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Résumé

Lorsque des vagues périodiques se propagent dans un milieu de profondeur d'eau
uniforme hormis sur une zone présentant une série d'ondulations régulières, de type rides,
une ré�exion importante des vagues incidentes peut se produire dans certains cas. Ce
phénomène, appelé résonance de Bragg, se produit d'après la théorie linéaire asymptotique
établie par Mei (1985) [6], lorsque la longueur d'onde des vagues est exactement le double
de la longueur d'onde des ondulations du fond. Récemment, Couston et al. (2015) [1] ont
étendu cette théorie au cas de deux zones de rides séparées par une zone de profondeur
uniforme et montré que sous certaines conditions une ampli�cation importante des vagues
peut se produire dans la zone entre les rides (résonateur) : ce phénomène correspond
à la résonance de Fabry-Pérot initialement étudiée en optique. Dans ce travail, nous
étudions par le biais de simulations numériques (réalisées avec la version linéaire du code
potentiel de vagues whispers3D), les e�ets de certaines des hypothèses de la théorie ALAT,
notamment pour ce qui est de la formulation de la condition à la limite sur le fond
ondulé. Nous montrons en particulier que lorsque l'amplitude relative des rides augmente,
la résonance de Fabry-Pérot se produit pour un nombre d'onde des vagues incidentes
légèrement plus faible que celui prédit par ALAT ('wave number downshift'). La forme
de la courbe de résonance est également étudiée, et il apparaît que la gamme de nombres
d'onde susceptibles d'entrer en résonance est réduite, et ce d'autant plus que l'amplitude
relative des rides augmente.

Summary

When periodic waves propagate in a medium of uniform water depth except on an area
having a series of regular ripples, signi�cant re�ection of the incident waves can occur in
some cases. This phenomenon, called Bragg resonance, occurs from the asymptotic linear
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theory established by Mei (1985) [6] when the wavelength of the surface waves is exactly
twice the wavelength of the bottom ripples. Recently, Couston et al. (2015) [1] extended
this theory to the case of two patches of ripples separated by a zone of uniform depth and
showed that under certain conditions a signi�cant ampli�cation of the waves can occur
in the zone between the patches (resonator): this phenomenon corresponds to the Fabry-
Pérot resonance initially studied in optics. In this work, we study, through numerical
simulations (carried out with the linear version of the potential wave code whispers3D),
the e�ects of some of the assumptions of the ALAT, in particular with regard to the
formulation of the bottom boundary condition. We show in particular that when the
relative amplitude of the ripples increases, the Fabry-Pérot resonance occurs for a slightly
lower incident wave number than that predicted by ALAT ('wave number downshift').
The shape of the resonance curve is also studied, and it appears that the range of wave
numbers likely to come into resonance is reduced, especially as the relative amplitude of
the ripples is increased.

I � Introduction

Since the 1970s, it has been observed that when water waves propagate over the a patch of
sinusoidal corrugations on an otherwise �at bottom, signi�cant re�ection of the incident
waves can be observed under certain conditions. When the incident wavelength is twice
than that of the bottom ripples, the so-called 'Bragg resonance' may take place. This phe-
nomenon has been con�rmed experimentally in wave �ume experiments by Heathershaw
(1982) [4] and Davies & Heathershaw (1984) [3].

In the linear framework, Davies (1982) [2] and Mei (1985) [6] have developed mathe-
matical models to describe linear incident wave propagating over a series of ripples on an
otherwise �at bottom. In both models, the amplitude of the free surface elevation as well
as the amplitude of the bottom ripples are assumed to be small. It is known that Davies
model can only predict non-resonance cases with a small number of bottom corrugations,
whereas Mei's asymptotic linear analytical theory (ALAT) [6] is capable to describe the
resonance.

Recently, Couston et al. (2015) [1] considered water wave trapping by using the
analogous mechanism to the Fabry-Pérot (F-P) in optics. Using the same assumptions
and extending the ALAT approach of Mei, they developed the mathematical model for
linear incident waves propagating over two separated patches of ripples on an otherwise
�at bottom. The �at bottom region between two patches is called 'resonator'. The F-P
resonance condition is composed of two parts: as Bragg resonance, the incident wavelength
must be twice that of the bottom ripples; in addition, the resonator must have a particular
length with respect to bottom wavelength. In this condition, the wave energy could be
trapped within the resonator, resulting in large ampli�cation of the incident waves and
forming standing waves with large amplitude.

