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RÉSONANCE DE FABRY-PÉROT APPLIQUÉE AUX VAGUES CÔTIÈRES : COMPARAISON D'APPROCHES DE MODÉLISATION LINÉAIRES FABRY-PÉROT RESONANCE OF COASTAL WATER WAVES: COMPARISON OF LINEAR MODELING APPROACHES

 [6], lorsque la longueur d'onde des vagues est exactement le double de la longueur d'onde des ondulations du fond. Récemment, Couston et al. (2015) [1] ont étendu cette théorie au cas de deux zones de rides séparées par une zone de profondeur uniforme et montré que sous certaines conditions une amplication importante des vagues peut se produire dans la zone entre les rides (résonateur) : ce phénomène correspond à la résonance de Fabry-Pérot initialement étudiée en optique. Dans ce travail, nous étudions par le biais de simulations numériques (réalisées avec la version linéaire du code potentiel de vagues whispers3D), les eets de certaines des hypothèses de la théorie ALAT, notamment pour ce qui est de la formulation de la condition à la limite sur le fond ondulé. Nous montrons en particulier que lorsque l'amplitude relative des rides augmente, la résonance de Fabry-Pérot se produit pour un nombre d'onde des vagues incidentes légèrement plus faible que celui prédit par ALAT ('wave number downshift'). La forme de la courbe de résonance est également étudiée, et il apparaît que la gamme de nombres d'onde susceptibles d'entrer en résonance est réduite, et ce d'autant plus que l'amplitude relative des rides augmente.

Summary

When periodic waves propagate in a medium of uniform water depth except on an area having a series of regular ripples, signicant reection of the incident waves can occur in some cases. This phenomenon, called Bragg resonance, occurs from the asymptotic linear

theory established by [START_REF] Mei | Resonant reection of surface water waves by periodic sandbars[END_REF] [START_REF] Mei | Resonant reection of surface water waves by periodic sandbars[END_REF] when the wavelength of the surface waves is exactly twice the wavelength of the bottom ripples. Recently, Couston et al. (2015) [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF] extended this theory to the case of two patches of ripples separated by a zone of uniform depth and showed that under certain conditions a signicant amplication of the waves can occur in the zone between the patches (resonator): this phenomenon corresponds to the Fabry-Pérot resonance initially studied in optics. In this work, we study, through numerical simulations (carried out with the linear version of the potential wave code whispers3D), the eects of some of the assumptions of the ALAT, in particular with regard to the formulation of the bottom boundary condition. We show in particular that when the relative amplitude of the ripples increases, the Fabry-Pérot resonance occurs for a slightly lower incident wave number than that predicted by ALAT ('wave number downshift'). The shape of the resonance curve is also studied, and it appears that the range of wave numbers likely to come into resonance is reduced, especially as the relative amplitude of the ripples is increased.

I Introduction

Since the 1970s, it has been observed that when water waves propagate over the a patch of sinusoidal corrugations on an otherwise at bottom, signicant reection of the incident waves can be observed under certain conditions. When the incident wavelength is twice than that of the bottom ripples, the so-called 'Bragg resonance' may take place. This phenomenon has been conrmed experimentally in wave ume experiments by [START_REF] Heathershaw | Seabed-wave resonance and sand bar growth[END_REF] [START_REF] Heathershaw | Seabed-wave resonance and sand bar growth[END_REF] and [START_REF] Davies | Surface-wave propagation over sinusoidally varying topography[END_REF] [START_REF] Davies | Surface-wave propagation over sinusoidally varying topography[END_REF].

In the linear framework, [START_REF] Davies | On the interaction between surface-waves and undulations on the seabed[END_REF] [START_REF] Davies | On the interaction between surface-waves and undulations on the seabed[END_REF] and [START_REF] Mei | Resonant reection of surface water waves by periodic sandbars[END_REF] [START_REF] Mei | Resonant reection of surface water waves by periodic sandbars[END_REF] have developed mathematical models to describe linear incident wave propagating over a series of ripples on an otherwise at bottom. In both models, the amplitude of the free surface elevation as well as the amplitude of the bottom ripples are assumed to be small. It is known that Davies model can only predict non-resonance cases with a small number of bottom corrugations, whereas Mei's asymptotic linear analytical theory (ALAT) [START_REF] Mei | Resonant reection of surface water waves by periodic sandbars[END_REF] is capable to describe the resonance.

