Section 5).

4. Accuracy of the RBF-FD derivative estimates

4.1. Method

A series of tests were conducted to evaluate the capabilities and limi-
tations of the RBF-FD method in estimating first and second-order spatial
derivatives. These tests evaluate the impact of several parameters such as
the RBF type, the value of the shape parameter C in the case of IS-RBFs,
the degree of the added polynomial, and the stencil size Nsten. Previous work
(e.g. Franke (1982); Stead (1984)) has tested different types of RBFs (Table
1) to evaluate the interpolation and derivate estimate accuracy. However,
these functions were usually chosen arbitrarily, with more or less complex
spatial variations. When simulating ocean wave propagation, the free sur-
face generally has oscillatory variations, thus a sinusoidal function is chosen
here as a basic representative model:

f(x, y) = A cos

(
2π

L
(x cos θ + y sin θ)

)
, (18)

where L = 0.5 m is the characteristic length of variation (or wavelength), A
is the wave amplitude such that A/L = 0.05, and θ = 20° is the direction

16



of wave propagation with respect to the x axis. The domain is defined as
0 ≤ x ≤ 1 m and 0 ≤ y ≤ 1 m and is discretized with a regular set of nodes
with node spacing ∆x = ∆y = 0.05 m (= L/100). First and second-order
derivatives in both horizontal dimensions are estimated with the RBF-FD
method and compared to the analytical values (denoted Lftheo hereafter).
The accuracy of the estimation is evaluated by calculating the normalized
averaged error for all N nodes in the domain:

RMS Error =

√∑N
i=1 (Lf(xi)− Lftheo(xi))2∑N

i=1 (Lftheo(xi))
2

(19)

Globally, errors are larger closer to the boundaries, and more particu-
larly when the stencil is one-sided in the direction of the derivative (i.e. for
x = 0 m and x = +1 m for x-derivatives, and y = 0 m and y = +1 m for
y-derivatives). Two subsets of nodes are then defined, based on the asymme-
try of the stencil: the interior nodes with a centered stencil (such as node A
in Figure 1) and the boundary nodes with asymmetric or one-sided stencils
(such as nodes B and C in Figure 1). In the following, the global averaged
error Eq.(19) is shown except when the error behavior differs for the two
node sets and is analyzed separately.

From the series of tests carried out to study the sensitivity of the method’s
accuracy to the chosen parameters, one initial question arises: “Which RBF
is optimal?”. The values of the other parameters will then depend on this
choice. For IS-RBFs, which depend on a shape parameter, the accuracy of
the method was evaluated as a function of the:

� IS-RBF function: MQ, IMQ, IQ and GA (see Table 1),

� variation of the shape parameter in the range C ∈ [0, 30] m,

� inclusion of an added polynomial up to degree 2, and

� stencil size for Nsten = 5, 13 and 21, corresponding to the optimal
thresholds defined by Bayona et al. (2010) for regular node sets.

For PS-RBFs (not depending on a shape parameter), the accuracy of the
method was evaluated as a function of the:
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Figure 1: Example of three stencils of Nsten = 21 nodes, for a node A in the interior of the
domain (symmetric stencil), and nodes B and C on or close to the boundaries (asymmetric
stencil).

� PS-RBF function: one TPS function ψ(r) = r4 log r to have at least
the continuity of the second-order derivatives, and two PHS functions
ψ(r) = r5 and ψ(r) = r7,

� inclusion of an added polynomial up to degree 5, (in the following, the
shorthand form r5 + p3 is used to denote the PHS r5 with an added
polynomial of degree 3), and

� stencil size in the range Nsten ∈ [9, 56].

4.2. Results

4.2.1. Sensitivity to the shape parameter C

In Figure 2, the global averaged error for the four IS-RBFs is plotted as
a function of the shape parameter C for the first-order (fx, fy) and second-
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order (fxx, fyy) derivatives. For IS-RBFs, the derivative estimate accuracy
depends strongly on C. The four RBFs display the same general behavior
as a function of C: large errors for small values of C that decrease with an
increase in C, and the development of oscillations when C exceeds an un-
known threshold (depending on the RBF). These oscillations appear when
the coefficient matrix (Eq.(17)) becomes ill-conditioned. The optimal value
of C for which the error is minimum (denoted Copt) depends on the RBF
and derivative estimated, and is therefore not known a priori (as previously
stated in Section 2). First and second-order derivatives in x reach a min-
imum for C ≈ 0.42 m, whereas the matrix becomes ill-conditioned for the
first and second-order derivatives in y before a minimum is observed. It can
be inferred that the optimal value of C for derivatives in y is larger than for
derivatives in x for this particular function and value of θ. The choice of the
value of C is thus a compromise between optimizing the accuracy of the solu-
tion and reaching the limit of an ill-conditioned matrix. The accuracy of the
estimation could be improved by allowing the shape parameter to vary with
the RBF center (i.e. Kansa and Carlson, 1992; Kansa and Hon, 2000), which
produces larger variations in the matrix coefficients, thus reducing the condi-
tion number. Bayona et al. (2012) developed an algorithm for the RBF-FD
method to find the Copt for each node, but it is an inefficient approach in the
current model since it requires estimating the derivatives twice. Finally, Copt
depends on the function whose derivatives are estimated, suggesting that dif-
ferent coefficients would need to be calculated for each variable. In addition,
some variables in the model (η, Φ̃, ...) are time dependent, requiring the co-
efficients to be a function of time as well. To increase the accuracy, a simpler
approach was tested by normalizing the stencil, or transforming the local
support to a unit circle, following the work of Shu et al. (2003). This was
expected to reduce the difference in accuracy between interior nodes (with
centered stencils) and boundary nodes (with asymmetric stencils), allowing
the use of larger values of C for nodes with asymmetric stencils. However,
tests with normalized stencils did not improve significantly the RBF accu-
racy (results not shown here).

