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INTRODUCTION 
Nearshore wave modeling over spatial scales of several 
kilometers requires balancing the fine-scale modeling of 
physical processes with the model’s accuracy and 
efficiency. In this work, a fully nonlinear potential flow 
model is proposed as a compromise between simplified 
linear, weakly nonlinear or weakly dispersive models 
and direct CFD approaches.  
 
The core of present approach is the use of a series 
representation for the velocity potential. This series 
contains prescribed vertical functions and allows the 
determination of the velocity potential in terms of 
unknown horizontal functions. The resulting 
dimensionally reduced model retains the structure of the 
Hamiltonian water wave system Zakharov (1968), Craig 
& Sulem (1993), avoiding the solution of the Laplace 
problem for the potential. Instead, a numerically 
convenient linear system of horizontal equations needs 
to be solved at each step in the temporal evolution. No 
simplifications concerning the deformation of the 
physical boundaries are introduced, apart from the 
typical requirement of a smooth, non-overturning free 
surface and seabed. The main limitation of this 
formulation is its inability to account for wave breaking. 
The treatment of this process is the subject of the 
present work. Two different techniques are implemented 
in the present model. Simulation results are compared to 
laboratory measurements for two test cases: (1) shoaling 
and breaking of regular waves over a barred bathymetry 
Beji & Battjes (1993) and (2) shoaling and breaking of 
regular waves on a plane beach Ting & Kirby (1994). 
 
MODEL 
By considering an inviscid fluid and assuming that the 
flow is incompressible and irrotational, the wave motion 
is described in terms of the velocity potential and the 
free surface elevation. The kinematic and dynamic free 
surface boundary conditions are expressed as a system 
of evolution equations for the free surface elevation and 
the free surface velocity potential, which requires 
calculating the normal fluid velocity, or the Dirichlet-to-
Neumann (DtN) operator, at each time step Zakharov 
(1968), Craig & Sulem (1993). The computation of the 
DtN operator is performed by using the Coupled-Mode 
method in the vertical direction Athanassoulis & 
Papoutsellis (2017). The corresponding model, called 
Hamiltonian Coupled-Mode system (HCMS), has been 
successfully validated with comparisons to analytical 
solutions, laboratory experiments and other 
computational approaches for non-breaking waves, see 
e.g. Papoutsellis & Athanassoulis (2017), Papoutsellis, 
Athanassoulis, & Charalambopoulos (2017). Here, 
HCMS is extended to take into account the effects of 
depth-induced wave breaking. 
 
When using potential flow theory, wave breaking cannot 
be modelled directly. The effects of wave breaking can 

however be included as a mechanism of wave energy 
dissipation that is activated by appropriate wave breaking 
criteria. Here, a criterion on the velocity of the free 
surface elevation, 𝜕𝜕𝑡𝑡𝜂𝜂, is considered. A wave is assumed 
to start breaking when this velocity exceeds a specified 
value, proportional to the shallow water velocity: 𝜕𝜕𝑡𝑡𝜂𝜂 >
𝛾𝛾�𝑔𝑔ℎ, where ℎ is the local water depth and 𝛾𝛾 is a 
constant depending on the configuration. A smaller 
threshold value is used for the termination of the breaking 
process Kennedy, Chen, Kirby, & Dalrymple (2000). Once 
a breaking wave is detected, a dissipative term is 
triggered in the dynamic free surface boundary condition 
and is applied over a specified spatial region of the 
breaking wave. Two different methods are implemented 
and tested here: (1) an artificial pressure term proposed 
by Guignard & Grilli (2001), acting in a region around the 
breaking crest and (2) an eddy viscosity term proposed 
by Kurnia & van Groesen (2014), acting on the front face 
of the breaking wave.  
 
RESULTS 
The first test case evaluates the details of wave breaking 
over a barred bathymetric profile studied by Beji & Battjes 
(1993) (BB93); see Figure 1, bottom. The incident wave 
height and period are 0.054 m and 2.5 s respectively, 
over a depth of 0.4 m, and the breaking type is classified 
as plunging. The processes of shoaling, breaking and 
harmonic generation are reproduced well by both of the 
considered methods. Comparisons between the 
computed and measured free surface elevation are 
shown in Figure 1.  
 

 
Figure 1. Comparison of simulated and free surface 
elevation at stations 2,4, and 8 (top three panels), and 
bathymetric profile (bottom panel) for the plunging wave 
experiment of BB93. 



At station #2, located in the shoaling region and close to 
the initial breaking point, the two wave breaking methods 
and the experimental results are nearly indistinguishable. 
Slight differences appear at stations #4 and #8, located 
in and after the breaking region, respectively. 
 
The second test case investigates the shoaling and 
breaking of regular waves on a plane beach with slope 
1/35, following the experiments of Ting & Kirby (1994) 
(TK94). For the spilling breaker case presented here, 
with incident wave height 0.0125 m and period T = 2.0 s 
over an offshore depth of 0.4 m, the models reproduce 
well the transition from symmetric to asymmetric waves 
with steeper wave faces and gentler rear slopes, and 
more peaked crests and wider troughs. The wave 
envelope (maximum and minimum free surface positions, 
Figure 2) and wave skewness and kurtosis (not shown 
here) are predicted well up to the breaking point. After 
the breaking point, the results obtained using the 
pressure-type dissipation term show slightly better 
agreement with the measurements of the maximum free 
surface elevation. 
 

 
Figure 2. Comparison of simulated and measured wave 
envelopes along the wave channel for a spilling wave 
experiment of TK94.  
 
CONCLUSION 
The test cases presented here show the ability of the 
proposed model to simulate well the nonlinear processes 
of wave propagation and transformation over a barred 
beach and a mildly inclined beach. Breaking waves are 
detected by using a criterion on the velocity of the free 
surface elevation. In conjunction with this criterion, two 
wave-breaking techniques that successfully take into 
account the effects of breaking through wave energy 
dissipation, were evaluated and compared to 
experimental measurements of spilling and plunging 
breaking waves. Ongoing investigation and modification 
of the above approaches indicates that the simulation 
results can be improved by carefully selecting the spatial 
extent of the activation of the implemented wave breaking 
terms. Both methods can be extended to model domains 
with two horizontal dimensions. Investigation of the 
sensitivity of the above approaches on the choice of the 
involved free parameters will also be discussed and 
reported during the Conference and in the final paper. 
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