The present work aims at studying some of the assumptions of the ALAT, in particular
focusing on the wave-bottom interaction. Through numerical simulations we examine in
which manner higher-order bottom e�ects associated with the expression of the bottom
boundary condition (BBC) adopted in the mathematical models of Mei [6] and Couston
et al. [1] may a�ect the occurrence of the F-P resonance on a particular con�guration.
The e�ect of the relative ripple amplitude is also addressed through these numerical
simulations, and comparisons with ALAT predictions are analyzed.
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II � Mathematical modeling of Fabry-Pérot resonance

The wave problem is expressed in a 2D vertical Cartesian coordinate system (x, z), with
x-axis located at the mean free surface level, and z-axis positive upward. We assume
sandbars to be parallel to the y-axis and waves propagate along the x direction only
(i.e. with normal incidence with respect to the sand ripples). Assuming (i) the �uid is
incompressible and homogeneous, (ii) the �ow is irrotational, and (iii) surface waves are
of in�nitesimal amplitude, the linear water wave problem (labeled as system A in the
following) can be formulated in terms of velocity potential φ(x, z, t):

φxx + φzz = 0, −h̃(x) ≤ z ≤ 0, (1a)

φtt + gφz = 0, z = 0, (1b)

h̃xφx + φz = 0, z = −h̃(x), (1c)

in which subscripts denote partial derivatives, and g is the gravitational acceleration. The
free surface elevation η(x, t) is related to the velocity potential through the linearized free
surface boundary condition (FSBC) η = −φt|z=0/g. The water depth is considered to be
of the form h̃(x) = h− ζ(x), where h is the (constant) mean water depth and ζ(x) is the
shape of ripples superimposed on the �at bottom:

ζ =


d sin [kb(x− xs1)− θ1], x ∈ [xs1, x

e
1],

d sin [kb(x− xs2)− θ2], x ∈ [xs2, x
e
2],

0, elsewhere.
(2)

where xsj and x
e
j represent the start and the end of patch j (j = 1, 2), Lj = xej−xsj = NjLb

(Nj ∈ N) is used to denote the length of the patch j. kb is the wave number of the
bottom corrugations, the corresponding wavelength is Lb = 2π/Lb. The resonator length
is denoted by Lr = xs2 − xe1. θj is the initial phase of the j-th patch (chosen to be 0
or π in order to have a continuous bottom shape). Considering the form of Eq. (2), the
assumption of bottom ripples of small amplitude (i.e. kbd � 1 and d/h � 1) allows
to write Eq. (1c) as an approximate BBC, by retaining only the �rst order terms of its
Taylor expansion:

− (ζφx)x + φz = 0, z = −h. (3)

Note that Eq. (3) is now applied at the constant elevation z = −h. The system composed
of Eqs. (1a, 1b, 3) is called system B in the following.

We know from ALAT that the Bragg resonance happens when the incident wave
number is kB = kb/2 (to be clear, the subscript 'B' stands for 'Bragg' and 'b' for 'bottom').
Now the monochromatic incident water waves come from x = −∞ with a wave number
k = kB + κ, κ� kb. This means that the incident wave number lies in the vicinity of the
Bragg wave number kB. For the incident wave number k, the corresponding wave angular
frequency is obtained by the dispersion relation ω =

√
gk tanh(kh), Bragg resonance

condition in frequency is ωB =
√
gkB tanh(kBh), the detuning frequency corresponding

to κ is Ω = Cgκ, where Cg is the group celerity at the Bragg wave number:

Cg =
1

2

(
1 +

2kBh

sinh 2kBh

)
ωB
kB
. (4)

Due to the wave-bottom interaction, the amplitude is slow varying. The general
solution of F-P resonance over the j-th patch of the linearized system reads