The errors for the three PS-RBFs do not depend on a shape parameter
and are therefore constant as a function of C (Figure 2). For PS-RBFs, the
errors decrease when the degree of r increases, and ψ(r) = r7 produces the
smallest errors for the four derivatives considered. Overall, PS-RBFs cause
smaller errors than IS-RBFs for small values of C. The RBF ψ(r) = r7
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produces errors comparable to the minimum errors obtained with the IS-
RBFs for fy and fyy, and slightly larger errors than what can be reached by
the IS-RBFs near Copt. Although the RBF ψ(r) = r7 may not be the optimal
choice for the presented derivatives, it offers the advantage of not relying on
the choice of a shape parameter, whose selection is not a straightforward
process, as previously mentioned. Finally, since the errors with PHS r5 and
r7 are smaller than those with r4log(r), only the PHS RBFs will be examined
in the following tests.
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Figure 2: Global errors of the four derivative estimates fx, fy, fxx, and fyy of the test
function Eq.(18) for the four IS-RBFs and the three PS-RBFs as a function of the shape
parameter C (with Nsten = 21 and an added polynomial of degree 0). (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)
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4.2.2. Sensitivity to the stencil size and added polynomial degree

The dependence of the estimation accuracy on the stencil size (Nsten) and
the degree of the added polynomial (l) demonstrates that the sensitivity is
not the same for IS and PS-RBFs.

IS-RBFs. First, focusing on IS-RBFs, Figure 3 shows the global error for
the estimation of fx as a function of C for three values of the stencil size,
Nsten = 5, 13, and 21. The accuracy of the derivative estimates improves
significantly by increasing the stencil size from 5 to 13 nodes, and even more
by increasing to 21 nodes. However, C must be chosen carefully since the
range of values of C producing a well-conditioned matrix is reduced. The
matrix becomes ill-conditioned for smaller values of C when Nsten increases
(e.g. C ≈ 0.8 m for Nsten = 13, whereas C ≈ 0.5 m for Nsten = 21). In addi-
tion, increasing Nsten increases the computational time(tests of regular wave
propagation, not shown here, exhibited a computational time proportional
to N1.36

sten, using a fixed value of NPXY ), so a compromise must be made
between the desired accuracy, the difficulties in finding an optimal value of
C, and the computational time.

The sensitivity of the error to the degree of the added polynomial is then
studied by increasing l from 0 to 2 and comparing the results to those without
an added polynomial. The boundary and interior nodes present different be-
havior as a function of l (Figure 4). Despite the smaller number of boundary
nodes (in comparison with interior nodes), the global error (calculated for all
nodes, Figure 4c) is dominated by the boundary errors, therefore presenting
the same dependence on the shape parameter C. For interior nodes (Fig-
ure 4a), adding higher degree polynomials decreases the error for C < 0.18
m, but this improvement is lost for higher values of C. For boundary nodes
(Figure 4b), the errors are reduced significantly with the addition of a poly-
nomial and an increase in the degree of the polynomial for C < 0.3 m. Since
RBFs are not exact approximations of polynomials, it is essential to add at
least a constant to the RBF interpolant to be able to estimate accurately the
derivative of a constant function.

For IS-RBFs, increasing the stencil size improves the accuracy but causes
the matrix to become ill-conditioned for smaller values of C. The addition
of high-order polynomials is only beneficial for small values of C, especially
for the boundary nodes, in agreement with Fornberg et al. (2002).
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Figure 3: Global error for the estimate of fx for the IMQ RBF as a function of the shape
parameter C (with an added polynomial of degree 0) for stencil sizes Nsten = 5, 13 and
21.

PS-RBFs. The addition of a high-order polynomial is essential to guaran-
tee the inversibility of the collocation matrix for PHS RBFs. A minimum
polynomial degree l is required, which depends on the degree of the PHS
function. In addition, the maximum degree of the added polynomial is lim-
ited by the size of the stencil. To ensure that the problem is well-posed,
Nsten must be larger than the number of independent monomials constitut-
ing the basis of polynomials of the same degree as the added polynomial (i.e.
Barnett, 2015). Given these constraints, a series of tests were conducted to
study the sensitivity of the error estimation of the PHS r5 and r7 to the sten-
cil size (Nsten ∈ [9, 56]) and to the degree of the added polynomial (l ∈ [2, 5]).

