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Résumé

La modélisation de la dissipation d’énergie due au déferlement en eau peu profonde dans un
code de vagues complètement non-linéaire et dispersif est étudiée. Le modèle de propagation des
vagues est fondé sur la théorie potentielle et suppose au départ que la surface libre ne se retourne
pas. L’inclusion de la dissipation par déferlement est toutefois possible en ajoutant un terme
similaire à une pression dans la condition limite dynamique de surface libre. Deux critères issus
de la littérature sont testés pour déterminer le début de déferlement, l’un de type géométrique
et l’autre de type énergétique. Deux méthodes sont testées afin de dissiper l’énergie, l’une basée
sur la similarité d’une vague déferlante avec un ressaut hydraulique déferlant et l’autre utilisant
un terme dissipatif de type viscosité turbulente. Les simulations numériques sont effectuées à
l’aide de combinaisons des deux critères et des deux méthodes de dissipation. Leurs résultats
sont comparés à des expériences des vagues déferlant sur une barre immergée, d’abord pour des
vagues régulières, puis pour des vagues irrégulières. Nous montrons que les différentes approches
sont capables de reproduire les évolutions des trains de vagues observées expérimentalement, bien
que des tests supplémentaires restent à mener pour valider complètement le modèle dans une
gamme de conditions plus large.

Summary

The modeling of wave breaking dissipation in shallow water within a fully nonlinear and disper-
sive wave model is investigated. The wave propagation model is based on potential flow theory
and initially assumes non-overturning waves. Inclusion of breaking dissipation is however possi-
ble by adding a pressure-like term to the dynamic free surface boundary condition. Two criteria
from the literature are tested to determine the onset of breaking, one geometric and another
energetic. Two methods are tested in order to dissipate the energy due to breaking, the first
based on the analogy of a breaking wave with a breaking hydraulic jump, and the second relying
on an eddy viscosity dissipative term. Numerical simulations are performed using combinations
of the two criteria and the two dissipation methods. The results are compared with experiments
of waves breaking over a submerged bar, considering first regular waves, and then irregular wa-
ves. It is shown that the different approaches are able to reproduce the wave transformation
observed in the experiments, although additional tests remain to be performed to fully validate
the model for a wider range of conditions.
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I – Introduction

As ocean waves propagate towards the shore, they evolve under the effects of several physi-
cal processes, among which shoaling, refraction and breaking play a dominant role. Accurate
modeling of these processes requires a mathematical approach that properly simulates both
dispersive and nonlinear effects. One option is to use CFD codes to model in detail all of the
physical processes, but this approach is computationally costly and can be applied at local scales
only.

Another faster method consists in solving approximate equations, such as one of the nu-
merous forms the Boussinesq or Serre-Green-Naghdi equations. However, these mathematical
systems are unable to retain the complete dispersive and nonlinear properties of the water wave
problem.

An intermediate approach consists in solving the fully nonlinear and dispersive potential flow
model, reformulated as the Zakharov equations [20]. This approach resolves the potential flow
problem by advancing in time free surface quantities only. Several approaches can be considered
to solve the Zakharov equations, such as the Hamiltonian approach with coupled modes [11, 12],
the extension of the high-order spectral (HOS) method to variable bottom cases [6], or the use of
finite differences schemes [4]. In this study, a spectral approach is applied in the vertical dimen-
sion using Chebyshev polynomials, following Tian and Sato [18]. This approach is accurate and
converges quickly as a function of the number of polynomials used, as demonstrated in Benoit
et al. [3], Raoult et al. [13], Yates and Benoit [19].
One limitation of the Zakharov equations is the assumption of a non-overturning free surface,
which precludes direct modeling of wave breaking. In order to overcome this limitation, some
of the effects of wave breaking can be simulated by dissipating energy at the time and location
a wave is considered to break. The activation of the dissipation, or the onset criterion of bre-
aking, can be triggered by different types of thresholds, which are generally either geometrical,
kinematic, or energetic.
In this work, two breaking criteria and two dissipation methods are implemented in a numerical
code solving the Zakharov equations (code whispers3D). The simulation results are compared
with experimental measurements for waves breaking over a submerged bar, confirming the ap-
plicability of the proposed modeling strategies, both for regular and irregular wave conditions.