φ = f(z)[Aj(x′, t′)e−ikx + Bj(x′, t′)eikx]eiωt + c.c., (5)
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where c.c. denotes the complex conjugate, i =
√
−1, x′ and t′ are the slow variables. Aj,

Bj denote the slowly varying complex amplitudes of the incident and re�ected waves over
the patch j, the time variation for both of them is simple harmonic motion. Then the
time variation can be written explicitly Aj = Aj(x

′)eiΩt
′
, Bj = Bj(x

′)eiΩt
′
. f(z) is the

vertical structure of the velocity potential:

f(z) = − ig
2ω

cosh k(h+ z)

cosh kh
. (6)

By using the multiple-scale method, and keeping the leading order terms of the solu-
tion, the following system can be obtained:

iΩAj + Cg
∂A
∂x′

= −Ωce
iθjBj, (7a)

iΩBj − Cg
∂B
∂x′

= Ωce
−iθjAj, (7b)

where

Ωc =
ωBkBd

2 sinh 2kBh
. (7c)

It can be seen that for the �at bottom parts (ζ(x) = 0), Ωc = 0: the incident and
re�ected waves propagate at the speed of group velocity without coupling. If only one
patch j is considered, the model returns to Mei's theory for Bragg resonance [6]. The
(complex) Bragg re�ection and transmission coe�cients are then obtained analytically as
functions of normalized detuning frequency Ω/Ωc:

RB
j (P)|xsj =

B(xsj , t
′)

A(xsj , t
′)

=
e−iθj sinhSjQ

Q coshSjQ+ iP sinhSjQ
, (8a)

T Bj (P)|xej =
A(xej , t

′)

A(xsj , t
′)

=
Q

Q coshSjQ+ iP sinhSjQ
(8b)

where

P = Ω/Ωc, Q =
√

1− P2, Sj =
ΩcLj
Cg

. (8c)

If the following, RB
j and TBj denote the modulus of these coe�cients, and αBj denotes the

complex argument of RB
j .

If two patches are considered, and the system is solvable thanks to the continuity of
the free surface elevation over the resonator area, i.e. the amplitude of the incident waves
of the second patch equals that of the transmitted wave of the �rst patch. Thus, the
re�ection and transmission coe�cients for F-P resonance read (see more details in [1]):

RFP |xs1 =

[
(RB

1 )2 + (RB
2 )2 − 2RB

1 R
B
2 cos γ

1 + (RB
1 R

B
2 )2 − 2RB

1 R
B
2 cos γ

]1/2

, (9a)

T FP |xe2 =

{ [
1− (RB

1 )2
] [

1− (RB
2 )2
]

1 + (RB
1 R

B
2 )2 − 2RB

1 R
B
2 cos γ

}1/2

, (9b)

where
γ = π − 2θ1 + 2kBLr − αB1 − αB2 . (10)
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In addition to Bragg resonance condition, the wave energy will be trapped within the
resonator when γ = 2mπ (m ∈ N). This is denoted as F-P resonance condition in which
the standing waves with highest achievable amplitude are expected between two patches.
The non-dimensional amplitude of the standing waves within the resonator is de�ned as
enhancement factor EFP and can be computed as follows [1]:

EFP =
|A(xe1, t

′)|+ |B(xe1, t
′)|

|A(xs1, t
′)|

=
(
1 +RB

2

) T FP
TB2

. (11)

The water depth a�ects the results through entering S in Eqs. (8). Cg is related to
the mean water depth h. Ωc is not only a�ected by the water depth but also by the
amplitude of the ripples d. The relation between the relative ripple amplitude d/h and
the enhancement factor EFP is plotted in Fig. 1.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
100

101

102

Figure 1: Enhancement factor EFP as a function of the relative amplitude of the bottom
ripples d/h, other parameters such as N1, N2, kbLr, kbh and kbd are chosen to be identical
to the ones used in the �gure 6 of [1].

In this asymptotic linear analytical theory (ALAT), the enhancement factor EFP in-
creases exponentially with the relative ripple amplitude d/h, as shown in Fig. 1, achieving
values of about 4 around d/h = 0.15 and exceeding 10 for d/h = 0.3. Such local am-
pli�cation of incident waves might be of interest for coastal engineering applications in
certain cases, for example harnessing wave energy.