With regular node sets, the condition on the minimum stencil size for
a given degree of added polynomial is not sufficient to ensure the non-
singularity of the matrix. The regularity of the node set does not allow
the matrix to be unisolvent for the polynomial basis (Wright, 2003). The
stencil size thus has to be increased to recover the inversibility of the matrix
(Barnett, 2015). With an irregular node set, this may not occur.
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Figure 4: Errors for the estimate of fx, for the IMQ RBF as a function of the shape
parameter C (with Nsten = 21) for added polynomials of degree 0 to 2: (a) interior nodes,
(b): boundary nodes, and (c) all nodes.
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The results obtained with both PHS (r5 and r7) are compared in Figure 5
for the first derivative in x. Similar behavior is observed for the two PHS, but
PHS r7 produces smaller errors for a given degree of the added polynomial.
The interior node and boundary node errors vary differently as a function of
Nsten but in both cases, the errors decrease with an increase in the degree
of the added polynomial. For an added polynomial with an even degree,
the error for the interior nodes is weakly dependent on the stencil size Nsten,
whereas for an added polynomial with an odd degree, a minimum is obtained
for any stencil size with a symmetric distribution of nodes. This effect is
caused by the regular distribution of the nodes and may not be observed with
irregularly spaced nodes (for example, for boundary nodes with asymmetric
stencils). The same trends are observed for the estimation of second-order
derivatives, but for the inverse of odd and even added polynomials (not shown
here). Contrary to the PHS r7, the PHS r5 has the advantage of being used
with only a second degree added polynomial, thus requiring a smaller Nsten

and allowing a reduction in the computational time.

4.2.3. Convergence study as a function of the grid spacing

For IS-RBFs (e.g. IMQ, Figure 6) the optimal C is generally insensitive
to the node spacing (here Copt ' 0.4 m). As the node spacing decreases,
the errors decrease until a certain limit below which the matrix becomes ill-
conditioned. Thus C is generally decreased with the node spacing to keep
the condition number of the collocation matrix roughly constant, at about
1015 according to Flyer et al. (2016). This causes error saturation and the
loss of convergence, which can be restored by adding polynomials.

For PHS RBFs, there are no saturation errors, and the convergence rate
depends on the degree of the added polynomial l (∝ ∆xl−k+1), where k is
the order of the estimated derivative (Flyer et al., 2016). When the degree
of the PHS RBF increases (from r5 to r7), the errors decrease slightly only
for low order added polynomials (i.e. l = 3 and 4). The convergence rate is
independent of the stencil size Nsten (Figure 7).

These results, concerning error estimation as a function of node refine-
ment for IS-RBFs and PS-RBFs (PHS), are in agreement with the studies of
Bayona et al. (2010) and Flyer et al. (2016).

4.2.4. Summary of the derivative estimate tests

Finally, based on a literature review and a series of tests including, but not
limited to those shown here, the use of the PHS r7 with an added polynomial
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Figure 5: Errors for the estimate of fx for PHS r5 and r7 as a function of the stencil
size Nsten and the degree of the added polynomial (shown in the legend) for: (a) interior
nodes, (b) boundary nodes, and (c) all nodes.
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several stencil sizes Nsten.

of degree 3 and Nsten = 21, appears to be a good compromise for applica-
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tions similar to those presented here. For general applications, determining
the optimal shape parameter may be challenging (where the derivatives of all
variables are estimated with the same coefficients). It is more practical and
efficient to use a RBF that does not depend on a shape parameter since Copt
depends strongly on the estimated derivative and the function itself. The
PHS r7 is preferred to the PHS r5 because, for the same degree of added
polynomial, the PHS r7 tends to produce smaller errors. These choices are
recommended to minimize the expected errors and stencil size (i.e. compu-
tational time) for the estimation of first and second-order derivatives, and
will be used in the subsequent test case simulations. This recommendation
is derived from a sensitivity study testing a single function. Although there
is no formal proof that these results can be extended to a wide range of func-
tions, the chosen sinusoidal function is assumed representative of the type
of functions encountered in real applications, suggesting the generalization
of the conclusions concerning the efficiency and accuracy of this method for
wave propagation simulation models.

5. Validation test cases

The 3D version of the model is validated by comparing simulation results
to measurements from two laboratory experiments studying the convergence
of regular and irregular waves propagating over two different bathymetric
profiles: a semi-circular step based on the experiments of Whalin (1971), and
a submerged shoal based on the experiments of Vincent and Briggs (1989).

5.1. Nonlinear wave propagation over a semi-circular step

Whalin (1971) performed a series of experiments of regular waves propa-
gating over a semi-circular bottom topography that acts as a focusing lens.
These experiments were conducted to test the limit of linear and nondiffrac-
tive theory in a convergence zone, considering non-breaking waves with pe-
riods of 1, 2, and 3 s, for three wave heights. The bottom topography was
designed to produce strong wave convergence along the centerline of the basin
and to minimize sidewall effects and dissipation by bottom friction. The wave
tank was 6.096 m wide and 25.603 m long. In the experiments, regular waves
were generated with a piston wave maker and propagated from an initial
water depth of h0 = 0.4572 m to a shallower region of depth h1 = 0.1524 m.
The bathymetric profile (Figure 8) is defined analytically by:
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h(x, y) =


h0, −20.0 ≤ x ≤ 10.67−G(y)

h0 + 1
25

(10.67−G(y)− x), 10.67−G(y) < x < 18.29−G(y)

h1, 18.29−G(y) ≤ x ≤ 35

(20)

with G(y) =
√
y(6.096− y), (h, x and y in m).
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Figure 8: Bathymetry of the experiments of Whalin (1971).