Recently, Couston et al. (2015) [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF] considered water wave trapping by using the analogous mechanism to the Fabry-Pérot (F-P) in optics. Using the same assumptions and extending the ALAT approach of Mei, they developed the mathematical model for linear incident waves propagating over two separated patches of ripples on an otherwise at bottom. The at bottom region between two patches is called 'resonator'. The F-P resonance condition is composed of two parts: as Bragg resonance, the incident wavelength must be twice that of the bottom ripples; in addition, the resonator must have a particular length with respect to bottom wavelength. In this condition, the wave energy could be trapped within the resonator, resulting in large amplication of the incident waves and forming standing waves with large amplitude.

The present work aims at studying some of the assumptions of the ALAT, in particular focusing on the wave-bottom interaction. Through numerical simulations we examine in which manner higher-order bottom eects associated with the expression of the bottom boundary condition (BBC) adopted in the mathematical models of Mei [START_REF] Mei | Resonant reection of surface water waves by periodic sandbars[END_REF] and Couston et al. [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF] may aect the occurrence of the F-P resonance on a particular conguration. The eect of the relative ripple amplitude is also addressed through these numerical simulations, and comparisons with ALAT predictions are analyzed.

II Mathematical modeling of Fabry-Pérot resonance

The wave problem is expressed in a 2D vertical Cartesian coordinate system (x, z), with x-axis located at the mean free surface level, and z-axis positive upward. We assume sandbars to be parallel to the y-axis and waves propagate along the x direction only (i.e. with normal incidence with respect to the sand ripples). Assuming (i) the uid is incompressible and homogeneous, (ii) the ow is irrotational, and (iii) surface waves are of innitesimal amplitude, the linear water wave problem (labeled as system A in the following) can be formulated in terms of velocity potential φ(x, z, t):

φ xx + φ zz = 0, -h(x) ≤ z ≤ 0, (1a) 
φ tt + gφ z = 0, z = 0, (1b) hx φ x + φ z = 0, z = -h(x), (1c) 
in which subscripts denote partial derivatives, and g is the gravitational acceleration. The free surface elevation η(x, t) is related to the velocity potential through the linearized free surface boundary condition (FSBC) η = -φ t | z=0 /g. The water depth is considered to be of the form

h(x) = h -ζ(x)
, where h is the (constant) mean water depth and ζ(x) is the shape of ripples superimposed on the at bottom:

ζ =    d sin [k b (x -x s 1 ) -θ 1 ], x ∈ [x s 1 , x e 1 ], d sin [k b (x -x s 2 ) -θ 2 ], x ∈ [x s 2 , x e 2 ], 0, elsewhere. 
(

where x s j and x e j represent the start and the end of patch j (j = 1, 2), L j = x e j -x s j = N j L b (N j ∈ N) is used to denote the length of the patch j. k b is the wave number of the bottom corrugations, the corresponding wavelength is L b = 2π/L b . The resonator length is denoted by L r = x s 2 -x e 1 . θ j is the initial phase of the j-th patch (chosen to be 0 or π in order to have a continuous bottom shape). Considering the form of Eq. ( 2), the assumption of bottom ripples of small amplitude (i.e. k b d 1 and d/h 1) allows to write Eq. (1c) as an approximate BBC, by retaining only the rst order terms of its Taylor expansion:

-

(ζφ x ) x + φ z = 0, z = -h. (3) 
Note that Eq. ( 3) is now applied at the constant elevation z = -h. The system composed of Eqs. (1a, 1b, 3) is called system B in the following. We know from ALAT that the Bragg resonance happens when the incident wave number is k B = k b /2 (to be clear, the subscript 'B' stands for 'Bragg' and 'b' for 'bottom'). Now the monochromatic incident water waves come from x = -∞ with a wave number k = k B + κ, κ k b . This means that the incident wave number lies in the vicinity of the Bragg wave number k B . For the incident wave number k, the corresponding wave angular frequency is obtained by the dispersion relation ω = gk tanh(kh), Bragg resonance condition in frequency is ω B = gk B tanh(k B h), the detuning frequency corresponding to κ is Ω = C g κ, where C g is the group celerity at the Bragg wave number:

