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Abstract

An algorithm based on a hierarchical Bayesian model is introduced
to separate sources highly overlapping in time and frequency and ob-
served through correlated references. The method is applied to in-
ternal combustion (IC) engine signals with the aim of separating the
contributions due to different physical origins. The results are com-
pared to the ones provided by classical Wiener filter. The Bayesian
context allows correlated references to be taken into account with no
consequences on the identifiability of the sources, thanks to the pos-
sibility of providing some regularizing prior information in the form
of Bayesian prior laws. Moreover, the credibility interval on the es-
timated sources derives directly from the adopted sampling strategy.
Finally, it is shown in a simple case that the proposed algorithm can
be rewritten as a weighted sum of the classical and cyclic Wiener fil-
ters proposed by Pruvost in 2009 (Ref. [1]). As opposed to them, the
present algorithm autonomously chooses one or the other depending
on the characteristics of the analysed signals. Even if the development
context is the separation of the sources in an IC engine, the presented
method is general and can be applied to any source separation problem.
Index terms— Referenced source separation, Bayesian computation,
Hierarchical modelling, Engine noise
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1 Introduction

Of major concern with NVH characteristics of car vehicles is the con-
trol and harmonization of levels of multiple noise sources. One source
of primary interest is the engine noise, particularly in its diesel variant.
Its sound quality remains one of the most discriminating characteris-
tics in front of the gasoline engine. As a consequence, diesel engines
have been the object of several studies aiming at analysing the reasons
for this poor acoustic quality [2–5]. Several aspects have been studied,
above all the combustion whose irregularities are impacting the per-
ception of the diesel engine sound [6, 7]. Experimental results on the
equipment isolated from the working engine are accurate, but not truly
indicative of the behaviour of an engine in actual working conditions.
For this reason, signal separation methods have become largely applied
in the automotive industry: they allow the separation of the contribu-
tion of each equipment from the overall noise of a regular engine.
The separation is a difficult task since the noises are highly overlapping
in both the time and the frequency domains, especially in the case of
impulsive events. The coherence based filtering methods, such as the
Wiener filter, present two major limitations:

• they have been developed considering the existence of one refer-
ence for each phenomenon whose noise has to be extracted. This
means that the reference entirely observes the contribution of the
source. Actually, such a unique reference is available only for very
few noise sources. This yields to the need to use references that
are only partly coherent to a single source, but which may be
multiple;

• the reference also needs to be “pure”, meaning it is not polluted
by any additive noise (even uncoherent with other sources). If
multiple references are considered for a single source, a subspace
filtering method [8] can be applied in order to denoise them. How-
ever, the latter assumes that the Signal to Noise Ration (SNR)
of all references is the same. In practice, if the references have
different nature the hypothesis of equal SNR cannot be assumed.

Some methods for source extraction succeed in the separation even in
operating conditions [1, 9, 10]. For instance, Antoni et al. presented a
general separation method based on the Wiener filter in Ref. [11]. El
Badaoui et al. [12] used the Wiener filtering method in the context of
cyclo-stationary processes [13, 14]. Afterwards, Pruvost et al. devel-
oped an improved version of the filter in Ref. [1]. Finally, this approach
is extended to the cyclo-non-stationary regime in [16]. These methods
answer well to the case of a single but not pure reference. In order
to make it pure, its random part - obtained after substraction of the
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synchronous average - is isolated and used for the computation of the
Wiener filter instead of the whole signal. As a consequence, another
definition of the Wiener filter arises in the cyclo-stationary context.
This new definition is proved to be better than the former [1] when the
random part of the reference is more energetic than the deterministic
part. This is not always the case in an operating engine.
A filter with a larger application field would be a linear combination of
the classic Wiener filter and the one presented above, weighting them
by the mean squared error of their estimation. However, the calcula-
tion of the mean squared errors assumes the knowledge of the noise
characteristics, which cannot be estimated until after the estimation
of the filters and contributions.
The method proposed in this work aims at building a hierarchical
model in order to estimate the noise characteristics while estimating
the separation filters. Moreover, it generalizes the extraction to the
case of multiple polluted references with different SNRs. The Bayesian
approach seems the most natural to this aim: a Bayesian hierarchical
model of the system is proposed.
In the Bayesian context, the posterior joint probability density function
is often fairly complex and a direct sampling of it is not possible. Sim-
ple Monte Carlo methods, such as the importance sampling, may fail
or be slow when the posterior distribution is concentrated with respect
to the prior. In this cases using Markov Chain Monte Carlo (MCMC)
methods may be preferable. These methods involve the construction
of an ergodic Markov chain whose stationary distribution corresponds
to the target posterior probability density function. This way, after
having attained the convergence of the chain, the samples from the
Markov process are samples from the target distribution as well. Sev-
eral applications of MCMC methods in different fields of science, such
as biology [17], mechanics [18] and space research [19], have focused
on their advantages.
The proposed approach will infer the unknown elements through the
Gibbs sampler, a popular MCMC algorithm, typically well adapted to
hierarchical Bayesian models. First of all, the Gibbs sampler samples
from the joint posterior distribution using the conditional posterior dis-
tributions of the parameters: this makes possible the use of far simpler
probability density functions with remarkable properties (such as Nor-
mal laws). Moreover, it keeps the specificities of a Bayesian model. For
instance, as opposed to optimisation techniques, the Bayesian credible
interval on the results can be easily obtained. The convergence of the
application will be verified through parallel chains and the Gelman &
Robin convergence test [20].
The first section of this work defines the problem of source separation
and its solution using the Wiener filter [1]. The limits of this method
come when the references are not pure: they are pointed out using
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signals measured on a diesel engine. Therefore, a new model featur-
ing latent variables is described in the same section. The hierarchical
Bayesian approach to the problem and the application of the Gibbs
sampler are the subject of the second section. It is shown in particular
that the obtained filter is a linear combination of the Wiener filters
cited above. The third section puts the method in practice in a nu-
merical simulation with synthesized engine signals and its results are
compared to the ones provided by a Wiener filter. The use of synthe-
sized signals allows the comparison of the methods to known solutions.
The application to real engine signals allows to actually show that the
obtained filter can be interpreted as a combination of the Wiener fil-
ters: this is addressed in the fourth section. Finally, some perspectives
on the method will be provided in the conclusion.
The engine application is just one among others, the presented method
updates the existing ones and can be applied to a large scope of sepa-
ration problems.

