
HAL Id: hal-02121180
https://hal.science/hal-02121180

Submitted on 15 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Debugging of Behavioural Models with CLEAR
Gianluca Barbon, Vincent Leroy, Gwen Salaün

To cite this version:
Gianluca Barbon, Vincent Leroy, Gwen Salaün. Debugging of Behavioural Models with CLEAR.
TACAS 2019 - 25th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, Apr 2019, Prague, Czech Republic. pp.386-392, �10.1007/978-3-030-17462-0_26�.
�hal-02121180�

https://hal.science/hal-02121180
https://hal.archives-ouvertes.fr


Debugging of Behavioural Models
with CLEAR

Gianluca Barbon1, Vincent Leroy2, and Gwen Salaün1(B)

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria,
LIG, 38000 Grenoble, France

gwen.salaun@inria.fr
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

Abstract. This paper presents a tool for debugging behavioural mod-
els being analysed using model checking techniques. It consists of three
parts: (i) one for annotating a behavioural model given a temporal for-
mula, (ii) one for visualizing the erroneous part of the model with a
specific focus on decision points that make the model to be correct or
incorrect, and (iii) one for abstracting counterexamples thus providing
an explanation of the source of the bug.

1 Introduction

Model checking [2] is an established technique for automatically verifying that
a behavioural model satisfies a given temporal property, which specifies some
expected requirement of the system. In this work, we use Labelled Transition
Systems (LTS) as behavioural models of concurrent programs. An LTS consists of
states and labelled transitions connecting these states. An LTS can be produced
from a higher-level specification of the system described with a process algebra
for instance. Temporal properties are usually divided into two main families:
safety and liveness properties [2]. Both are supported in this work. If the LTS
does not satisfy the property, the model checker returns a counterexample, which
is a sequence of actions leading to a state where the property is not satisfied.

Understanding this counterexample for debugging the specification is a com-
plicated task for several reasons: (i) the counterexample may consist of many
actions; (ii) the debugging task is mostly achieved manually (satisfactory auto-
matic debugging techniques do not yet exist); (iii) the counterexample does not
explicitly point out the source of the bug that is hidden in the model; (iv) the
most relevant actions are not highlighted in the counterexample; (v) the coun-
terexample does not give a global view of the problem.

The CLEAR tools (Fig. 1) aims at simplifying the debugging of concurrent
systems whose specification compiles into a behavioural model. To do so, we pro-
pose a novel approach for improving the comprehension of counterexamples by
highlighting some of the states in the counterexample that are of prime impor-
tance because from those states the specification can reach a correct part of the
model or an incorrect one. These states correspond to decisions or choices that
are particularly interesting because they usually provide an explanation of the
c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part I, LNCS 11427, pp. 386–392, 2019.
https://doi.org/10.1007/978-3-030-17462-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17462-0_26&domain=pdf
https://doi.org/10.1007/978-3-030-17462-0_26


Debugging of Behavioural Models with CLEAR 387

source of the bug. The first component of the CLEAR toolset computes these
specific states from a given LTS (AUT format) and a temporal property (MCL
logic [5]). Second, visualization techniques are provided in order to graphically
observe the whole model and see how those states are distributed over that
model. Third, explanations of the bug are built by abstracting away irrelevant
parts of the counterexample, which results in a simplified counterexample.

Fig. 1. Overview of the CLEAR toolset.

The CLEAR toolset has been developed mainly in Java and consists of more
than 10K lines of code. All source files and several case studies are available
online [1]. CLEAR has been applied to many examples and the results turn out
to be quite positive as presented in an empirical evaluation which is also available
online.

The rest of this paper is organised as follows. Section 2 overviews the LTS
and property manipulations in order to compute annotated or tagged LTSs.
Sections 3 and 4 present successively our techniques for visualizing tagged models
and for abstracting counterexamples with the final objective in both cases to
simplify the debugging steps. Section 5 describes experiments we carried out for
validating our approach on case studies. Section 6 concludes the paper.

2 Tagged LTSs

The first step of our approach is to identify in the LTS parts of it corresponding
to correct or incorrect behaviours. This is achieved using several algorithms that
we define and that are presented in [3,4]. We use different techniques depending
on the property family. As far as safety properties are concerned, we compute an
LTS consisting of all counterexamples and compare it with the full LTS. As for
liveness properties, for each state, we compute the set of prefixes and suffixes.
Then, we use this information for tagging transitions as correct, incorrect or
neutral in the full LTS. A correct transition leads to a behaviour that always
satisfies the property, while an incorrect one leads to a behaviour that always
violates the property. A neutral transition is common to correct and incorrect
behaviours.