II – Method

II – 1 Overview of the system of equations

For an inviscid and homogeneous fluid of constant density, potential flow theory can be used if
the flow is assumed irrotational. In the following, the domain is restricted to two dimensions in
the vertical plane (x, z) with x being the horizontal axis and z the vertical axis positive upward,
with z = 0 at the still water surface. In this case, the velocity vector u(x, z, t) = (u,w) can be
expressed as the spatial gradient of the velocity potential Φ(x, z, t), such that u = ∇Φ = (Φx,Φz).
The velocity potential must then satisfy the Laplace equation in the fluid domain: ∆Φ = 0.
The Laplace equation is supplemented with boundary conditions at the free surface, bottom,
and lateral boundaries. The seabed, z = −h(x), is considered impermeable, fixed and smooth,
such that: Φxhx + Φz = 0. The free surface, z = η(x, t), is continuous and non-overturning.
The lateral boundary conditions can be periodic, Dirichlet or Neumann type. After assuming
uniform atmospheric pressure at the free surface (by convention set to 0), and defining the
velocity potential at the free surface as ψ(x, t) = Φ(x, z = η(x, t), t), the nonlinear free surface
boundary conditions are formulated as the so-called Zakharov equations [20]:

ηt = −ηxψx +W (1 + (ηx)2), (1)

ψt = −gη − 1
2(ψx)2 + 1

2W
2(1 + (ηx)2), (2)
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where W (x, t) is the vertical velocity at the free surface W (x, t) = Φz(x, z = η(x, t), t), and
g = 9.81 m/s2 is the acceleration due to gravity.

Eqs. (1-2) involve only free surface variables, depending on x and t solely. To integrate these
equations in time, a Dirichlet to Neumann (DtN) problem must be solved to determine W from
(η, ψ), as described in Yates and Benoit [19], Raoult et al. [13] and Benoit et al. [3].

The DtN problem is solved by resolving a Laplace boundary value problem (BVP) for the
potential Φ in the fluid domain:

Φxx + Φzz = 0 in the fluid domain, (3)
Φ(x, η) = ψ(x) on z = η(x, t), (4)

hxΦx + Φz = 0 on z = −h(x). (5)

II – 2 Numerical implementation

To solve the above BVP problem (3-5) and march Eqs. (1-2) in time, a numerical code, called
whispers3D, is being developped at Centrale Marseille and Irphé lab. It combines high-order
finite difference schemes to approximate the horizontal derivatives with a spectral method in
the vertical dimension using the Chebyshev-tau approach, following the work of Tian and Sato
[18]. With this method, the potential is approximated by a linear combination of Chebyshev
polynomials of the first kind, Tn(s), n = 0, 1, ...., NT for s ∈ [−1, 1]:

Φ(x, z) = ϕ(x, s) ≈
NT∑
n=0

an(x)Tn(s), (6)

where s is the scaled vertical coordinate, varying from −1 at the bottom to +1 at the free
surface:

s(x, z, t) = 2z + h(x)− η(x, t)
h(x) + η(x, t) , (7)

and NT is the maximum order of the Chebyshev polynomial used in the approximation. In
the following simulations, NT is set to 7, which was found to be a good compromise between
computational speed and accuracy [19, 13]. The resulting linear system of equations on the an(x)
coefficients is solved here using a GMRES algorithm with Incomplete L-U preconditioning. The
integration in time is performed with a third-order Runge Kutta scheme SSPRK(3, 3). At the
domain inlet, incident waves are generated by reconstructing η and ψ from a measured wave
signal by decomposing it using the linear wave theory as a sum of independent sinusoidal waves.
A relaxation zone in the first part of the domain allows imposing this incident wave condition
progressively in space while absorbing reflected waves propagating in the direction of the inlet
boundary. At the opposite end of the domain, an absorbing relaxation zone forces the solution
to 0 with a progressive transition in space to dampen waves and limit wave reflections.