2 Problem statement

2.1 Signal modelling

Notational conventions: in this paper, a lower-case character stands
for a scalar value, a lower-case bold character stands for a vector and
an upper-case bold character stands for a matrix. The problem is first
formulated in the time domain - with respect to the time variable t -
and then solved in the frequency domain - with respect to the frequency
variable f .
The problem consists in the separation of referenced sources. Be an
overall measured signal named d(t), composed of the K contributions
that have to be separated, xk(t), k = 1, ...,K, and an overall residual
noise n(t) independent of the xk(t)’s:

d(t) =

K∑
k=1

xk(t) + n(t). (1)

For each contribution, one reference rk(t) is available and the relation
between the reference and the contribution through a theoretical filter
h̃k(t) can be written as follows:

xk(t) = (rk ∗ h̃k)(t) (2)

where the operator ∗ stands for convolution. Figure 1 shows a schematic
view of the model chosen for the overall measured signal d(t).
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Figure 1: Explanatory diagram of the signal model as defined by equations
(1) and (2).

2.1.1 Wiener filters and their limits

The Wiener filter method as explained for instance in Ref. [1] is able
to solve such a problem and provide an estimate for the impulse re-
sponse h̃k, noted hk(t), if the references are pure and uncorrelated. A
reference is pure if: 1) its signal contains information on the consid-
ered source alone and 2) if the information is enough to reconstruct
the source perfectly through a linear filter, i.e. the coherence function
between the reference and the source is everywhere equal to one. If
these conditions are respected, then the method can be applied sepa-
rately to each contribution. In practice in a Diesel engine this is rarely
the case: all signals from the same engine are rather correlated, being
all generated by the same rotating machine. The solution proposed
in the context of cyclostationarity is to extract and consider just their
random parts. For instance, figure 2 shows the cylinder pressure in
blue: this reference is typically pure, but it is correlated to other en-
gine signals. Its random part is obtained dividing the signal into cycles
and computing the mean along the cycles: this yields an estimate of
the first order cyclostationary (CS1) part of the signal, also called the
synchronous average (SA). Then, removing the SA from each cycle of
the signal leaves its random part (Fig. 3).
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Figure 2: Signals provided by a cylinder pressure probe (solid red line) and
by an accelerometer (dashed blue line) on the corresponding injector.

1/I
− +

duplicate

+

++

+

Figure 3: Explanatory diagram of the synchronous average on cyclostation-
ary signals such as the cylinder pressure in a Diesel engine.

Thus, two possible Wiener filters can be defined: the one obtained
from raw signals will be called hk(t) (Fig. 4a), the one obtained from
the random part of the signals (removing the synchronous average)
will be called hck(t) (Fig. 4b). The random parts being usually not
correlated to the other signals by the mere fact of originating from the
same machine, hck(t) boasts a smaller bias error. On the other hand,
this manipulation decreases the SNR, increasing the random error of
the estimator. Therefore, the two filters coexists, each one being better
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than the other in some specific cases.
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Figure 4: Explanatory diagram of the Wiener filter hk(t).

The advantages of hck(t) over hk(t) have been pointed out in Ref.
[1, 21] through an application to the combustion noise. Actually, the
combustion noise references (the cylinder pressure signals obtained
from in-cylinder pressure probes) are well suited to this kind of ap-
plication since their deterministic part is negligible from a frequency
low enough (Fig. 5). This means that using the random part of the
references does not decrease the SNR notably, but indeed decorrelates
the signals leading to a better estimation of the filter.
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Figure 5: Spectra of the random (dashed red line) and deterministic part
(solid blue line) of a cylinder pressure signal.
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Figure 6: Spectra of the random (dashed red line) and deterministic part
(solid blue line) of an accelerometer engine signal.

For all other contributions, the limits of the method are reached.
For other kinds of sensors, such as accelerometers, the deterministic
and random parts of the signal keep comparable values over all the
frequency domain of interest (Fig. 6). As a consequence, removing the
deterministic part of the reference decreases the SNR, not necessarily
yielding to a gain in the application of this approach.
Moreover, the references must be pure. The random part of the cylin-
der pressure is a notably pure reference for the combustion noise. On
the other hand, the references coming from classical sensors such as
accelerometers and microphones are hardly pure. For instance, an ac-
celerometer placed on one injector sees all the combustion events, not
just the ones from the corresponding cylinder (see the accelerometer
signal in Fig. 2). Usually a correct windowing strategy allows the in-
teresting part of the signal to be isolated, for instance windowing the
references around the combustion events of the targeted cylinder. Nev-
ertheless, this approach may be limited when a less impulsive source
is present (e.g. the high pressure pump in a diesel engine). One more
general solution to this issue is to apply a waterfall approach (Fig. 7).
In a multi-source problem, the waterfall approach is the following:

1. separate the source whose reference is the purest;

2. find its estimated contribution x̂k(t) to the overall measured sig-
nal;

3. remove its contribution to the references of the remaining sources,
in order to have cleaned references;

4. go back to the beginning and repeat using the following purest
reference.
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Figure 7 summarizes the procedure. The measured signal d(t) is used
with the purest reference r1(t) to compute a Wiener filter h1(t) (or
hc1(t)). This filter yields the first source contribution x̂1(t). After
removing this contribution from d(t), the remaining information is used
together with the second reference r2(t) to compute the filter h2(t) (or
hc2(t)), yielding then the second contribution x̂2(t). The process is
reiterated for each reference, from the purest to the noisiest.

d(t)

h1(t)

r1(t) ∗ x̂1(t) r2(t) ∗ x̂2(t)

h2(t)

− −d(t)− x̂1(t) d(t)− x̂1(t)− x̂2(t)

1st contribution 2nd contribution 3rd contribution

Figure 7: Explanatory diagram for the waterfall strategy.