However, it remains to be tested whether such large ampli�cation can be really
achieved in practice, especially the e�ects associated with the assumptions used in ALAT,
i.e. the assumptions on the smallness of surface waves and on the smallness of the bottom
ripples, needs to be studied. In the current study, we focus on the assumption on the
bottom ripples amplitude by using an e�cient potential linear wave model (presented in
the next section). The test conditions to be simulated are identical to the ones used in
the �gure 6 of [1], except for the relative amplitude of bottom ripples d/h which varies in
our study from 0.1 to 0.2.

III � The numerical model: whispers3D

The numerical simulations are performed with a highly accurate code, called whispers-
3D, currently developed at Ecole Centrale Marseille and Irphé lab. It solves the fully
nonlinear potential wave problem with variable bottom conditions, in the form of two
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coupled nonlinear equations, corresponding to the two nonlinear free surface boundary
conditions (FSBC). In dimensional form for the case of a single horizontal dimension [10],
they are expressed as:

ηt = −ηxφ̃x + w̃
[
1 + (ηx)

2
]
, (12a)

φ̃t = −gη − 1

2
(φ̃x)

2 +
1

2
w̃2
[
1 + (ηx)

2
]
, (12b)

where φ̃(x, t) ≡ φ(x, z = η(x, t), t) is the free surface velocity potential and w̃(x, t) ≡
φz(x, z = η(x, t), t) is the vertical velocity at the free surface.

In order to march Eqs. (12) in time, the vertical velocity w̃(x, t) has to be determined
as a function of (η(x, t), φ̃(x, t)), which corresponds to a so-called 'Dirichlet-to-Neumann
(DtN)' problem. The modeling approach used is presented in previous works [9, 7] and
summarized hereafter. Following Tian and Sato [8], a spectral approach is used in the
vertical to approximate the velocity potential. Using the set of orthogonal Chebyshev
polynomials of the �rst kind, denoted Tn(s), n = 0, 1, ..., NT , with s ∈ [−1, 1], as an
expansion basis, the potential is approximated at any given time t (omitted for brevity
hereafter) as

φ(x, z) = ϕ(x, s) ≈
NT∑
n=0

an(x)Tn(s), (13)

where s(x, z, t) is the scaled vertical coordinate allowing to map the water column z ∈
[−h̃(x), η(x, t)] into the �xed range s ∈ [−1, 1], and the an coe�cients (n = 0, 1, ..., NT )
depend upon the local abscissa x (and time t).

The main steps involved in solving the DtN problem and marching Eqs. (12) in time
are summarized as follows: (i) �rst, the system of governing equations composed of the
Laplace equation, a Dirichlet FSBC on the potential and the BBC is expressed in the (x, s)
coordinate system, (ii) then, the approximation given in Eq. (13) is inserted into those
equations, (iii) the so-called Chebyshev-tau method, a variant of the Galerkin method,
is used to project the Laplace equation onto the Tn polynomials for n = 0, 1, ..., NT − 2
eliminating the s coordinate and giving a set on NT − 1 equations on the an coe�cients
at each location x, (iv) two additional equations are obtained by considering the Dirichlet
FSBC and the BBC so that a system of NT + 1 linear equations with NT + 1 unknowns
(an, n = 0, ..., NT ) at each abscissa is formed, (v) once this linear system is solved for the
an coe�cients, the free surface vertical velocity at t is obtained as

w̃(x, t) =
2

h̃(x) + η(x, t)

NT∑
n=1

an(x, t)n2, (14)

allowing Eqs. (12) to be integrated in time.
In the current study, the linearized version of whispers3D is used. The linearization

is achieved by (i) ignoring the nonlinear terms in Eqs. (12), (ii) solving the DtN problem
on a domain bounded by the level z = 0 (instead of z = η(x, t)), and (iii) replacing the
total water depth h̃(x) + η(x, t) in Eq. (14) by the still water depth h̃(x). Then, two
di�erent variants are considered: one with the exact BBC (system A), and one with the
approximate BBC (system B). In all cases horizontal derivatives are approximated using
fourth-order �nite di�erence formulas using stencils of 5 nodes on a regular grid, and an
explicit third-order Runge-Kutta scheme (SSP-RK3) is used for time marching.
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IV � Numerical simulations of Fabry-Pérot resonance