C g = 1 2 1 + 2k B h sinh 2k B h ω B k B . (4) 
Due to the wave-bottom interaction, the amplitude is slow varying. The general solution of F-P resonance over the j-th patch of the linearized system reads

φ = f (z)[A j (x , t )e -ikx + B j (x , t )e ikx ]e iωt + c.c., (5) 
where c.c. denotes the complex conjugate, i = √ -1, x and t are the slow variables. A j , B j denote the slowly varying complex amplitudes of the incident and reected waves over the patch j, the time variation for both of them is simple harmonic motion. Then the time variation can be written explicitly A j = A j (x )e iΩt , B j = B j (x )e iΩt . f (z) is the vertical structure of the velocity potential:

f (z) = - ig 2ω cosh k(h + z) cosh kh . (6) 
By using the multiple-scale method, and keeping the leading order terms of the solution, the following system can be obtained:

iΩA j + C g ∂A ∂x = -Ω c e iθ j B j , (7a) 
iΩB j -C g ∂B ∂x = Ω c e -iθ j A j , (7b) 
where

Ω c = ω B k B d 2 sinh 2k B h . ( 7c 
)
It can be seen that for the at bottom parts (ζ(x) = 0), Ω c = 0: the incident and reected waves propagate at the speed of group velocity without coupling. If only one patch j is considered, the model returns to Mei's theory for Bragg resonance [START_REF] Mei | Resonant reection of surface water waves by periodic sandbars[END_REF]. The (complex) Bragg reection and transmission coecients are then obtained analytically as functions of normalized detuning frequency Ω/Ω c :

R B j (P)| x s j = B(x s j , t ) A(x s j , t ) = e -iθ j sinh S j Q Q cosh S j Q + iP sinh S j Q , ( 8a 
)
T B j (P)| x e j = A(x e j , t ) A(x s j , t ) = Q Q cosh S j Q + iP sinh S j Q (8b) 
where

P = Ω/Ω c , Q = √ 1 -P 2 , S j = Ω c L j C g . (8c) 
If the following, R B j and T B j denote the modulus of these coecients, and α B j denotes the complex argument of R B j . If two patches are considered, and the system is solvable thanks to the continuity of the free surface elevation over the resonator area, i.e. the amplitude of the incident waves of the second patch equals that of the transmitted wave of the rst patch. Thus, the reection and transmission coecients for F-P resonance read (see more details in [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF]):

R F P | x s 1 = (R B 1 ) 2 + (R B 2 ) 2 -2R B 1 R B 2 cos γ 1 + (R B 1 R B 2 ) 2 -2R B 1 R B 2 cos γ 1/2 , (9a) 
T F P | x e 2 = 1 -(R B 1 ) 2 1 -(R B 2 ) 2 1 + (R B 1 R B 2 ) 2 -2R B 1 R B 2 cos γ 1/2 , (9b) 
where

γ = π -2θ 1 + 2k B L r -α B 1 -α B 2 . ( 10 
)
In addition to Bragg resonance condition, the wave energy will be trapped within the resonator when γ = 2mπ (m ∈ N). This is denoted as F-P resonance condition in which the standing waves with highest achievable amplitude are expected between two patches. The non-dimensional amplitude of the standing waves within the resonator is dened as enhancement factor E F P and can be computed as follows [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF]:

E F P = |A(x e 1 , t )| + |B(x e 1 , t )| |A(x s 1 , t )| = 1 + R B 2 T F P T B 2 . ( 11 
)
The water depth aects the results through entering S in Eqs. [START_REF] Tian | A numerical model on the interaction between nearshore nonlinear waves and strong currents[END_REF]. C g is related to the mean water depth h. Ω c is not only aected by the water depth but also by the amplitude of the ripples d. The relation between the relative ripple amplitude d/h and the enhancement factor E F P is plotted in Fig. 1. In this asymptotic linear analytical theory (ALAT), the enhancement factor E F P increases exponentially with the relative ripple amplitude d/h, as shown in Fig. 1, achieving values of about 4 around d/h = 0.15 and exceeding 10 for d/h = 0.3. Such local amplication of incident waves might be of interest for coastal engineering applications in certain cases, for example harnessing wave energy.