The choice between hk(t) and hck(t) is of utmost importance for
the waterfall approach and it leads to different estimations of the con-
tributions. For instance, figure 8 shows the spectra of the injectors
contribution x̂2(t) to the noise emission of an engine d(t), computed
after a first waterfall step yielding the combustion contribution x̂1(t).
One curve is obtained using in the first step an h1(t) Wiener filter,
whereas the other derives from the application of an hc1(t) filter: they
are sensibly different. Actually, in an engine application, the difference
in meaning between the two filters has been pointed out by Leclère et
al. [21]. If the first source considered is the combustion (k = 1), h1(t)
extracts the combustion noise and the coherent mechanical noise, while
hc1(t) extracts the combustion noise alone. As a consequence:

• if hc1(t) is used for the first step of the waterfall, then only the
combustion contribution is removed from the remaining source
references. The mechanical noise of other moving parts is left
polluting them. Thus, the contribution extracted using these
“partially” cleaned references originates not only from the corre-
sponding source, but contains also some mechanical noise coher-
ent for instance to the combustion itself. This is why in figure 8
the blue spectrum is more energetic than the red one;

• if h1(t) is used for the waterfall, then the combustion noise and
the coherent mechanical noise are completely removed from the
references. This yields an “over-cleaning” of the references. In-
deed, any mechanical source in an engine is composed of a de-
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terministic and a random part, so that its reference should be
representative of both. The deterministic part, which repeats
itself at each cycle, is strongly linked to the operation of the
machine itself. This means that the deterministic parts of all
sources (and references) are rather coherent simply from the fact
of belonging to the same rotating machine. This coherent part is
what has been called above “coherent mechanical noise”. There-
fore, removing it from a reference means not only removing the
pollution from the other sources, but also removing information
on the targeted source. For instance in engine applications, it is
reasonable to assume that the considered source contribution has
a periodic component to it since it follows the rotating process.
However, the contribution spectrum obtained by h1(t) waterfall
hardly shows this behaviour (Fig. 8): it seems that the harmonic
part in the reference has been cleaned too in the waterfall process.

One of the limits of the Wiener filter method begins to stand out: in
the mono-source as in the multi-source cases, two definitions for the
Wiener filter coexist, both valid inside their field of application, but
none generally accurate, posing a problem of choice.

                     

Figure 8: Spectrum of the injectors contribution to the engine noise. Solid
red curve: result obtained using the waterfall strategy with an h1(t) filter.
Dashed blue curve: result obtained using the waterfall strategy with an hc1(t)
filter.
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Finally, note that what stated above can be applied to the case
in which multiple references are available for each source. It can be
said that a group of references is pure if it allows the reconstruction of
the source contribution through a linear combination of linear filters.
Therefore, it is not pure if:

1. the combination of the references does not entirely observe the
source (for instance a frequency range is not available);

2. each reference is polluted by an additive noise.

Increasing the number of references for the same source helps to over-
come the first limit, however it does not necessarily help to overcome
the second. In order to do so, the references can be denoised through
a decomposition on signal and noise subspaces [8]. Nevertheless, this
method assumes a spatially white noise (homogeneous among the ref-
erences), which is a hypothesis that does not stand if the references
are of different natures.
After all that is said, the need for a method that computes a filter
adapted to the characteristics of the considered signals and that man-
ages to take into account several correlated references with heteroge-
neous SNRs is evident. This is the aim of the method proposed in this
paper.

2.1.2 Consideration of correlated references

The engine signals will be treated in the framework of cyclostationarity
and cycloergodicity. In a broad definition a cyclostationary signal is
one that exhibits some hidden periodicity of its energy flow [14]. Each
one-cycle-long portion of the signal can be considered as a realization
of a stochastic process governed by constant characteristics (in our
case: the Fourier coefficients corresponding to one frequency form a
stationary and ergodic process along the cycles).
The Wold isomorphism [15] allows the model describing the mixing of
the sources in a frequency band [fl, fu] to be written as:

ri(f) = G(f)zi(f) + nri(f) (3)

di(f) = ht(f)zi(f) + d0(f) + ndi(f) (4)

where •t stands for the transpose operator, i ∈ {1, ..., Iobs} with Iobs the
number of considered cycles and ri(f) ∈ CNr is the column vector of
the Nr measured references at frequency f . As stated in Eq. (3), these
correlated references are considered as a linear composition of Nz 6 Nr
uncorrelated latent variables stored in the vector zi(f) ∈ CNz and an
additive noise nri(f) ∈ CNr . The matrix G(f) ∈ CNr×Nz describes
the relation between the latent references zi and the measured ones ri
at a frequency f .

11



Equation (4) describes how the sources contribute to the global out-
put signal di(f) ∈ C. It is considered composed of a deterministic part
independent from the sources d0(f) ∈ C, a series of contributions from
the sources of interest and a zero mean additive noise ndi(f) ∈ C. The
column vector h(f) ∈ CNz contains the transfer functions for each
latent variable at a frequency f . The product between the transfer
function and the latent variable yields to the contribution of the con-
sidered source to the global noise.
From here on, the dependence on the frequency will be omitted to
simplify the notation.