Four sets of wave conditions were simulated (see Table 2). For wave con-
dition A, the computational domain extends from -3.91 m to 32.5 m in the
x-direction and from 0 to 6.096 m in the y-direction. The computational
domain is longer than the physical domain in the x-direction to include a
one-wavelength long relaxation zone at the left boundary for wave generation
and for the absorption of waves reflected from the underwater topography.
A three-wavelength long relaxation zone is added at the right boundary for
wave absorption. Impermeable conditions are applied at the lateral bound-
aries.

The domain is discretized with NPXY = 137, 712 scattered nodes with
regular node spacing (∆x ≈ ∆y ≈ 0.04 m, or approximately L/98). Waves
are propagated during 36 s (18 periods), with a constant time step ∆t =
0.0178 s (≈ T/112) and NT = 7.
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Wave condition T (s) A (m) L0 (m) k0h0 k0A

A 2 0.0075 3.91 0.7347 0.01205

B 2 0.0108 3.91 0.7347 0.01736

C 3 0.0068 6.14 0.4663 0.006936

D 1 0.0195 1.50 1.9157 0.08171

Table 2: Wave characteristics for the four simulations of the experiments of Whalin (1971),
where the 0 subscript denotes deep water conditions.

The free surface profile at the end of the simulation (Figure 9) shows a
quasi-2D behavior with almost no variations in the y-direction in the deeper
part of the domain (x < 7.5 m). The 3D wave patterns develop in the
shallower zone where nonlinear effects are important. The convergence of
wave energy is caused by a combination of shoaling, diffraction, and refraction
over the convergent bathymetric profile.
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Figure 9: 3D view of the free surface elevation at the end of the simulation (t = 18T ),
obtained with PHS r7 + p3 and Nsten = 21 for wave condition A (T = 2 s, A = 0.0075 m
and L0 = 3.91 m) of the experiments of Whalin (1971).

The simulated crest and trough elevation envelopes along the centerline
of the tank (y = 3.048 m) show that before the foot of the slope, the crest
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and trough are nearly symmetric with respect to the still water level (Fig-
ure 10). In the shallower zone (x > 15 m), the waves are narrower and
their amplitudes increase, with deeper troughs and higher crests, breaking
the horizontal symmetry observed in the deeper part of the domain. The
vertical asymmetry of the waves also increases around x = 10 m, displaying
a steeper wave front. At the maximum of the crest envelope (x ≈ 20 m), the
wave has two small lobes on each side, a consequence of the increase of the
second harmonic amplitude caused by nonlinear effects on the slope.
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Figure 10: Free surface elevation profile along the centerline of the tank at the end of
the simulation t = 18T (black line) for wave condition A (T = 2 s, A = 0.0075 m and
L0 = 3.91 m) of the experiments of Whalin (1971). The wave envelope indicates the
maximum and minimum free surface elevation during the simulation (gray lines). The
light gray shaded areas (x < 0 m and x > 25 m) indicate the relaxation zones for wave
generation and absorption in the numerical model.

To examine more closely nonlinear effects and energy transfers between
harmonics, a Fourier analysis of the simulated wave signal was completed
along the centerline of the wave tank (Figure 11). The model accurately re-
produces the spatial evolution of the amplitudes of the first three harmonics
(frequencies f , 2f and 3f) in comparison to the measurements. The ampli-
tude of the second harmonic is slightly underestimated in the deeper part of
the domain (for x ≤ 12 m), which may be related to the linear method used
to generate waves in the model. Conversely, in the shallower zone, the second
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harmonic amplitude is slightly overestimated. As mentioned previously, in
the convergence region (around x = 20 m), the second and third harmonic
amplitudes increase due to energy transfers from the first harmonic, and the
second harmonic amplitude becomes nearly half of the first harmonic ampli-
tude. Despite the energy transfers to higher order harmonics, the amplitude
of the first harmonic does not decrease as one would expect in the case of an
alongshore uniform bathymetric profile. According to Whalin (1971), along
the centerline of the tank, the rate of decrease in amplitude due to nonlin-
ear transfers to higher harmonics is compensated by the rate of increase in
amplitude due to refraction and shoaling.

