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INTRODUCTION

When a regular wave train propagates over a patch of
periodic bottom corrugations on an otherwise flat bottom
(with still water depth #), the so called Bragg resonance
phenomenon can appear, leading to a significant
reflection of the incident waves due to the presence of
the ripple patch. This effect is maximum when the
wavelength of the surface waves (noted A = 211/4) is twice
that of the bottom ripples (noted A, =2m/k,). This
phenomenon has been studied both experimentally (e.g.
Davies & Heathershaw, 1984) and theoretically within the
linear wave theory framework (e.g. Mei, 1985; Dalrymple
& Kirby, 1986).

When two patches of sinusoidal bottom ripples (with
respective lengths L1 =MAp and L2 = MoAp, and amplitude
d) are considered, separated by a distance L called the
resonator length (with constant water depth #4), the
combined effect of Bragg resonance due to the two
patches give rise to the so-called Fabry-Perot (F-P)
resonance, also observed in other fields of physics. F-P
resonance for water waves was recently studied by
Couston et al. (2015) within the linear theory framework,
by applying the asymptotic approach by Mei (1985) and
considering non-zero seaward reflection following Yu &
Mei (2000). These authors derived a set of results
regarding the reflection and transmission of waves over
the two patches and the amplification factor of the waves
within the resonator. According to this latter expression,
large amplification factor of the wave height (i.e. higher
than 2) could be obtained in the resonator area, even
with a small relative ripple amplitude @/ = 0(0.1).

SCOPE OF PRESENT WORK

As is mentioned above, available results of F-P
resonance are based on a linear potential theory
approach, based on two simplifying assumptions:

(a) the surface waves are of infinitesimal amplitude so
that the free surface bottom boundary conditions
can be linearized and applied at the undisturbed still
water level z= 0 instead of z=n(x, § ;

(b) the bottom boundary condition (BBC) is also
simplified considering small bottom gradients (see
Mei, 1985). Keeping only first-order terms of the
bottom slope, the exact BBC:
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Here ¢(x, z, # denotes the wave potential, and &(x) is the
elevation of the corrugations relative to the (constant)
mean bottom elevation z= -#.

In this study, we aim at studying the consequences of
both these assumptions though numerical simulations in
a nonlinear potential framework. The effect of finite ripple
height (i.e. of assumption (b)) and of finite wave height
(i.e. of assumption (a)) on the F-P mechanism will thus
be assessed and quantified.
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NUMERICAL MODELLING APPROACH

The numerical simulations are carried out using the fully
nonlinear and dispersive potential wave model whispers-
3D, based on Yates & Benoit (2015). In this model, the
nonlinear kinematic and dynamic free surface boundary
conditions are rewritten as evolution equations of the free
surface elevation (n) and the free surface velocity
potential (¢ = ¢(z=n)). These equations are integrated in
time using a third-order Strong Stability Preserving
Runge-Kutta scheme (SSP-RK3). At each time step the
vertical velocity at the free surface is estimated from n
and g (a so-called Dirichlet-to-Neumann problem) by
solving the Laplace equation for the velocity potential in
the fluid domain. The vertical variation of the velocity
potential ¢is approximated using a spectral approach
with an orthogonal basis of Chebyshev polynomials, up to
a given order M, usually chosen between 5 and 10. This
modeling approach has been validated with a series of
challenging cases including the propagation of nonlinear
regular or irregular waves over various beach profiles
(Raoult et al.,, 2016).

RESULTS AND DISCUSSION

In the first part of the study, we simulate numerically the
complete linear problem in order to compare the
numerical results with the analytical (asymptotic)
predictions of Couston et al (2015). We start by
considering low values of the relative ripple amplitude,
namely dh in order to match with the frame of
assumption (b) above.

An example of results using the linear version of
whispers-3D for the case a/h=0.1 is presented in
fig. 1, considering the same parameters and settings as
the case studied by Couston et a/ (2015) in their fig. 6,
except for the simulation duration (#7 = 200). Here we
plotted the local amplitude of the waves, showing the
effects of reflections due to the patches of ripples, and
a typical standing wave pattern in the resonator area.

A good agreement is observed with a maximum
amplification factor in the resonator area of about 2.25
from the numerical simulation, against about 2.47 from
the analytical prediction in this case.
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Figure 1 - Horizontal profile of the relative wave amplitude
computed with the linear version of whispers-3D for the
case kh=1.64, kd=0.164, L/A=2.75 V=11, A, = 15.



However when d/h is increased (say to 0.2 for
instance, or higher values), differences become visible
between the asymptotic linear solution (relying on
assumptions (a) and (b) above) and the numerical
model (which only assumes (a)). In this case, the FP
resonance does not develop for incident waves with
wave-number computed from the asymptotic theory.
Instead, F-P resonance is observed to manifest at a
slightly lower wave-number compared to the
theoretical prediction. An explanation of this downshift
of the resonating wave number is proposed and
discussed. Furthermore, we observe that the range of
incident wave-numbers prone to F-P resonance is very
narrow in the set-up considered here.

In the second part of the study, nonlinear simulations
with finite amplitude waves (thus getting rid of
assumption (a) above) are also performed, to
demonstrate how finite amplitude effects may also
affect the F-P resonance mechanism. The whole set of
numerical simulations will be presented and discussed
during the Conference and in the final paper.
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