2.2 Physical meaning of the latent variables

As the model has been presented in the previous section, the inputs
of the method are the measured references ri and the global response
di. The outputs are all the other terms of the equations. In order to
ensure the identifiability, the matrix G is assumed to have a triangular
inferior shape. Actually, if this matrix were full, the problem stated
by Eq. (3) would resume to an eigenvalue decomposition, without any
direct way to know the physical meaning of the variables. On the other
hand, the triangular inferior shape ensure the physical meaning of the
latent references to be inferred from the measured ones. This implies
that the measured references must be wisely chosen in order for the
problem to be solved keeping a physical meaning.
Take for instance a cycle i, let r1 to r6 be the measured references,
which the user considers well describing the sources he/she would like
to extract from the overall engine noise. Let these sources be A, B
and C, thus let z ∈ C3 the column vector of the corresponding latent
variables. The link between the sources and the latent variable is en-
sured by the measured references and the matrix G ∈ C6×3. Equation
(3) becomes:

r1

r2

r3

r4

r5

r6

 =


G11 0 0
G21 G22 0

0 G32 G33

G41 0 G43

G51 G52 G53

G61 G62 G63


z1

z2

z3

+


nr1
nr2
nr3
nr4
nr5
nr6

 . (5)

As it can be seen the first row implies that the physical meaning of the
first latent variable is directly linked to the first measured reference
alone. If the measured reference r1 is chosen wisely as to be pure and
contain information from the source A alone, it can be implied that
the latent variable z1 describes this source too. Having determined
the first latent reference, the second row allows the determination of
z2 even if the measured reference r2 contains information about both
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source A and B. Finally, all other references are not required to be
pure, since, having determined the first two latent references, z3 as a
latent pure reference on the source C can be determined as well.
It can be remarked that Eq. (5) describes the spatial decomposition [8]
on the signal subspace, generated by the virtual references zi, and the
noise subspace, generated by the noises nri . Nevertheless, the method
proposed in the present paper does not need to assume the homogeneity
of the noises, i.e. with identical variances. As a consequence, it can be
applied to references having different natures.

3 Inference of parameters through Gibbs
sampling

3.1 Principles

This section presents the way of solving the problem through the im-
plementation of Gibbs sampling in a hierarchical Bayesian model. Let
x be the vector storing the unknown parameters and Y the measure-
ments, the application of the Bayes’ rule allows obtaining the joint
posterior probability density function (pdf) of x as:

[x|Y ] ∝ [Y |x] · [x]. (6)

In Eq. (6) the following elements can be recognised:

• [x|Y ]: the posterior joint pdf of the unknown parameters, i.e. the
joint pdf of the parameters given the measurements Y .

• [Y |x]: the likelihood function, which stands for the probability
of observing the data Y given a set of unknown parameters x.

• [x]: the prior pdf of the unknown parameters, which reflects what
we know about the parameters before having collected the data
Y .

The Gibbs sampling [22] is a procedure which, among the MCMC
methods, allows Bayesian inference on the unknown parameters using
conditional pdfs of one parameter given the others, instead of the joint
pdf of all parameters. In this procedure, we will cycle through the
parameters drawing each one in its conditional pdf given all other pa-
rameters at their most recent values. Each sample of a parameter is
a step of a Markov chain whose long-run distribution represents the
marginal pdf of the parameter. This method is particularly well suited
in a hierarchical model [23].
For the application to the separation problem, each term in equations
(3) and (4) is considered as a random variable. The hypothesis on
the stationarity and ergodicity of the signals hopping from one cy-
cle to the other yields to the real and imaginary parts of the random

13



variables to be independent, which facilitates considerably the calcula-
tions. The noises ndi and nri are included in the measurements, which
are then considered issued from circularly symmetric complex normal
laws, given the other parameters. Thus, the likelihood functions are:

(3)→ [rji|gj , zi] ∼ NC(gjzi, σ
2
rj ),∀i = 1, ..., Iobs,∀j = 1, ..., Nr (7)

(4)→ [di|h, zi, d0] ∼ NC(htzi + d0, σ
2
d),∀i = 1, ..., Iobs (8)

where gj is the jth row of the matrix G and σ2
d, σ

2
rj are the variances

of the zero-mean Gaussian noises in equations (3) and (4).
Each unknown parameter is considered following a probability density
distribution whose parameters are considered as random variables as
well. Figure 9 shows the associated hierarchical system. Hereafter,
there are prior pdfs that have to be chosen for each random variable,
where InvGamma(a, b) stands for an Inverse-Gamma law of shape and
rate parameters respectively a and b:

[d0] ∼ NC(0, σ2
d0

)
[σ2
d0

] ∼ InvGamma(a0, b0)
[σ2
d] ∼ InvGamma(ad, bd)

[σ2
rj ] ∼ InvGamma(ar, br),∀j = 1, ..., Nr

[zi] ∼ NC(0, I),∀i = 1, ..., Iobs
[ht] ∼ NC(0,diag(σ2

h1
, ..., σ2

hNz
))

[σ2
hk

] ∼ InvGamma(ahk , bhk),∀k = 1, ..., Nz
[gj ] ∼ NC(0,diag(σ2

Gj1
, ..., σ2

GjNz
)),∀j = 1, ..., Nr

[σ2
Gjk

] ∼ InvGamma(aGjk , bGjk),∀j = 1, ..., Nr,∀k = 1, ..., Nz.

(9)
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Figure 9: Hierarchical Bayesian model: data (boxes), parameters (ellipses),
hyper-parameters (diamonds).