However, it remains to be tested whether such large amplication can be really achieved in practice, especially the eects associated with the assumptions used in ALAT, i.e. the assumptions on the smallness of surface waves and on the smallness of the bottom ripples, needs to be studied. In the current study, we focus on the assumption on the bottom ripples amplitude by using an ecient potential linear wave model (presented in the next section). The test conditions to be simulated are identical to the ones used in the gure 6 of [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF], except for the relative amplitude of bottom ripples d/h which varies in our study from 0.1 to 0.2.

III The numerical model: whispers3D

The numerical simulations are performed with a highly accurate code, called whispers-3D, currently developed at Ecole Centrale Marseille and Irphé lab. It solves the fully nonlinear potential wave problem with variable bottom conditions, in the form of two coupled nonlinear equations, corresponding to the two nonlinear free surface boundary conditions (FSBC). In dimensional form for the case of a single horizontal dimension [START_REF] Zakharov | Stability of periodic waves of nite amplitude on the surface of a deep uid[END_REF], they are expressed as:

η t = -η x φx + w 1 + (η x ) 2 , ( 12a 
) φt = -gη - 1 2 ( φx ) 2 + 1 2 w2 1 + (η x ) 2 , (12b) 
where φ(x, t) ≡ φ(x, z = η(x, t), t) is the free surface velocity potential and w(x, t) ≡ φ z (x, z = η(x, t), t) is the vertical velocity at the free surface.

In order to march Eqs. (12) in time, the vertical velocity w(x, t) has to be determined as a function of (η(x, t), φ(x, t)), which corresponds to a so-called 'Dirichlet-to-Neumann (DtN)' problem. The modeling approach used is presented in previous works [START_REF] Yates | Accuracy and eciency of two numerical methods of solving the potential ow problem for highly nonlinear and dispersive water waves[END_REF][START_REF] Raoult | Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments[END_REF] and summarized hereafter. Following Tian and Sato [START_REF] Tian | A numerical model on the interaction between nearshore nonlinear waves and strong currents[END_REF], a spectral approach is used in the vertical to approximate the velocity potential. Using the set of orthogonal Chebyshev polynomials of the rst kind, denoted T n (s), n = 0, 1, ..., N T , with s ∈ [-1, 1], as an expansion basis, the potential is approximated at any given time t (omitted for brevity hereafter) as

φ(x, z) = ϕ(x, s) ≈ N T n=0 a n (x)T n (s), (13) 
where s(x, z, t) is the scaled vertical coordinate allowing to map the water column z ∈ [-h(x), η(x, t)] into the xed range s ∈ [-1, 1], and the a n coecients (n = 0, 1, ..., N T ) depend upon the local abscissa x (and time t).

The main steps involved in solving the DtN problem and marching Eqs. (12) in time are summarized as follows: (i) rst, the system of governing equations composed of the Laplace equation, a Dirichlet FSBC on the potential and the BBC is expressed in the (x, s) coordinate system, (ii) then, the approximation given in Eq. ( 13) is inserted into those equations, (iii) the so-called Chebyshev-tau method, a variant of the Galerkin method, is used to project the Laplace equation onto the T n polynomials for n = 0, 1, ..., N T -2 eliminating the s coordinate and giving a set on N T -1 equations on the a n coecients at each location x, (iv) two additional equations are obtained by considering the Dirichlet FSBC and the BBC so that a system of N T + 1 linear equations with N T + 1 unknowns (a n , n = 0, ..., N T ) at each abscissa is formed, (v) once this linear system is solved for the a n coecients, the free surface vertical velocity at t is obtained as

w(x, t) = 2 h(x) + η(x, t) N T n=1 a n (x, t)n 2 , ( 14 
)
allowing Eqs. (12) to be integrated in time.

In the current study, the linearized version of whispers3D is used. The linearization is achieved by (i) ignoring the nonlinear terms in Eqs. ( 12), (ii) solving the DtN problem on a domain bounded by the level z = 0 (instead of z = η(x, t)), and (iii) replacing the total water depth h(x) + η(x, t) in Eq. ( 14) by the still water depth h(x). Then, two dierent variants are considered: one with the exact BBC (system A), and one with the approximate BBC (system B). In all cases horizontal derivatives are approximated using fourth-order nite dierence formulas using stencils of 5 nodes on a regular grid, and an explicit third-order Runge-Kutta scheme (SSP-RK3) is used for time marching.