IV � 1 General settings of the numerical simulations

In the present work, we simulate the F-P resonance case as was chosen in the �gure 6 of
[1] with two the systems A and B. The original set-up is recalled here: N1 = 11 ripples,
N2 = 15 ripples, θ1 = θ2 = 0, kbh = 1.64, d/h = 0.1, a/h = 10−5 and resonator length
Lr/Lb = 5.5 (corresponding to m = 5 in Eq. (10)). To investigate the e�ect associated
with the assumption of small ripple amplitude, we further studied the case d/h = 0.2.
In practice, we choose Lb = 0.5 m for the wavelength of the ripples (giving a theoretical
Bragg wavelength LB = 2Lb = 1 m).

In terms of the numerical parameters, two relaxation zones with 3LB in length are set
to generate regular waves on one side and absorb them on the other side. The numerical
basin is uniformly meshed with ∆x = Lb/64 (= LB/128), the time step is ∆t = TB/256
resulting in a Courant-Friedriechs-Lewy number CFL = 0.5. These discretization param-
eters were selected after a convergence study. Meanwhile, the time required to reach an
established periodic regime depends on the relative ripple amplitude.

In the following, the theoretical results A and B, corresponding to the solution of
ALAT shown in Eqs. (7), are the complex wave amplitudes, the modulus of the solutions
|A| and |B| correspond to the envelopes of the amplitudes, excluding time variations as
well as fast spatial variations. On the �at bottom zones, standing waves are expected
resulting in the amplitude envelopes to be constant. In addition, because of the re�ection
from the ripples downwave, the value of normalized amplitude envelope falls in the range
[1, 2] before the �rst patch. Meanwhile, due to the conservation of energy, the amplitude
envelope of transmitted waves is less than 1 after the second patch. Between the two
patches, the wave energy is trapped in the resonator area, thus a high constant level is
expected from the ALAT results over this zone.

IV � 2 Perfectly tuned cases with di�erent ripple amplitudes

We start with the same case as in the �gure 6 of [1] with d/h = 0.1, in order to validate our
numerical model. Based on ALAT, for the incident wave number k = kB, we �nd: global
re�ection coe�cient RFP ≈ 0.245, enhancement factor EFP ≈ 2.476 (resonator), and
transmission coe�cient is T FP ≈ 0.970. Note that (RFP )2 +(T FP )2 = 1. Considering two
patches separately, the results of ALAT for Bragg resonance in Eqs. (8) give: re�ection
coe�cient of the �rst patch (N1 = 11) RB

1 ≈ 0.597 and re�ection coe�cient of the second
patch (N2 = 15) RB

2 ≈ 0.734. Both are larger than the re�ection coe�cient in F-P
resonance, due to the fact that the energy is trapped within the resonator.

The comparison between the theoretical result and simulated results (with systems
A and B) is shown in Fig. 2a. The fast spatial variation of the envelope is kept in the
simulated results, corresponding to the envelope of the free surface elevation (or to the
local amplitude of the free surface oscillation).

It is seen that in the case d/h = 0.1 the agreement between the simulated results
and the theoretical result is reasonably good. It is also observed that the two numerical
systems give almost the same results. Only in very local scale can some di�erences be
seen. This justi�es that the approximation on the BBC in the current case is acceptable.
The re�ection of the patches is stronger in the simulations than predicted by ALAT. The
simulated re�ection coe�cient is RFP ≈ 0.329 with System A, whereas the enhancement
factor EFP ≈ 2.385 and the transmission coe�cient T FP ≈ 0.944 are slightly smaller than
ALAT predictions.
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For the case d/h = 0.2, we doubled the ripple amplitude while holding the water depth
unchanged. As is shown in Fig. 1, the enhancement factor increases exponentially as the
relative ripple amplitude increases. The wave-bottom interaction is more signi�cant in
this case. When the resonance takes place, according to ALAT, the re�ection coe�cient
RFP ≈ 0.462, the enhancement factor EFP ≈ 5.785 and the transmission coe�cient
T FP ≈ 0.887. However, Fig. 2b shows that the resonance does not take place in this
case. In addition, system A with exact BBC and system B with approximate BBC show
di�erent results. The system B with the approximate BBC (which is also adopted in
ALAT) give even smaller enhancement factor within the resonator. Neither system A nor
system B is close to the ALAT prediction (bold line). Incident waves are almost fully
re�ected by the ripples resulting in RFP ≈ 1. The enhancement factor is EFP ≈ 1.711
with system A.