In accordance with the Bayesian method, the prior laws contain
the subjective view or the actual knowledge of the user on the param-
eters. They are usually chosen quite flat in order to reflect the lack
of knowledge on the parameters before any measurement. The hyper-
parameters (a, b) are chosen by the user, but the higher they are in the
hierarchical model, the less influence they have on the posterior pdf
of the random variables [23]. In this case of application, the following
information has been assumed known on the priors:

• the variances are supposed to follow Inverse Gamma laws since a
variance can only have positive values;

• all the other parameters are supposed to follow circularly sym-
metric complex Normal laws;

• elements of the Gaussian random vector h are a priori uncorre-
lated;

• h is heteroskedastic, i.e. each element of h can have a different
variance. Each variance follows an inverse gamma distribution;

• elements of G are a priori uncorrelated;

• G is heteroskedastic. Each variance follows an inverse gamma
distribution;

• zi follows a multivariate circularly symmetric complex normal
distribution whose covariance matrix is the identity matrix I.
This means that the latent variables are supposed uncorrelated.
An identity covariance matrix is imposed in order for the vari-
ances of h and G to be identifiable following Eqs. (3) and (4);
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• in order to obtain an estimation of zi for each cycle and rebuild
the time domain signal, the i observations are considered inde-
pendent realizations of a stochastic process. The Bayesian infer-
ence for zi is thus realized for each cycle separately.

Finally it can be noted that Inverse Gamma distributions have been
chosen for the variances and Gaussian ones for the means, since these
two distributions are conjugate priors for the likelihood1. This is a
sensible choice in order to greatly improve the performances of the
following Gibbs sampler [23].

3.2 Proposed Gibbs sampler

In what follows the operator •H is the Hermitian transpose and rest
stands for all the random variables, except the random variables whose
pdf is being expressed. The calculations are detailed in Appendix B.
The application of the procedure follows 11 steps.

1. Initialize the values of d0, σ2
d0

, σ2
d, σ

2
rj , hk, σ2

hk
, Gjk and σ2

Gjk
.

2. ∀i = 1, ..., Iobs, draw a sample from [zi|rest] ∼ N (µzi ,Ωzi) with

µzi = Ωzi(h
∗(di − d0)/σ2

d + GH

 σ−2
r1

0 0

0
. . . 0

0 0 σ−2
rNr

 ri)

Ωzi = (h∗ht/σ2
d + GH

 σ−2
r1

0 0

0
. . . 0

0 0 σ−2
rNr

G + I)−1.

where •∗ stands for the complex conjugate and •t for the matrix
transpose.

3. Draw a sample from [σ2
d|rest] ∼ InvGamma(Iobs + ad,

Iobs∑
i=1

|di −

htzi − d0|2 + bd).

4. ∀j = 1, ..., Nr, draw a sample from [σ2
rj |rest] ∼ InvGamma(Iobs+

ar,
Iobs∑
i=1

|rji − gjzi|2 + br).

5. ∀k = 1, ..., Nz, draw a sample from [σ2
hk
|rest] ∼ InvGamma(1 +

ahk , |hk|2 + bhk).

6. ∀j = 1, ..., Nr and ∀k = 1, ..., Nz, draw a sample from [σ2
Gjk
|rest] ∼

InvGamma(1 + aGjk , |Gjk|2 + bGjk).

1In Bayesian probability, a prior is called a conjugate prior for a certain likelihood,
if prior and posterior are in the same distribution family. For instance, for a Gaussian
likelihood, an Inverse Gamma prior for the variance yields an Inverse Gamma posterior
as well.
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7. Draw a sample from [ht|rest] ∼ N (µh,Ωh) with

µh =
Iobs∑
i=1

(di − d0)zHi Ωh/σ
2
d

Ωh = (
Iobs∑
i=1

ziz
H
i /σ

2
d +

 σ
−2
h1

0 0

0
. . . 0

0 0 σ−2
hNz

)−1.

8. ∀j = 1, ..., Nr, draw a sample from [gj |rest] ∼ N (µgj ,Ωgj ) with

µgj =
Iobs∑
i=1

rjiz
H
i Ωgj/σ

2
rj

Ωgj = (
Iobs∑
i=1

ziz
H
i /σ

2
rj +

 σ
−2
Gj1

0 0

0
. . . 0

0 0 σ−2
GjNz

)−1.

9. Draw a sample from [d0|rest] ∼ N (µd0 , νd0) with

µd0 = νd0
Iobs∑
i=1

(di − htzi)/σ
2
d

νd0 = (σ−2
d0

+ Iobsσ
−2
d )−1.

10. Draw a sample from [σ2
d0
|rest] ∼ InvGamma(1 +ad0 , |d0|2 + bd0).

11. Go back to step 2 and repeat the process until a sufficiently large
sample is collected after convergence.

The sequence of samples produced for one of the random variables
forms a Markov chain, whose distribution after convergence is the pos-
terior marginal distribution of the random variable. The first draws
will not be from the target distribution: the Markov chain needs a
burn-in phase after which its distribution is deemed converged. The
length of the burn-in phase has to be chosen considering the conver-
gence rate of the Markov chains.
In this application, the convergence has been inspected through the
Gelman & Rubin method [20, 23]. Several chains are created starting
from different initialization points. Then the inter-chain and the in-
chain variances are compared and the information is condensed in a
convergence indicator.
For any parameter, a random sample from its prior law can be chosen
as initialization point: the Markov Chain Monte Carlo methods guar-
antee the convergence towards the posterior marginal distribution for
any starting point given a large enough number of iterations. However,
it could be useful to optimize the convergence in order to reduce the
number of iterations and the calculation time. One way of doing this
is to initialize the parameters with the results from the application of a
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classical Wiener filter. As a consequence, the initialization points will
already be near the main mode of the posterior marginal distributions,
easing the convergence towards it. An example of the application of the
Gelman & Rubin method starting from initialization points scattered
around the Wiener filter results is produced in the following section.
It is worth mentioning that, as it can be seen in the algorithm steps,
the more the observations the less the prior laws influence the target
distributions.