II – 3 Modeling breaking waves

To include a representation of wave breaking in the model presented above, three ingredients are
needed: (i) a criterion triggering the onset of breaking for a wave reaching a limit of stability,
(ii) a criterion to determine the termination of breaking, and (iii) a method dissipating wave
energy during the breaking event. Regarding item (i), in the literature, several criteria can be
found to activate breaking, which can be grouped into three families: geometric, kinematic or
energetic.
In this work, two methods are tested to initiate a breaking event. The first method (denoted
B1 in the following) is geometric and uses the slope of the wave front to trigger the breaking
[15]. Wave breaking is initiated when the slope of the wave, β(x, t), is greater than a threshold
value: βmax (see Figure 1). In the literature, values of βmax range from 28 to 38◦, depending
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on the type of wave and the local bottom slope. Cienfuegos et al. [5] recommended setting
βmax between 28 and 32◦ for spilling breakers, or between 35 and 36◦ for plunging breakers.
Here, after a sensitivity study, a value of βmax = 35◦ was selected and will be used for all tests
presented hereafter.
The second method (denoted B2 in the following) is based on the local energy flux velocity
[1]. For two dimensional flows, this breaking criterion can be reduced to a dynamical criterion:
Bx = u1(xc, t)/C, where C is the (local) crest velocity, xc the position of the crest, and u1 the ho-
rizontal velocity at the free surface. Wave breaking is initiated when Bx = u1(xc, t)/C > Bmax.
According to Barthelemy et al. [1], the threshold Bmax should be chosen in the range [0.85, 0.86]
for waves in deep water and intermediate depth; the same authors expect a similar threshold
to be valid for shallow water conditions. Saket et al. [14] re-examined available data sets and
reduced the interval for Bmax to 0.84 ± 0.016. A threshold value of Bmax = 0.84 will be used
throughout the current study.

Figure 1 presents the characteristics of a breaking wave with celerity C. hc is the water
depth under the crest located at xc, ht is the depth under the front trough at xt, H is the wave
height, and β is the angle of the slope of the wave front relative to the horizontal. The interval
[xb, xf ] is the zone of energy dissipation, as defined by Guignard and Grilli [7].

Figure 1 – Definition of geometric and kinematic parameters for a breaking wave, based on [7].

Once the onset of wave breaking is detected, a dissipation term needs to be applied on a
specific region of the breaking wave. We consider and compare two methods, both relying on
adding a term, Psurf , similar to a surface pressure, to Eq. (2):
The first method (denoted HJ in the following) uses an analogy with a hydraulic jump to estimate
the pressure term Psurf [7]. The zone where the pressure is applied extends on both sides of the
breaking crest between the abscissas xf and xb (see Figure 1) determined by:∣∣∣∣∣∂Φ

∂n
/

(
∂Φ
∂n

)
min,max

∣∣∣∣∣ > ε for x ∈ [xb, xf ] , (8)

with ε being a small threshold value (in our case: ε = 10−5). The normal derivative of the
potential Φ at the free surface is given by:

∂Φ
∂n

(η) = n · ∇Φ = ηt = −ηxψx +W (1 + (ηx)2), (9)

where n is the normal vector (non unit) to the free surface.
The pressure Psurf , non zero in the breaker zone (xf , xb), is defined as:

Psurf = νbS(x)∂Φ
∂n

(x), (10)
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where S(x) is a function ensuring a smooth transition across areas with and without breaking.
It varies sinusoidally from 0 to 1 at the borders [xb, xb1] and [xf1, xf ] of the breaker zone, such
that xb1 = xb − α(xb − xf ) and xf1 = xf − α(xb − xf ) (α is defined depending on the case, and
α = 0.1 is used here as suggested in [7]). The absorption coefficient, νb, is defined as:

νb = µPjump

(∫ xf

xb

S(x)
(
∂Φ
∂n

(x)
)2
dx

)−1

, (11)

where µ is a coefficient controlling the magnitude of the dissipation. Svendsen et al. [17] re-
commend selecting a value close to 1.5. In the following, µ = 1.0 is used. Pjump is the power
dissipated in a turbulent bore [10], defined by [7]:

Pjump = gC
hH3

4hcht
. (12)

The second dissipation method uses an eddy viscosity model to dissipate energy due to breaking
(denoted EVM in the following). Following the work of Kennedy et al. [8] and Kurnia and van
Groesen [9], the pressure term can be obtained as a solution of the equation:

∂xPsurf = 1
h+ η

∂xF, for x ∈ [xc, xt], (13)

where F = β(h + η)(∂tη)2. Eq. (13) is derived by imposing the additional condition that the
total wave momentum should be conserved for waves propagating over a flat bottom. The term
β = δ2B(∂tη) with δ ∈ [1, 1.2] [8] determines the magnitude of dissipation, with B being a
function between 0 and 1 controlling the initiation and cessation of the breaking process. In
the following simulations, δ is set to 1.2. The function B is modified in the form of a coefficient
varying linearly from 0 to 1 over 8 time steps. This reduces the occurrence of instabilities due to
the inclusion of Psurf in Eq. 2, and B is also simplified since the breaking onset is determined
by either the conditions B1 or B2. In order to compute Psurf , Eq. (13) needs to be integrated,
which is done using a simple Euler method in the current implementation. Once calculated, the
pressure is added to Eq. (2) only on the front face of the breaking wave, between xc and xt.