IV Numerical simulations of Fabry-Pérot resonance IV 1 General settings of the numerical simulations

In the present work, we simulate the F-P resonance case as was chosen in the gure 6 of [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF] with two the systems A and B. The original set-up is recalled here: N 1 = 11 ripples, N 2 = 15 ripples, θ 1 = θ 2 = 0, k b h = 1.64, d/h = 0.1, a/h = 10 -5 and resonator length L r /L b = 5.5 (corresponding to m = 5 in Eq. ( 10)). To investigate the eect associated with the assumption of small ripple amplitude, we further studied the case d/h = 0.2. In practice, we choose L b = 0.5 m for the wavelength of the ripples (giving a theoretical Bragg wavelength

L B = 2L b = 1 m).
In terms of the numerical parameters, two relaxation zones with 3L B in length are set to generate regular waves on one side and absorb them on the other side. The numerical basin is uniformly meshed with ∆x = L b /64 (= L B /128), the time step is ∆t = T B /256 resulting in a Courant-Friedriechs-Lewy number CF L = 0.5. These discretization parameters were selected after a convergence study. Meanwhile, the time required to reach an established periodic regime depends on the relative ripple amplitude.

In the following, the theoretical results A and B, corresponding to the solution of ALAT shown in Eqs. [START_REF] Raoult | Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments[END_REF], are the complex wave amplitudes, the modulus of the solutions |A| and |B| correspond to the envelopes of the amplitudes, excluding time variations as well as fast spatial variations. On the at bottom zones, standing waves are expected resulting in the amplitude envelopes to be constant. In addition, because of the reection from the ripples downwave, the value of normalized amplitude envelope falls in the range [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF][START_REF] Davies | On the interaction between surface-waves and undulations on the seabed[END_REF] before the rst patch. Meanwhile, due to the conservation of energy, the amplitude envelope of transmitted waves is less than 1 after the second patch. Between the two patches, the wave energy is trapped in the resonator area, thus a high constant level is expected from the ALAT results over this zone.

IV 2 Perfectly tuned cases with dierent ripple amplitudes

We start with the same case as in the gure 6 of [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF] with d/h = 0.1, in order to validate our numerical model. Based on ALAT, for the incident wave number k = k B , we nd: global reection coecient R F P ≈ 0.245, enhancement factor E F P ≈ 2.476 (resonator), and transmission coecient is T F P ≈ 0.970. Note that (R F P ) 2 + (T F P ) 2 = 1. Considering two patches separately, the results of ALAT for Bragg resonance in Eqs. [START_REF] Tian | A numerical model on the interaction between nearshore nonlinear waves and strong currents[END_REF] give: reection coecient of the rst patch (N 1 = 11) R B 1 ≈ 0.597 and reection coecient of the second patch (N 2 = 15) R B 2 ≈ 0.734. Both are larger than the reection coecient in F-P resonance, due to the fact that the energy is trapped within the resonator.

The comparison between the theoretical result and simulated results (with systems A and B) is shown in Fig. 2a. The fast spatial variation of the envelope is kept in the simulated results, corresponding to the envelope of the free surface elevation (or to the local amplitude of the free surface oscillation).

It is seen that in the case d/h = 0.1 the agreement between the simulated results and the theoretical result is reasonably good. It is also observed that the two numerical systems give almost the same results. Only in very local scale can some dierences be seen. This justies that the approximation on the BBC in the current case is acceptable. The reection of the patches is stronger in the simulations than predicted by ALAT. The simulated reection coecient is R F P ≈ 0.329 with System A, whereas the enhancement factor E F P ≈ 2.385 and the transmission coecient T F P ≈ 0.944 are slightly smaller than ALAT predictions.