3.3 Interpretation of the Gibbs filter as a linear
combination of Wiener filters

As already stated in sub-section 2.1.1, one of the issues in using Wiener
filters is the need to choose between hk(f) and hck(f) without knowing
before hand which one estimates best the signal of interest.
In the case of one source and one reference, it can be easily proven
that the mean of the filter µh after convergence (i.e. the expectation
of the posterior law of the filter) is a linear combination of the Wiener
filters h(f) and hc(f). In what follows each term depends on the fre-
quency, but for the sake of simplicity this dependence is left out. Just
note that the analysis proposed can be done at each frequency. After
development (Appendix C), the following expression can be obtained:

µh = khch
c + khh = αChc + (1− α)h, (10)

α = d0
d0+x̄+εσd/

√
Iobs

C =

Iobs∑
i=1
|zci |

2

Iobs∑
i=1
|zi|2

. (11)

In the former equations x̄ is the deterministic part of the source con-
tribution, while zci stands for the random part of the reference. The
term εσd/

√
Iobs, with ε a standard Gaussian random variable, stands

for the measurement noise.
Figures 10 and 11 help the interpretation of the obtained coefficients:

• if the whole reference signal zi is large with respect to its random
part zci , then C tends to zero and the filter obtained through the
proposed method tends to h. This corresponds well to the Wiener
filtering strategy of favouring the h filter when the random part
of the references is too small: removing the synchronous average
from the references would lead to a small SNR and a poor hc

filter estimation. It is interesting to point out that, even if C is
null, the coefficient kh is not necessarily equal to 1. This means
that kh can be considered as a corrective term, thus according
to the remark of Leclère who noted that the filter h is always
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bigger than hc and it can thus be thought to over-estimate the
contribution [21];

• if the reference signal zi consists mainly in its random part zci
then C tends to 1 and the hc filter is acceptable. Normally,
in this case, if the reference has been wisely chosen, the aimed
contribution too consists mainly of its random part, then α tends
towards 1 and the hc filter is preferred. This also is consistent
with the strategy based on Wiener filter;

• looking more thoroughly at the coefficient α, for an easier under-
standing it can be rewritten as:

α =
1

1 + x̄/d0 + ε√
Iobs

σd
d0

. (12)

If the deterministic part of the signal noise (d0) is large with
respect to the variance of the noise σd and to the deterministic
part of the contribution x̄, then α tends to 1 and the hc filter is
preferred (Fig. 10). This means that if d0 is important, then the
filter should be computed from the random parts of the signals,
which is in accord with the Wiener filter strategy. The same way,
increasing the number of observations Iobs yields to an increase
in the coefficient α tipping the scales in favour of hc (Fig. 11);

• on the other hand, the coefficient α tends to zero if x̄
d0

and/or σd
d0

are large, yielding more weight to the h filter (Fig. 10). This is
the case when the deterministic part of the source contribution
composes most of the measured signal di and it is thus bigger than
the deterministic part of the noise (d0). It holds too when the
variance of the zero mean Gaussian additive noise is far bigger
than its average d0 (which represents the deterministic part of
the noise), meaning that the noise is essentially random and not
correlated with the reference signal and contribution. In both
cases, there is no advantage in computing the hc filter and the
use of the h Wiener filter is preferred, which is in accord with
what is pointed out in this analysis.
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(a) (b)

Figure 10: Sensitivity of kh and khc to x̄
d0

(a) and σd
d0

(b) for several values

of the reference random part (ratios
zci
zi

).

The former analysis shows that the proposed Gibbs filter can be con-
sidered as a linear combination of the two Wiener filters previously
introduced in sub-section 2.1.1. Whereas the adoption of a Wiener
filtering strategy yields to the choice of one filter or the other, the pro-
posed method blends both as a function of the characteristics of the
processed signals.
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Figure 11: Sensitivity of kh and khc to the observation number Iobs for values
of the reference random part (ratios

zci
zi

).

4 Experimental results on simulated sig-
nals

In this section, the algorithm explained in section 3.2 has been ap-
plied to signals simulating an engine outputs. The aim is to verify the
algorithm and compare it to the Wiener filter separation. As a conse-
quence, the application to a global noise whose components are known
is compulsory. In order to do so, synthesized signals which simulate the
references and the total noise are obtained through the application of
Eqs. (3) and (4) to known latent variables z, spectrofilters h and ma-
trix G. These, jointly with their respective variances, are shaped after
the results of the algorithm being previously applied to actual engine
signals. The data di and ri are composed of the Fourier coefficients of
respectively the global noise and the measured references correspond-
ing to one single frequency and to the i = 1, ..., Iobs observations. In
what follows, Iobs = 400 engine cycles, the measured references are
Nr = 8 and the latent ones are supposed to be Nz = 3. The measured
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references have been chosen so that matrix G has the following form:

G =



G11 0 0
0 G22 0
G31 G32 0
G41 G42 0
G51 G52 0
G61 0 G63

G71 0 G73

G81 0 G83


. (13)

Each measured reference, i.e. each term in the vector ri has a dedi-
cated variance σ2

rj whose prior value is fixed considering the nature of
the measured quantity (e.g. microphone or accelerometer).
The results presented in what follows concern the convergence of the
algorithm and its comparison to the separation based on the Wiener
filter method.
Figure 12 shows the convergence of σ2

d over 104 iterations of the Markov
chain. The convergence is rather fast and the zoom in Fig. 13 shows
how the chains, whose initialization point is not the same, converge
toward the same distribution.