To test the sensitivity and flexibility of the model to the computational
domain node distribution, the simulation was also run using two irregular
node sets, one with a homogeneous node spacing (≈ 0.06 m) and the second
with node spacing varying with the water depth (between ≈ 0.06 m in the
shallower part and ≈ 0.1 m in the deeper part). The first irregular node dis-
tribution was created with the 3D finite element generator Gmsh (gmsh.info)
distributed under GNU GPL. A zoom of a small part of the domain is shown
(Figure 12) for the irregular (left) and regular (right) node sets. The irregular
node set distribution is not quasi-uniform, however there were no instability
problems. For the second irregular node distribution, another node generator
(Fornberg and Flyer, 2015b) enabling easy refinement with the bathymetry
and maintaining high regularity at local level was used. A repel algorithm,
based on Bayona et al. (2017), was also applied after the addition of nodes
close to the boundary, in the deeper part, to ensure simulation stability. The
resulting harmonic amplitudes are almost superimposed with those obtained
with the regular node set for both irregular node sets (Figure 11).

The sensitivity to the spatial resolution was studied by running seven
simulations with regular node spacing (∆x = 0.04, 0.06, 0.075, 0.09, 0.16,
0.24, 0.32 m). The resulting harmonic amplitudes are nearly indistinguish-
able for ∆x ≤ 0.16 m (Figure 13) with normalized root mean square errors
less that 1.5%, 4% and 7% for the first three harmonics, respectively. For
∆x > 0.16 m, larger differences appear for all three harmonics, in particular
in the shallow water region over the step (x > 15 m). For simulations with
∆x ≥ 0.09 m, instabilities sometimes appeared at the boundaries. There-
fore, in these simulations, the internodal distance was decreased near the
boundary to ensure stability. To evaluate the computational efficiency as
a function of the number of nodes discretizing the computational domain
(NPXY ), the computation time of one iteration is shown for each simula-
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Figure 11: Comparison of measured (circles) and simulated spatial evolution of the am-
plitude of first three harmonics with a regular (solid lines), and two irregular (dashed and
dotted lines) node distributions (at frequencies f , 2f , and 3f) of the free surface elevation
for wave condition A (T = 2 s, A = 0.0075 m and L0 = 3.91 m) of the experiments of
Whalin (1971).
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Figure 12: Zooms of the bottom left corner of the domain for (left) irregular (≈ 0.06 m)
and (right) regular (≈ 0.04 m) node distributions used to discretize the computational
domain of the experiments of Whalin (1971).
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tion (Figure 14). The CPU time is proportional to NPXY 1.76. This is lower
than the cost of the traditional exact sparse factorization (NPXY 2), which
may be due to the use of a multifrontal factorization method in the MUMPS
solver. This demonstrates the advantages of minimizing NPXY (Figure 13)
while maintaining satisfactory results.
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Figure 13: Comparison of measured (triangles) and simulated (lines) spatial evolution
of the amplitude of first three harmonics of the free surface elevation (at frequencies
f , 2f , and 3f) for regular node distributions with different spatial resolution (∆x =
0.04, 0.06, 0.075, 0.09, 0.16, 0.24, 0.32 m) for wave condition A (T = 2 s, A = 0.0075 m and
L0 = 3.91 m) of the experiments of Whalin (1971).

The simulated spatial evolution of the first three harmonics along the cen-
terline of the tank are compared to the experimental data for the other three
wave conditions (Table 2, Figure 15). For wave condition B (Figure 15a),
corresponding to the same wave period as case A but with a larger wave am-
plitude, nonlinear effects are more important, and the second harmonic am-
plitude is almost two-thirds of the maximum of the first harmonic amplitude.
The amplitude of the first harmonic also decreases slightly around x = 20 m,
suggesting that the nonlinear energy transfers to higher frequencies occur at
a faster rate than the energy convergence from refraction (Whalin, 1971).
The results of the simulation of wave condition D (Figure 15c), which is less
nonlinear but has more important dispersive effects, are in close agreement

33



103 104 105 106

NPXY

101

102

103

104

CP
U 
tim

e 
pe

r t
im

es
te
p 
(s
) slope: 1.76

Figure 14: CPU time per timestep as a function of the number of nodes discretizing the
domain for wave condition A (T = 2 s, A = 0.0075 m and L0 = 3.91 m) of the experiments
of Whalin (1971).

with the experiments. The last test, wave condition C (Figure 15b), corre-
sponds to nearly shallow water conditions. The simulation overestimates the
first harmonic amplitude, but underestimates the second and third harmonic
amplitudes. This behavior has been observed in previous studies using a
variety of different numerical models (Madsen and Sørensen (1992); Beji and
Nadaoka (1996); Engsig-Karup et al. (2009); Wu et al. (2010); Kazolea et al.
(2012); Filippini (2016)). Kazolea et al. (2012) suggested that the differences
may be caused by the propagation of free reflected waves in the tank and the
increased complexity of the case due to the shorter evolution distance and
the combination of refraction-diffraction and nonlinearities. For case C, the
model’s sensitivity to the initial wave amplitude or the position and length
of the absorption relaxation zone was not able to explain the differences be-
tween the experimental data and the numerical results.