0 5 10 15
0

0.5

1

1.5

2

2.5

3
d/h=0.1, system A
d/h=0.1, system B
d/h=0.1 in ALAT

8.25 8.3

2.2

2.3

2.4

2.5

patch 1 patch 2
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d/h=0.2 in system A
d/h=0.2 in system B
d/h=0.2 in ALAT

patch 2patch 1

ba

Figure 2: Computed envelope of the free surface elevation at the end of the simulations
of system A and B, t = 200T for the case d/h = 0.1 (left panel), t = 900T for the case
d/h = 0.2 (right panel). The results of ALAT which are the envelopes of the amplitude
are also superimposed.

IV � 3 Slightly detuned incident waves for the case d/h = 0.2

Do our results indicate that, when the amplitude of the bottom ripples is relatively large,
the F-P resonance completely disappears and that incident waves will be strongly re�ected
by the bottom ripples? This question is interesting because of the signi�cant di�erence
between the expected value from ALAT EFP ≈ 5.785 and the simulated result EFP ≈
1.711 (system A) in the case d/h = 0.2, and the di�erence is greater when d/h is larger.

In seeking an explanation of this behavior, the so-called 'wave number downshift'
drew our attention. As was observed in the early experiments [3], in the case with large
ripple amplitude d/h = 0.16, the strongest Bragg re�ection of incident waves did not
take place when the theoretical Bragg resonance condition was met, i.e. the incident
wave number k = kB, but it happened when the incident waves were of slightly smaller
wave number. This phenomenon was also observed in the numerical study of [5] who
simulated the experiments of Davies & Heathershaw [3] using a highly accurate model.
In [5] a high-order spectral (HOS) method was adopted to solve the nonlinear water wave
problem up to an arbitrary order M (in their study, M = 4 was used). In their work
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the simulated results showed limited but clear downshift of wave number when compared
to ALAT predictions, while in terms of re�ection coe�cients RB, their simulated results
were in good agreement with ALAT predictions.

This motivated us to perform a series of runs by slightly perturbating the incident
wave number around the theoretical value kB. The results shown in Fig. 3 illustrate that,
with relatively large bottom ripples, the incident waves are strongly ampli�ed within the
resonator and the re�ection coe�cient reaches its minimum value when the incident wave
number is slightly smaller than kB. The downshift of the wave number is limited, as
was observed in the simulations of Bragg resonance [5], whereas it largely a�ects the
result in the present F-P resonance. This can be explained by the fact that the F-P
resonance condition is more 'strict' than Bragg resonance condition: the F-P resonance
only manifests for a relatively narrow range of wave numbers. When the incident wave
number falls outside this range, the wave energy will be largely re�ected by the ripples.
The slight deviation from the F-P resonance condition due to 'wave number downshift' is
thus of signi�cant importance.

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
0

1

2

3

4

5

6
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d/h=0.2 in system B
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Figure 3: The enhancement factor (left panel) and the re�ection coe�cient (right panel)
as functions of incident wave number k, normalized by kB = kb/2 for the case d/h = 0.2.
The duration of the simulations is t = 900T .

In system A with exact BBC, the maximum enhancement factor EFP ≈ 5.805 is
observed at 2k/kb ≈ 0.99263, and the corresponding re�ection coe�cient is RFP ≈ 0.5065.
These values are in better agreement with the ALAT prediction than those of system B.
Regarding system B with approximate BBC, the minimum re�ection happens for 2k/kb ≈
0.992, the enhancement is overestimated EFP ≈ 6.363 and the re�ection coe�cient RFP ≈
0.512 is smaller than expected in ALAT. The degree of wave number downshift is di�erent
only by 1% for k/kB, but the di�erences it makes is obvious. Both systems A and B show
a similar wave number downshift but with small di�erences in the magnitude of downshift.
This is due to the di�erence in the formulation of the BBC (the unique di�erence between
the two systems) and implies, as the resonance curves are rather sharp, that for a same
incident wave number the ampli�cation of wave from system A and B can be signi�cant
di�erent (in particular in the vicinity of the resonance condition).