For the case d/h = 0.2, we doubled the ripple amplitude while holding the water depth unchanged. As is shown in Fig. 1, the enhancement factor increases exponentially as the relative ripple amplitude increases. The wave-bottom interaction is more signicant in this case. When the resonance takes place, according to ALAT, the reection coecient R F P ≈ 0.462, the enhancement factor E F P ≈ 5.785 and the transmission coecient T F P ≈ 0.887. However, Fig. 2b shows that the resonance does not take place in this case. In addition, system A with exact BBC and system B with approximate BBC show dierent results. The system B with the approximate BBC (which is also adopted in ALAT) give even smaller enhancement factor within the resonator. Neither system A nor system B is close to the ALAT prediction (bold line). Incident waves are almost fully reected by the ripples resulting in R F P ≈ 1. The enhancement factor is E F P ≈ 1.711 with system A. IV 3 Slightly detuned incident waves for the case d/h = 0.2 Do our results indicate that, when the amplitude of the bottom ripples is relatively large, the F-P resonance completely disappears and that incident waves will be strongly reected by the bottom ripples? This question is interesting because of the signicant dierence between the expected value from ALAT E F P ≈ 5.785 and the simulated result E F P ≈ 1.711 (system A) in the case d/h = 0.2, and the dierence is greater when d/h is larger.

In seeking an explanation of this behavior, the so-called 'wave number downshift' drew our attention. As was observed in the early experiments [START_REF] Davies | Surface-wave propagation over sinusoidally varying topography[END_REF], in the case with large ripple amplitude d/h = 0.16, the strongest Bragg reection of incident waves did not take place when the theoretical Bragg resonance condition was met, i.e. the incident wave number k = k B , but it happened when the incident waves were of slightly smaller wave number. This phenomenon was also observed in the numerical study of [START_REF] Liu | On generalized Bragg scattering of surface waves by bottom ripples[END_REF] who simulated the experiments of Davies & Heathershaw [START_REF] Davies | Surface-wave propagation over sinusoidally varying topography[END_REF] using a highly accurate model. In [START_REF] Liu | On generalized Bragg scattering of surface waves by bottom ripples[END_REF] a high-order spectral (HOS) method was adopted to solve the nonlinear water wave problem up to an arbitrary order M (in their study, M = 4 was used). In their work the simulated results showed limited but clear downshift of wave number when compared to ALAT predictions, while in terms of reection coecients R B , their simulated results were in good agreement with ALAT predictions. This motivated us to perform a series of runs by slightly perturbating the incident wave number around the theoretical value k B . The results shown in Fig. 3 illustrate that, with relatively large bottom ripples, the incident waves are strongly amplied within the resonator and the reection coecient reaches its minimum value when the incident wave number is slightly smaller than k B . The downshift of the wave number is limited, as was observed in the simulations of Bragg resonance [START_REF] Liu | On generalized Bragg scattering of surface waves by bottom ripples[END_REF], whereas it largely aects the result in the present F-P resonance. This can be explained by the fact that the F-P resonance condition is more 'strict' than Bragg resonance condition: the F-P resonance only manifests for a relatively narrow range of wave numbers. When the incident wave number falls outside this range, the wave energy will be largely reected by the ripples. The slight deviation from the F-P resonance condition due to 'wave number downshift' is thus of signicant importance. The duration of the simulations is t = 900T .

In system A with exact BBC, the maximum enhancement factor E F P ≈ 5.805 is observed at 2k/k b ≈ 0.99263, and the corresponding reection coecient is R F P ≈ 0.5065. These values are in better agreement with the ALAT prediction than those of system B. Regarding system B with approximate BBC, the minimum reection happens for 2k/k b ≈ 0.992, the enhancement is overestimated E F P ≈ 6.363 and the reection coecient R F P ≈ 0.512 is smaller than expected in ALAT. The degree of wave number downshift is dierent only by 1% for k/k B , but the dierences it makes is obvious. Both systems A and B show a similar wave number downshift but with small dierences in the magnitude of downshift. This is due to the dierence in the formulation of the BBC (the unique dierence between the two systems) and implies, as the resonance curves are rather sharp, that for a same incident wave number the amplication of wave from system A and B can be signicant dierent (in particular in the vicinity of the resonance condition).