                                 
Gibbs sampler iterations
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0.001
Markov chain 1
Markov chain 2
Markov chain 3
Markov chain 4
Wiener result
Target

Figure 12: Convergence of a Markov chain toward the distribution describing
σ2
d.
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Gibbs sampler iterations
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Target

Figure 13: Convergence of a Markov chain toward the distribution describing
σ2
d (zoom on the burn-in phase).

Given a parameter, the initialization points for the chains are scat-
tered around the result returned by the classical Wiener filter: one
initialization point corresponds to the “Wiener” solution, another to
a tenth of its value and the remaining chains are initialized randomly
drawing from a standard uniform distribution defined between 0 and
twice the Wiener estimation of the parameter. The number of chains
used is Nc = 4 and the Gelman & Rubin convergence indicator R is
equal to 1.0001. Knowing that the asymptotic value of this indicator
for the number of iterations which tends to infinite is 1 and knowing
that values inferior to 1.1 can be considered acceptable, it can be con-
cluded that the chains have well converged.
Figure 14 shows the convergence of the three contributions separated
from the global engine noise. As it can be seen, the convergence is not
toward a value but rather toward a distribution, with its mean and
variance.
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Figure 14: Convergence of a Markov chain toward the distribution of the
contributions x̂ki = hkzki, ∀k = 1, ..., Nz and i = {200, 400}. The conver-
gence of the first, second and third source are shown respectively in (a-b),
(c-d), (e-f). This for their values at the engine cycles i = 200 (a-c-e) and
i = 400 (b-d-f). In each figure, the bold solid line is the target result, the
bold dashed line is the result obtained by Wiener filter hc and the thin
coloured lines are four Markov chains.

Figure 15 makes the comparison between the relative error of the
Wiener filter, based on a mean-square optimization, and the one of
the present method. For each observation i, the mean of the Markov
chains from the Gibbs sampling and the value result of the Wiener
filtering are normalized by the theoretical contribution corresponding
to the measure di. It is interesting to remark that the algorithm does
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not exactly converge toward the theoretical value. This is expected,
since the measure di is itself just a realization of a stochastic process, so
there is no reason for it to correspond to the mean of the Markov chain,
whose distribution describes entirely the stochastic process. However,
the 95% credible interval allows to verify that this measure is usually
included in it.
In order to compare the results of the proposed method to the ones
presented in [1], an indicator ek is introduced. For a contribution, it
is obtained as the sum along the engine cycles of the absolute value of
the differences between the known contribution and its estimation:

ek =

Iobs∑
i=1

|xki − hkzki|

Iobs∑
i=1

|xki|
,∀k = 1, ..., Nz, (14)

where xki is the known kth contribution for the engine cycle i. It is
important to note that this indicator might be frequency dependent
according to the frequency range studied. In this section, one single
Fourier coefficient has been synthesized (i.e. one single frequency anal-
ysed), so that ek is a scalar value.
Table 1 shows the result. As it can be seen, the error of the proposed
method is less than the one obtained through the application of the
Wiener filter hc. This is expected since the presence of correlated refer-
ences implies an additional waterfall step in the Wiener filter strategy:
this step, as explained in paragraph 2.1.1, may remove from the ref-
erences information useful for the correct identification of a source.
On the other hand, the proposed approach considers the possible cor-
relation between the measured references directly in the formulation
and extracts from them some uncorrelated latent references in a non-
supervised way. These latent references are then used for the source
separation.
Moreover, as Fig. 15 shows, the result from the present method can
be always followed by the 95% credible interval which conveys some
information on its dispersion.

source contribution Wiener Gibbs

1 0.300 0.227
2 0.624 0.077
3 0.106 0.082

Table 1: Comparison between Wiener and Gibbs errors.
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Figure 15: Estimation error of the algorithms ∀i = 1, ..., Iobs. The first
source is in (a), the second in (b) and the third in (c). The bold black line
is the reference (the measure); in dashed blue is the error of the Wiener
filter hc; in solid red is the error of the proposed algorithm, whose result
is followed also by the credibility interval (dashed red). Zoom between the
100th and 150th engine cycles in the figures at the right.

5 Experimental results on measured sig-
nals

In this section the proposed algorithm is applied to measured signals
issued from a diesel engine in order to extract the contributions to
the sound pressure of the combustion, the injection and high pressure
pump. The presented results concern the contributions of one of the
cylinders of the engine, being the signals windowed around the Top
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Dead Center (TDC)2 of the considered cylinder. The number of ob-
served engine cycles is Iobs = 201 and, after having applied the Fourier
Transform, the evolution of the Fourier coefficients for one frequency
is observed along the cycles. Therefore:

• di is the evolution along engine cycles of one Fourier coefficient
of the overall engine noise measured by a microphone;

• among the measured references ri, the first one (i = 1) derives
from the cylinder pressure, the second one (i = 2) from an elec-
tric information on the injectors and the others (i = 3, . . . , 8)
from accelerometers placed on the engine (Fig. 16). In partic-
ular, the combustion is considered as the dominant source and
as such it is “visible” in all the accelerometer signals. More-
over, each accelerometer is sensitive to the mechanical part on
which it is placed. As a consequence, the accelerometers placed
on the injectors (i = 3, . . . , 5) are sensitive to the combustion
and the injection, whereas the ones placed on the high pressure
pump (i = 6, . . . , 8) are sensitive to the combustion and the pump
movement. Thus, the assumed topology of the matrix G is:

G =



G11 0 0
0 G22 0
G31 G32 0
G41 G42 0
G51 G52 0
G61 0 G63

G71 0 G73

G81 0 G83


; (15)

• such a topology yields to zi (i = 1, 2, 3) components being virtual
pure references for the combustion, the injection and the high
pressure pump, respectively.