Regarding breaking termination (item ii), for both HJ and EVM methods, the dissipation is
stopped when the slope of the wave front becomes smaller than βmin = 8◦ [5].

When computing the breaking onset B2 and/or the pressure term with the HJ method, an
accurate estimation of phase speed C of the wave is needed. Here, following [9, 16], a partial
Hilbert transform is used to determine the instantaneous wave number k and to deduce the crest
speed using the linear dispersion relation:

C(x, t) =
√
g

tanh(k(x, t)h)
k(x, t) . (14)

To compute k, the partial Hilbert transform is used with respect to x, which is defined by:

H[η(x, t)] = 1
π
p.v.

∫ +∞

−∞

η(x′, t)
x− x′

dx′, (15)

where p.v. is the Cauchy principal value of the integral. The Hilbert transform is used to express
the phase function, which allows computing the wave number as:

k(x, t) = 1
η2 + H[η]2 (ηHx[η]−H[η]ηx) . (16)
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III – Results

III – 1 Experimental set-up and numerical settings

In order to evaluate the methods for modeling wave breaking, the numerical simulations made
with the modified version of whispers3D are compared with laboratory experiments performed
by Beji and Battjes [2] for regular and irregular waves. The experiments were conducted in a
wave flume with a water depth of 0.40 m, equipped with a wave-board located at x = 0 m. The
flume contains a trapezoidal bar: the water depth first decreases with a slope of 1 : 20 from
x = 6 m to x = 12 m, followed by 2 m long horizontal section with a water depth of 0.10 m.
From x = 14 to 17 m, the depth increases with a slope of 1 : 10. From x = 17 m on, the depth
is again uniform at 0.40 m (see Figure 3). 8 wave gauges, located at located at x = 6, 11, 12,
13, 14, 15, 16 and 17 m, measure the free surface elevation.
For the numerical simulations, the signal recorded at the first probe (located at x = 6 m) is used
to generate the incident wave conditions imposed at the inlet boundary of the numerical model.
The numerical domain reproduces the experimental bathymetry with a uniform discretization,
∆x = 0.02 m, with the domain extending from x = 3 m to x = 20 m. The simulations are run
with a constant time-step of ∆t = 0.02 s.
For both regular and irregular waves, simulations were run combining both onset criteria (B1
and B2) and both dissipation formulations (HJ and EVM). The simulations are named after the
selected combination (breaking criterion+dissipation method), for example: simulation B1_HJ
uses the criterion B1 to trigger the activation of the dissipation HJ. As mentioned above, the
simulations results are run with βmax = 35◦, Bmax = 0.84, µ = 1.0 and δ = 1.2.

III – 2 Wave breaking for regular waves over a submerged bar

We first consider one experiment conducted with incident regular waves having a wave height
H = 0.054 m and a period T = 2.5 s, resulting in a breaker-type classified as plunging [2].
Figure 2 presents comparisons of measured and simulated time series of the free surface eleva-
tion at 3 different positions. The simulated time series from the four combinations are in very
close agreement. In particular, the combinations using the same dissipation method produce
nearly identical results, showing no significant influence of the breaking criterion in this case
(B1 used βmax = 35◦ and B2 used with Bmax = 0.84). This allows comparing the effects of
the dissipation method (HJ or EVM) and shows that both methods reproduce the wave decay
similarly despite differences in their formulation and their zone of application. Comparing the
time series to experimental data, the different simulation results follow closely the experimen-
tal data, although differences arises regarding secondary peaks. Nevertheless, the shape of the
waves remains similar to the experimental data showing that nonlinear effects are captured well
by the model.

Figure 3 shows the envelop of wave crests and troughs from the simulations and the expe-
riments. Again, the wave envelops from the simulations are matching closely one another. The
curves from B1_HJ and B2_HJ are even superimposed. The same results occurs for B1_EVM
and B2_EVM, confirming the equivalence of both breaking criteria B1 with βmax = 35◦ and
B2 with Bmax = 0.84, for this specific wave condition. Comparing with experimental data, the
evolution of envelop is reproduced well by the breaking methods with a slight underestimation
of the free surface elevation after x = 14 m.
During the simulations, wave breaking was observed to occur on average between x = 12.1 and
14.4 m for simulations using the HJ dissipation method, and between x = 12.1 and 14.1 m
for simulations using the EVM dissipation method, confirming the similarity of the dissipation
methods.
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Figure 2 – Time series of the free surface elevation for a test with regular waves (H = 0.054 m,
T = 2.5 s). Comparison between experimental measurements and numerical simulations with
whispers3D using different combinations of breaking criterion and dissipation method. The
curves at each position, x, are offset by 0.05 m for clarity.