5.2. Wave refraction and diffraction over an elliptical shoal

The last test case simulates the propagation of regular and irregular waves
over a submerged elliptical mound, reproducing the experiments of Vincent
and Briggs (1989). The aim of the experiments was to investigate the limits
of approximating irregular wave conditions with monochromatic waves, and
they produced a large experimental data set of both monochromatic waves
and irregular waves with narrow or broad frequency and directional spread-
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Figure 15: Comparison of the observed (circles) and simulated (solid lines) spatial evo-
lution of the amplitude of first three harmonics (at frequencies f , 2f , and 3f) of the
free surface elevation for wave conditions B, C and D (see Table 2) of the experiments of
Whalin (1971).

ing. Two cases are considered here : first the regular wave case M1, with
T = 1.3 s, L = 2.3 m, and A = 0.0275 m, and then the irregular wave case
U3, generated with a JONSWAP spectrum with Hs = 0.0254 m, Tp = 1.3 s,
and a peak enhancement factor γ = 2.

The experiments were conducted in a directional wave basin that was
35 m wide and 29 m long. The measurement area was restricted to a 6.10 m
wide by 15.24 m long zone around the elliptical shoal, which had a major axis
of 3.96 m and a minor axis of 3.05 m, with the center at (x0,y0)=(6.10 m,
13.72 m). The shoal boundary (Figure 16) is defined by:

S(x, y) =

(
x− x0
3.05

)2

+

(
y − y0
3.96

)2

= 1. (21)
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The water depth around the shoal is constant h(x, y) = 0.4572 m (i.e. for
S(x, y) > 1), and the water depth over the shoal is:

h(x, y) = 0.9144− 0.7620

√
1−

(
x− x0
3.81

)2

−
(
y − y0
4.95

)2

. (22)

The minimum water depth above the center of the shoal is therefore hmin =
0.1524 m. In the experiments, waves were generated with a directional wave
generator, located at x = 0 m. The free surface elevation was measured using
an array of nine parallel resistive probes placed along nine different transects
(five parallel and four perpendicular to the wave maker) during nine different
experimental runs. In the following, two transects will be studied (Figure 16):
the transversal transect 4 (x = 12.2 m) and the longitudinal transect along
the centerline of the tank, consisting of transects 7 and 9 (y = 13.72 m).

To limit the computational time, the simulated domain is smaller than
the experimental wave basin. The numerical domain extends from −2.3 m
≤ x ≤ 20.5 m and 3.7 m ≤ y ≤ 23.7 m. Two relaxation zones are added
(hatched zones in Figure 16): a one-wavelength long wave generation zone
at the left side of the domain, and a two-wavelength long absorption zone
at the right side of the domain. Impermeable conditions are applied at the
lateral boundaries. The domain is discretized with regularly spaced nodes
with ∆x = ∆y = 0.075 m, for a total of NPXY = 81, 435 nodes.

For the regular wave case M1, waves were generated with an amplitude of
A = 0.02325 m, using linear wave theory. This value is slightly smaller than
the one prescribed to the wave maker in the experiments, but an adjustment
of the incident wave amplitude was necessary to obtain a comparable average
wave height (H = 0.0445 m) at a reference probe located in an unperturbed
zone of the domain upstream of the shoal (x = 3.05 m, y = 21.34 m). Waves
are propagated during approximately 100 s (≈ 78T ), with a constant time
step ∆t = 0.036 s (≈ T/36), using NT = 5.

The contour plot of the free surface elevation at the end of the simulation,
when the periodic steady state is reached, shows the wave pattern that de-
veloped around the shoal (Figure 17). The wave height increases behind the
shoal (x > 6 m), with complex 2D patterns with strong variations extending
in both horizontal directions. The convergence zone along the centerline of
the tank is surrounded by rectilinear zones of almost zero amplitude, look-
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Figure 16: The numerical domain and bathymetry of the experiments of Vincent and
Briggs (1989), with horizontal and vertical white lines indicating the transects along which
the simulation results and experimental measurements are compared. Hatched zones indi-
cate the wave generation (left) and absorption (right) zones used in the numerical model.

ing like a wake. In addition, the crests and troughs in the y-direction are
modulated with a characteristic length scale of approximately 3 m due to re-
flections from the lateral walls. The use of a computational domain smaller
than the experimental one increases the importance of lateral reflections and
possibly overestimates this effect.

To compare the simulation results to the experimental data, a zero up-
crossing analysis of the free surface elevation time series is completed to
compute the average wave height (Hm) along each transect. To conduct the
analysis in the same way as for the experiments, a 28-period window of the
free surface elevation time series is considered (once steady state is reached,
from t = 60 to 96.4 s). Wave height profiles along the perpendicular transects
show good agreement with the experimental data (transect 4, Figure 18a).
The wave height profile presents a maximum at the center, corresponding to
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Figure 17: Contour plot of the free surface elevation at the end of the simulation (t ≈ 78T )
for case M1 of Vincent and Briggs (1989). The dotted line indicates the limit of the
elliptical shoal on the basin’s floor.

the center of the shoal (y = 13.72 m), which is more than twice the incident
wave height (ratio ≈ 2.03), but is slightly underestimated in the simulations.
Moving symmetrically away from the center, two minima are reached, with
wave heights less than half the incident wave height (ratios ≈ 0.21 and 0.43,
respectively). Farther from the shoal, the wave height is nearly equal to the
incident wave height. The simulated wave height profile in the wave propaga-
tion direction also agrees well with the experimental measurements (transect
7-9, Figure 18b), with differences slightly larger than those observed along
transect 4. In particular, the increase in the wave height between x = 4-6
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m, and the small local peak around x = 7.5 m are not reproduced by the
numerical model. After the shoal (x = 9 m), the simulated wave height
profile shows small oscillations that may be caused by reflections from the
relaxation zone that is not perfectly absorbing.
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Figure 18: Average wave height along (a) transect 4 and (b) transect 7-9, for case M1 of
Vincent and Briggs (1989). The horizontal dashed line indicates the incident wave height.