As a further illustration of the occurrence of F-P resonance with slightly detuned
incident wave number, the comparison between the envelope of wave amplitude from
ALAT and the envelopes of the free surface elevation from systems A and B is given in
Fig. 4 for the case d/h = 0.2. The simulations are done with an incident wave number
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tuned to the resonating wave number for system A, namely k/kB = 0.99263. Again,
the di�erences between system A and system B mainly result from the di�erent degree
of frequency downshift between the two systems (as this wave number is close to, but
di�erent from, the resonating wave number of system B).
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Figure 4: Computed envelope of the free surface elevation at the end of the simulations
of systems A and B, t = 900T for the case d/h = 0.2 and k/kB = 0.99263. The result of
ALAT which is the envelope of the amplitude is also superimposed.

V � Conclusions

Recently, Couston et al. (2015) [1] studied the resonance of water waves using two distinct
sets of bottom corrugations, in analogy with Fabry-Pérot resonance in optics by using an
asymptotic linear analytical theory (ALAT). The ALAT solution is derived based on
the assumptions that incident monochromatic water waves are of small amplitudes and
that the bottom ripple amplitudes are small too. In the present study, we examined
the higher-order e�ects of BBC by using the linearized version of a highly accurate code
(whispers3D) solving the fully nonlinear potential and dispersive wave problem. The
motivation is that, in the coastal areas as the water depth decreases, the nonlinear e�ect
of wave-bottom interaction becomes more and more important. According to ALAT
prediction, the enhancement factor should increase exponentially as the relative ripple
amplitude d/h increases, which may result in very large ampli�cation of incident waves
between the two patches when the resonance conditions are met.

Two cases following the work of Couston et al. (2015) [1] were analyzed and simulated,
with di�erent relative ripple amplitudes d/h = 0.1 and 0.2. The �rst case with d/h = 0.1
is identical to the one used in [1], it validates our numerical model to the corrugated
bottom condition. Two systems with exact BBC and approximate BBC are tested. They
show very similar results in the case d/h = 0.1, the resonance is indeed realized, even
though in simulations EFP ≈ 2.385 is smaller than expected under the F-P condition.
However, in the case d/h = 0.2 the resonance does not manifest when the incident wave
number k = kB, and two systems show di�erences. This can be explained by the so-called
'wave number downshift' in Bragg resonance, meaning that the resonance takes place for
an incident wave number slightly lower than kB. For the F-P resonance this e�ect makes a
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signi�cant di�erence because the resonance condition is 'strict', especially when the d/h is
large enough. A number of simulations have been conducted in order to demonstrate this
wave number downshift and to �nd the shifted F-P resonance condition. The di�erences
between the system A (with exact BBC) and system B (with approximate BBC) become
considerable, and result (at least partially) from the di�erent degree of wave number
downshift between the two systems.

With the shifted incident wave number, the F-P resonance can be realized in the nu-
merical model with a satisfying agreement with ALAT results regarding the enhancement
factor of wave amplitude. In system A, the enhancement factor EFP ≈ 5.805 agrees well
with the predicted value from ALAT EFP ≈ 5.785. In system B, although the enhance-
ment factor is overestimated, the wave number downshift is also well described. This
means that the wave number downshift e�ect is already present when the BBC is approx-
imated at �rst order. Last but not least, given the good agreement in the case with large
ripple amplitude obtained by taking the downshift into consideration, the analysis and
understanding of the �rst case with d/h = 0.1 can be improved in the same way.

Future work will address the study the higher relative ripples' amplitude, as well as
the e�ects introduced by taking into consideration waves of �nite amplitude (free surface
nonlinearity), and how these e�ects a�ect the occurrence of F-P resonance.
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