Figure 3 – Comparison of the wave envelops of the experimental data and numerical simulation
results for a test with regular waves (H = 0.054 m, T = 2.5 s), using different combinations of
breaking criterion and dissipation method.

III – 3 Wave breaking for irregular waves over a submerged bar

We then consider an experiment with the same bathymetry but with irregular waves characteri-
zed by a JONSWAP type spectrum having a significant wave height Hm0 = 0.049 m and a peak
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period Tp = 2.5 s [2].
During the simulations, breaking does not occur for every wave passing over the bar. Only the
largest waves break. The results indicate that, on average, breaking starts around x = 12.4 m
and stops around x = 14.4 m. However, some waves start breaking before x = 10 m.
Figure 4 presents time series of the free surface elevation from the simulations and the experi-
ments at 3 different positions. As for the regular wave condition, the time series issued from
the simulations have little discrepancies between one another, despite the different methods
used for the breaking onset and the energy dissipation. Comparing with the experimental data,
good agreement is also found with the simulation results. Nonetheless, some differences appear
progressively along the wave flume after the propagation of a breaking wave.

Figure 4 – Time series of the free surface elevation for a test with irregular waves (Hm0 = 0.049 m,
Tp = 2.5 s). Comparison between experiment and numerical simulations with whispers3D using
different combination of breaking criterion and dissipation method. The curves at each position,
x, are offset by 0.08 m for clarity.

Figure 5 shows the envelop of wave crests and troughs from the simulations and the ex-
periments. The envelops from the simulations agree well with each other as well as with the
experimental measurements. Differences appear around x = 11 m, where the maximum value of
the free surface is reached near x = 10 m in the simulations and at x = 11 m in the experiments.
The time series at x = 11 m shows that this occurs for only one particular wave. Note that due
to the lack of wave probes between x = 6 m and x = 10 m, it is difficult to perform a detailed
analysis of the simulated wave crest envelops in this zone that shows local amplification of the
largest waves prior to breaking. Nonetheless, the simulations agree well with the experimental
results. Comparing the evolution along the bottom profile of the significant wave height, wave
asymmetry, and wave skewness along the wave flume (not shown here), it was observed that
simulation results are in fair agreement with the experimental data, with a slightly better match
for the simulation B2_HJ.
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Figure 5 – Comparison of the wave envelops of the experimental data and numerical simulation
results for a test with irregular waves (Hm0 = 0.049 m, Tp = 2.5 s), using different combinations
of breaking criterion and dissipation method.

IV – Conclusions

The development and validation of wave breaking is ongoing, but preliminary numerical results
indicate that the potential flow solver whispers3D, with the selected breaking onset criteria and
dissipation methods is able to reproduce correctly the behavior of wave breaking in shallow
water, both for regular and irregular wave conditions. The simulation results presented here are
limited to wave breaking over a submerged bar, nevertheless the results and comparisons with
experimental data are encouraging.
Regarding the breaking onset criterion, both the B1 and B2 methods give similar results for
the simulated wave conditions. Method B2, based on the local energy flux velocity proves to
be robust for shallow water conditions despite the fact the threshold Bmax = 0.84 was initially
proposed and validated for waves in deep water or intermediate water depths [14]. One drawback
of B2 is the need to estimate the wave velocity C, which increases the CPU resources.
Considering the dissipation formula, both methods HJ and EVM produce similar results for the
tested conditions. In both methods, the position of the crest and trough of each breaking wave
needs to be determined and followed in time. Using the hydraulic jump (HJ) method generally
produce more stable simulations but requires the estimation of the wave celerity. The eddy
viscosity method (EVM) only requires calibrating the parameter δ, but needs the integration of
Eq. (13). Furthermore, at least in its current implementation, this method sometimes produced
unstable simulations.
Future work will address additional validation of the code with other experimental data sets,
development of the code to model run-up events on slopes, and the extension of the model to
three-dimensional cases to simulate more realistic wave conditions.
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