388 G. Barbon et al.

Once we have this information about transitions, we can identify specific
states in the LTS where there is a choice in the LTS that directly affects the
compliance with the property. We call these states and the transitions incoming
to/outgoing from those states neighbourhoods.

There are four kinds of neighbourhoods, which differ by looking at their out-
going transitions (Fig. 2 from left to right): (1) with at least one correct transi-
tion (and no incorrect transition), (2) with at least one incorrect transition (and
no correct transition), (3) with at least one correct transition and one incorrect
transition, but no neutral transition, (4) with at least one correct transition,
one incorrect transition and one neutral transition. The transitions contained in
neighbourhood of type (1) highlight a choice that can lead to behaviours that
always satisfy the property. Note that neighbourhoods with only correct outgo-
ing transitions are not possible, since they would not correspond to a problem-
atic choice. Consequently, this type of neighbourhood always presents at least
one outgoing neutral transition. The transitions contained in neighbourhood of
type (2), (3) or (4) highlight a choice that can lead to behaviours that always
violate the property.

Fig. 2. The four types of neighbourhoods. (Color figure online)

It is worth noting that both visualization and counterexample abstraction
techniques share the computation of the tagged LTS (correct/incorrect/neutral
transitions) and of the neighbourhoods.

3 Visualization Techniques

The CLEAR visualizer provides support for visualizing the erroneous part of the
LTS and emphasizes all the states (a.k.a. neighbourhoods) where a choice makes
the specification either head to correct or incorrect behaviour. This visualization
is very useful from a debugging perspective to have a global point of view and
not only to focus on a specific erroneous trace (that is, a counterexample).

More precisely, the CLEAR visualizer supports the visualization of tagged
LTSs enriched with neighbourhoods. These techniques have been developed using
Javascript, the AngularJS framework, the bootstrap CSS framework, and the 3D
force graph library. These 3D visualization techniques make use of different col-
ors to distinguish correct (green), incorrect (red) and neutral (black) transitions
on the one hand, and all kinds of neighbourhoods (represented with different
shades of yellow) on the other hand. The tool also provides several function-
alities in order to explore tagged LTSs for debugging purposes, the main one



Debugging of Behavioural Models with CLEAR 389

being the step-by-step animation starting from the initial state or from any
chosen state in the LTS. This animation keeps track of the already traversed
states/transitions and it is possible to move backward in that trace. Beyond
visualizing the whole erroneous LTS, another functionality allows one to focus
on one specific counterexample and rely on the animation features introduced
beforehand for exploring the details of that counterexample (correct/incorrect
transitions and neighbourhoods).

Figure 3 gives a screenshot of the CLEAR visualizer. The legend on the left
hand side of this figure depicts the different elements and colors used in the LTS
visualization. All functionalities appear in the bottom part. When the LTS is
loaded, one can also load a counterexample. On the right hand side, there is the
name of the file and the list of states/transitions of the current animation. Note
that transitions labels are not shown, they are only displayed through mouseover.
This choice allows the tool to provide a clearer view of the LTS.

Fig. 3. Screenshot of the CLEAR visualizer. (Color figure online)

From a methodological point of view, it is adviced to use first the CLEAR
visualizer during the debugging process for taking a global look at the erroneous
part of the LTS and possibly notice interesting structures in that LTS that
may guide the developer to specific kinds of bug. Step-by-step animation is
also helpful for focusing on specific traces and for looking more carefully at
some transitions and neighbourhoods on those traces. If the developer does not
identify the bug using these visualization techniques, (s)he can make use of the
CLEAR abstraction techniques presented in the next section.