As a further illustration of the occurrence of F-P resonance with slightly detuned incident wave number, the comparison between the envelope of wave amplitude from ALAT and the envelopes of the free surface elevation from systems A and B is given in Fig. 4 for the case d/h = 0.2. The simulations are done with an incident wave number tuned to the resonating wave number for system A, namely k/k B = 0.99263. Again, the dierences between system A and system B mainly result from the dierent degree of frequency downshift between the two systems (as this wave number is close to, but dierent from, the resonating wave number of system B). 

V Conclusions

Recently, Couston et al. (2015) [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF] studied the resonance of water waves using two distinct sets of corrugations, in analogy with Fabry-Pérot resonance in optics by using an asymptotic linear analytical theory (ALAT). The ALAT solution is derived based on the assumptions that incident monochromatic water waves are of small amplitudes and that the bottom ripple amplitudes are small too. In the present study, we examined the higher-order eects of BBC by using the linearized version of a highly accurate code (whispers3D) solving the fully nonlinear potential and dispersive wave problem. The motivation is that, in the coastal areas as the water depth decreases, the nonlinear eect of wave-bottom interaction becomes more and more important. According to ALAT prediction, the enhancement factor should increase exponentially as the relative ripple amplitude d/h increases, which may result in very large amplication of incident waves between the two patches when the resonance conditions are met. Two cases following the work of Couston et al. (2015) [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF] were analyzed and simulated, with dierent relative ripple amplitudes d/h = 0.1 and 0.2. The rst case with d/h = 0.1 is identical to the one used in [START_REF] Couston | Fabry-Perot resonance of water waves[END_REF], it validates our numerical model to the corrugated bottom condition. Two systems with exact BBC and approximate BBC are tested. They show very similar results in the case d/h = 0.1, the resonance is indeed realized, even though in simulations E F P ≈ 2.385 is smaller than expected under the F-P condition. However, in the case d/h = 0.2 the resonance does not manifest when the incident wave number k = k B , and two systems show dierences. This can be explained by the so-called 'wave number downshift' in Bragg resonance, meaning that the resonance takes place for an incident wave number slightly lower than k B . For the F-P resonance this eect makes a signicant dierence because the resonance condition is 'strict', especially when the d/h is large enough. A number of simulations have been conducted in order to demonstrate this wave number downshift and to nd the shifted F-P resonance condition. The dierences between the system A (with exact BBC) and system B (with approximate BBC) become considerable, and result (at least partially) from the dierent degree of wave number downshift between the two systems.

With the shifted incident wave number, the F-P resonance can be realized in the numerical model with a satisfying agreement with ALAT results regarding the enhancement factor of wave amplitude. In system A, the enhancement factor E F P ≈ 5.805 agrees well with the predicted value from ALAT E F P ≈ 5.785. In system B, although the enhancement factor is overestimated, the wave number downshift is also well described. This means that the wave number downshift eect is already present when the BBC is approximated at rst order. Last but not least, given the good agreement in the case with large ripple amplitude obtained by taking the downshift into consideration, the analysis and understanding of the rst case with d/h = 0.1 can be improved in the same way.

Future work will address the study the higher relative ripples' amplitude, as well as the eects introduced by taking into consideration waves of nite amplitude (free surface nonlinearity), and how these eects aect the occurrence of F-P resonance.

Figure 1 :

 1 Figure 1: Enhancement factor E F P as a function of the relative amplitude of the bottom ripples d/h, other parameters such as N 1 , N 2 , k b L r , k b h and k b d are chosen to be identical to the ones used in the gure 6 of [1].

Figure 2 :

 2 Figure 2: Computed envelope of the free surface elevation at the end of the simulations of system A and B, t = 200T for the case d/h = 0.1 (left panel), t = 900T for the case d/h = 0.2 (right panel). The results of ALAT which are the envelopes of the amplitude are also superimposed.

Figure 3 :

 3 Figure 3: The enhancement factor (left panel) and the reection coecient (right panel) as functions of incident wave number k, normalized by k B = k b /2 for the case d/h = 0.2. The duration of the simulations is t = 900T .

Figure 4 :

 4 Figure 4: Computed envelope of the free surface elevation at the end of the simulations of systems A and B, t = 900T for the case d/h = 0.2 and k/k B = 0.99263. The result of ALAT which is the envelope of the amplitude is also superimposed.