The experimental measurements vary between different runs. At a data
measurement point (x = 12.2 m, y = 13.72 m) in two transects, the ob-
served wave height is 0.0975 m and 0.104 m during 2 different runs (along
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transect 4 and transect 7-9, respectively), which is a difference of approxi-
mately 6.25%. Although the variability in the measurements at this location
cannot be extended directly to the other measurement points, it can be used
to estimate the order of magnitude of the experimental errors and variability.

A harmonic analysis was also performed on the simulated free surface
time series along transect 7-9 to show the evolution of the first three har-
monic amplitudes (Figure 19). Before the shoal (x < 4 m), the waves are
only weakly nonlinear, and the second and third harmonic amplitudes in-
crease over the shoal. Over the shoal (x = 6.10 m), the second harmonic
amplitude is more than half first harmonic amplitude. This effect is likely
caused by wave convergence and the narrowing of the crest over the shoal
(Figure 17). After the shoal, the amplitude of the first harmonic more than
doubles due to wave energy convergence induced by refraction. Nonlinearities
are not significant after the shoal, although a modulation of the amplitude of
the second harmonic is clearly observed. Comparison of the simulated and
experimental harmonic amplitude evolution was not possible because of the
lack of availability of the experimental time series.

For the irregular wave condition case U3, the computational domain and
numerical parameters remained unchanged, except that the maximum order
of the Chebyshev polynomial was increased to NT = 7. NT was increased
to account for the presence of higher frequencies in the wave spectrum and
the need to resolve accurately the dispersion relation for these frequencies.
Waves were propagated during approximately 200 s (≈ 153 Tp). The high
frequencies propagate at a lower celerity than the peak frequency, hence the
transient period is longer than for case M1.

The contour plot of the free surface elevation at the end of the simulation
(t ≈ 153 Tp) for case U3 shows more complex and irregular 2D patterns
than the regular wave case (Figure 20), and the convergence zone is less
well-defined. The effects of reflections from the lateral walls are still visible.

To compare to the experimental data (only available for transect 4), the
significant wave height is computed from the free surface elevation time series
by calculatingHs = 4ση, where ση is the standard deviation of the free surface
elevation. Time series of around one hundred wave periods are used for this
analysis. The simulated Hs agrees well with the experimental observations
(Figure 21). The pattern of the significant wave height profile is similar to
the one obtained for the regular wave case, with a maximum at the center
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Figure 19: Simulated spatial evolution of the first three harmonic amplitudes for case M1
of the Vincent and Briggs (1989) experiments along transect 7-9 (y = 13.72 m).

due to wave convergence induced by the bathymetry (ratio ≈ 1.97).

6. Discussion and conclusions

A meshless approach, based on the RBF-FD method, was chosen for the
extension of the 2DV version of a highly nonlinear and dispersive potential
wave model to 3D domains. This method has the advantage of being both
similar to finite difference methods and simple to implement, not requiring
major adaptations to the structure of the 2DV code.

A series of sensitivity tests of the RBF-FD parameters were conducted
to examine the robustness of this approach for estimating derivatives of a
sinusoidal function. This study demonstrates that accurate results can be
obtained with an IS-RBF without significant differences between the tested
RBFs: MQ, GA, IMQ and IQ (Table 1). However, IS-RBFs depend on
a shape parameter controlling the accuracy of the approximation, and the
optimal value of this shape parameter depends on the estimated derivative
and the form of the function. To avoid these limitations, it is recommended
to use PS-RBFs, which do not depend on a shape parameter. The choice of
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Figure 20: Contour plot of the free surface elevation at the end of the simulation (t ≈
153Tp) for case U3 of Vincent and Briggs (1989). The dotted line indicates the limit of
the elliptical shoal on the basin’s floor.

the degree of the PS-RBF, the size of the stencil and the degree of the added
polynomial is a compromise between the accuracy and computational time.
For a targeted stencil size between 20 and 30 nodes, a PHS function of the
form r7 + p3 is recommended.

The application of the 3D version of the model to simulate two different
wave basin experiments showed that complex free surface wave patterns in-
duced by variable bathymetric profiles and the associated nonlinear effects
are well reproduced by the model. The nonlinear and dispersive capabilities
of the 3D model validate the use of the RBF-FD method for wave propagation
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Figure 21: Significant wave height along transect 4, for the irregular wave case U3 of the
Vincent and Briggs (1989) experiments. The horizontal dashed line indicates the incident
significant wave height.

in two horizontal directions.
Using the RBF-FD approach allows significant flexibility enabling the

use of non-rectangular grids and local node refinement, which is of partic-
ular interest for applications to real coastal domains. Simulations of wave
condition A of Whalin (1971) experiments for two irregular node distribu-
tions show that a refinement following the water depth allows increasing node
spacing in the deeper part of the domain, thus reducing the number of nodes
(from 60,716 to 41,983) and the computational time by approximately 30%
while maintaining the difference between harmonic amplitudes below about
2.5%.