4 Abstraction Techniques

In this section, once the LTS has been tagged using algorithms overviewed in
Sect. 2, the developer can use abstraction techniques that aim at simplifying a



390 G. Barbon et al.

counterexample produced from the LTS and a given property. To do so we make
a joint analysis of the counterexample and of the LTS enriched with neigh-
bourhoods computed previously. This analysis can be used for obtaining dif-
ferent kinds of simplifications, such as: (i) an abstracted counterexample, that
allows one to remove from a counterexample actions that do not belong to neigh-
bourhoods (and thus represent noise); (ii) a shortest path to a neighbourhood,
which retrieves the shortest sequence of actions that leads to a neighbourhood;
(iii) improved versions of (i) and (ii), where the developer provides a pattern rep-
resenting a sequence of non-contiguous actions, in order to allow the developer
to focus on a specific part of the model; (iv) techniques focusing on a notion of
distance to the bug in terms of neighbourhoods. For the sake of space, we focus
on the abstracted counterexample in this paper.
Abstracted Counterexample. This technique takes as input an LTS where neigh-
bourhoods have been identified and a counterexample. Then, it removes all the
actions in the counterexample that do not represent incoming or outgoing tran-
sitions of neighbourhoods. Figure 4 shows an example of a counterexample where
two neighbourhoods, highlighted on the right side, have been detected and allow
us to identify actions that are preserved in the abstracted counterexample.

Fig. 4. Abstracted counterexample.

5 Experiments

We carried out experiments on about 100 examples. For each one, we use as
input a process algebraic specification that was compiled into an LTS model,
and a temporal property. As far as computation time is concerned, the time is
quite low for small examples (a few seconds), while it tends to increase w.r.t.
the size of the LTS when we deal with examples with hundreds of thousands
of transitions and states (a few minutes). In this case, it is mainly due to the
computation of tagged LTSs, which is quite costly because it is based on several
graph traversals. Visualization techniques allowed us to identify several exam-
ples of typical bugs with their corresponding visual models. This showed that the
visualizations exhibit specific structures that characterize the bug and are helpful
for supporting the developer during his/her debugging tasks. As for abstraction
techniques, we observed some clear gain in length (up to 90%) between the orig-
inal counterexample and the abstracted one, which keeps only relevant actions
using our approach and thus facilitates the debugging task for the developer.



Debugging of Behavioural Models with CLEAR 391

We also carried out an empirical study to validate our approach. We asked 17
developers, with different degrees of expertise, to find bugs on two test cases by
taking advantage of the abstracted counterexample techniques. The developers
were divided in two groups, in order to evaluate both test cases with and without
the abstracted counterexample. The developers were asked to discover the bug
and measure the total time spent in debugging each test case. We measured the
results in terms of time, comparing for both test cases the time spent with and
without the abstracted counterexample. We observed a gain of about 25% of the
total average time spent in finding the bug for the group using our approach.
We finally asked developers’ opinion about the benefit given by our method in
detecting the bug. Most of them agreed considering our approach helpful.

The CLEAR toolset is available online [1] jointly with several case studies
and the detailed results of the empirical study.

6 Concluding Remarks

In this paper, we have presented the CLEAR toolset for simplifying the com-
prehension of erroneous behavioural specifications under validation using model
checking techniques. To do so, we are able to detect the choices in the model
(neighbourhood) that may lead to a correct or incorrect behaviour, and generate
a tagged LTS as result. The CLEAR visualizer takes as input a tagged LTS and
provides visualization techniques of the whole erroneous part of the model as
well as animation techniques that help the developer to navigate in the model
for better understanding what is going on and hopefully detect the source of the
bug. The counterexample abstraction techniques are finally helpful for build-
ing abstractions from counterexamples by keeping only relevant actions from a
debugging perspective. The experiments we carried out show that our approach
is useful in practice to help the designer in finding the source of the bug(s).

References

1. CLEAR Debugging Tool. https://github.com/gbarbon/clear/
2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
3. Barbon, G., Leroy, V., Salaün, G.: Debugging of concurrent systems using counterex-

ample analysis. In: Dastani, M., Sirjani, M. (eds.) FSEN 2017. LNCS, vol. 10522,
pp. 20–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68972-2 2

4. Barbon, G., Leroy, V., Salaün, G.: Counterexample simplification for liveness prop-
erty violation. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018. LNCS, vol. 10886,
pp. 173–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92970-5 11

5. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp.
148–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68237-
0 12

https://github.com/gbarbon/clear/
https://doi.org/10.1007/978-3-319-68972-2_2
https://doi.org/10.1007/978-3-319-92970-5_11
https://doi.org/10.1007/978-3-540-68237-0_12
https://doi.org/10.1007/978-3-540-68237-0_12


392 G. Barbon et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Debugging of Behavioural Models with CLEAR
	1 Introduction
	2 Tagged LTSs
	3 Visualization Techniques
	4 Abstraction Techniques
	5 Experiments
	6 Concluding Remarks
	References