With the long term objective of applying the model to real and com-
plex nearshore domains, including wave propagation near coastal and harbor
structures, work remains to be done to improve the robustness of the method
and the computational efficiency of the numerical model. In some cases, in-
stabilities may occur at or near the boundaries because of derivative estimate
errors induced by asymmetric stencils at these locations. In the test cases
presented here, refining the mesh close to the boundary was sufficient to avoid
the appearance of instabilities. Another option is to add ghost nodes outside
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of the domain to reduce the one-sidedness of boundary node stencils (Bar-
nett, 2015), but the implementation of such a method is not trivial. More
recently, Bayona et al. (2017) showed that the development of instabilities
at the boundaries could also be reduced by increasing the stencil beyond the
threshold: Nsten ≥ 2M . One last method used to stabilize the resolution
of PDEs without a physical dissipative term (as is the case of the Zakharov
equations) is to add a hyper-viscosity operator to the right hand-side of the
evolution equation to introduce artificially a small amount of dissipation that
will dampen spurious high frequency oscillations (Fornberg and Lehto, 2011).

The extension of the 2DV code to 3D was accompanied by a significant
increase in the computational time. The numerical efficiency of the 3D ver-
sion of the model needs to be improved in order to perform simulations with
large spatial domains. The resolution of the Laplace BVP linear system is
the most computationally expensive part of the model, so a parallel version
of the linear solver is currently used. Further work could include paralleliz-
ing the code with a domain decomposition approach. Other possibilities to
reduce the computational cost are currently being explored, including using
time integration schemes requiring fewer resolutions of the Laplace BVP (i.e.
multi-step predictor-corrector schemes) and/or iterative solvers with suitable
preconditioners.

Finally, ongoing work also includes the representation of physical pro-
cesses, including depth-induced wave breaking and run-up processes to en-
able simulating nearshore wave environments. Further validation of the 3D
version of the model is required, including cases with complex coastlines and
variable bathymetries, islands, and coastal structures.
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Appendices
Appendix A mijkl terms in Eq.(10), (11) and (12)

The mijkl terms appearing in Eq.(10), (11) and (12) are terms that only
depend on h+ = h+ η and h− = h− η and their spatial derivatives:

m0220 = h+2

m0101 = 2h+h−x
m1101 = −2h+h+x
m0011 = 2h+h−y
m1011 = −2h+h+y
m0002 = 4 + (h−x )2 + (h−y )2

m1002 = 2 (h−x h
+
x + h−y h

+
y )

m2002 = (h+x )2 + (h+y )2

m0001 = −2h−x h
+
x − 2h−y h

+
y + h+h−xx + h+h−yy

m1001 = 2(h+x )2 + 2(h+y )2 − h+h+xx − h+h+yy.

Appendix B Bpikn terms in Eq.(10), (11) and (12)

In Eq.(10), (11) and (12) the notation Bpikn is introduced:

Bpikn ≡ 〈si
dkTn
dsk
〉p (23)

where 〈f(s)〉p is the inner product of any function f defined on the interval
[-1,1] with a Chebyshev polynomial Tp of order p such that :

〈f〉p ≡
2

πcp

∫ 1

−1
f(s)Tp(s)

ds√
1− s2

with

{
c0 = 2
cp = 1 if p ≥ 1

(24)

The following terms have to be estimated: 〈Tn〉p, 〈Tn,s〉p, 〈Tn,ss〉p, 〈s Tn,s〉p,
〈s Tn,ss〉p and 〈s2 Tn,ss〉p. They can be determined analytically as a function
of n and p using the recurrence relation of the Chebyshev polynomials or
from linear combinations of previously defined Bpikn. Only the final formulas
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are given below:

〈Tn〉p = Bp00n = δpn

〈Tn,s〉p = Bp01n = 2
cp

{
n if p = n− 1, n− 3, n− 5, ...
0 otherwise

〈Tn,ss〉p = Bp02n = 1
cp

{
n (n2 − p2) if p = n− 2, n− 4, n− 6, ...
0 otherwise

〈s Tn,s〉p = Bp11n =
∑n−1

r=0 Br01n

{
1
2
(Bp00(r−1) +Bp00(r+1)) if r ≥1
Bp001 if r = 0

〈s Tn,ss〉p = Bp12n =
∑n−2

r=0 Br02n

{
1
2
(Bp00(r−1) +Bp00(r+1)) if r ≥1
Bp001 if r = 0

〈s2 Tn,ss〉p = Bp22n =
∑n−2

r=0 Br02n


1
4
(Bp00(r−2) + 2Bp00r +Bp00(r+2)) if r ≥2

1
4
(3Bp001 +Bp003) if r = 1

1
2
(Bp000 +Bp002) if r = 0
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