2In an internal combustion engine, the TDC denotes the position of a piston in which
it is furthest from the crankshaft.
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high pressure

injectors

electric command triaxial accelerometers

cylinder pressure
pump

probe

Figure 16: Sketch of the measurement protocol for one cylinder.

As it has been done for the synthesized signals, each measured refer-
ence has been assigned a different variance σ2

ri whose prior value is
chosen taking into consideration the physical nature of the signal (het-
eroskedastic mode).
The convergence is again rather fast. It is checked through the Gelman
& Rubin method using four parallel Markov chains. For each random
variable, the initial values of the chains are randomly scattered around
the results from a classical Wiener filter separation realized before-
hand. The convergence indicator after 104 iterations is R = 1.0001,
therefore the chains can be considered to have converged.

                  
Gibbs sampler iterations
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Figure 17: Convergence of a Markov chain toward the distribution describing
σ2
d (zoom on the burn-in phase).

As opposed to the application on synthesized signals (section 4),
in this case the separation results cannot be compared to a reference
solution, but only compared to the Wiener filtering results. What is
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most interesting to analyse is the combustion contribution. Its refer-
ence being very pure, the Wiener filtering is expected to yield a good
estimation of the contribution. The Gibbs extracted contribution is
seen to converge towards it (Fig. 18(a)). What is more, the purity of
the reference is clearly visible in the quality of the estimation, as hinted
by the narrow 95% credible interval. As opposed to the cylinder pres-
sure, the other references are more polluted and this is testified by the
larger credibility intervals of the estimations (Fig. 18(b-c)). The pro-
posed algorithm has been thought for just such cases: combining more
polluted references to find a virtually pure reference and proposing an
estimator jointly with its credible interval giving some information on
the accuracy of the task achieved.

Engine cycles
0 50 100 150 200

−0.2

0

0.2

Engine cycles
0 50 100 150 200

−0.01

0

0.01

0.02

Engine cycles
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−0.02
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0.02

(a)

(b)

(c)

Figure 18: Comparison between the Wiener estimation based on hc (blue
lines) and the Bayesian estimation (red solid lines) of the contributions
hkzki,∀k = 1, ..., Nz. (a), (b) and (c) show respectively the first, second
and third contributions. The Bayesian result is followed by the 95% credi-
bility interval (red dashed lines).

From what has been said in the previous paragraph it follows that
the Gibbs combustion extraction yields similar results to the Wiener
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extraction. After having applied the same algorithm to the whole fre-
quency range of the measured signals, it is interesting to note whether
the Gibbs filter has converged toward h or toward hc (see discussion
in subsection 3.3). It can be remarked that the Gibbs result converges
generally toward the filter hc (Fig. 19). According to Leclère [21]
and as explained in section 2.1.1, indeed the hc Wiener filter boasts a
smaller bias error than the h one, but it is really more convenient only
if the reference random part is important enough to yield an accept-
able SNR and thus a small random error. In the present application
it seems to be the case from f ' 0.046 onward. On the other hand, in
the low frequency range the random part of the reference is too weak
and the estimation error of the hc filter is too important for it to be
acceptable. It can be seen that, in such cases the Gibbs estimator con-
verges toward the Wiener filter h (Fig. 20). The credibility intervals
prove that the two filters are significantly different.

(a)

(b)

Figure 19: Convergence of the Gibbs combustion filter (red solid line) to-
wards the hc Wiener filter (green dashed line - plus markers) in a high
frequency interval, for the real part (a) and the imaginary part (b). It is
shown that the h Wiener filter (blue dashed line - round markers) is out
of the 95% credibility interval of the Gibbs filter (red dashed lines). The
frequency scale is normalized by the sampling frequency.
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(a)

(b)

Figure 20: Convergence of the Gibbs combustion filter (red solid line) to-
wards h Wiener filter (blue dashed line - round markers) in a low frequency
interval, for the real part (a) and the imaginary part (b). It is shown that
the hc Wiener filter (green dashed line - plus markers) is generally out of the
95% credibility interval of the Gibbs filter (red dashed lines). The frequency
scale is normalized by the sampling frequency.

6 Conclusion

A hierarchical Bayesian separation method has been proposed and val-
idated on synthesized and measured signals. The main advantages of
this approach lay in (1) achieving the separation task when the avail-
able references are correlated and noisy, (2) using a Bayesian framework
which yields to the consideration of the prior knowledge, (3) accompa-
nying the results with credible intervals which testify for the quality
of the results, (4) allowing a non-supervised choice of the filter as a
function of the signals characteristics.
Using this approach, some points need particular care. First of all, the
more engine cycles are observed, the better the results will be, since
the influence of the prior laws will be reduced. However, this yields to
long signal acquisitions during which the cyclostationarity and cyclo-
ergodicity hypotheses have to be verified all along. In the engine case,
this means that one stabilized operating condition is analysed in a run
of the algorithm.
Moreover, the a priori given shape of the matrix G imposes constraints
on the measured references. Here also, expertise and prior knowledge
are compulsory in order to safely assume the source contribution in
each reference.
Finally, depending on the analysed signals, the posterior probability
distributions could be multi-modal. In this case, more advanced sam-
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pling techniques could be used in order to improve the chain mixing
properties [17].
The proposed approach proved itself worthy of interest for the source
separation in the particularly difficult case of IC engines, which are
characterized by multiple sources overlapped in the time and the fre-
quency domains. Nevertheless, the approach is general and it can be
used in all application where correlated references are available.
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CeLyA of Université de Lyon, operated by the French National Re-
search Agency (ANR-10-LABX-0060/ANR-11-IDEX-0007).

A Usual probability density functions

Multivariate real normal distribution

The multivariate normal distribution of a N -dimensional random vec-
tor x ∈ RN×1 of mean µ and covariance matrix Σ is noted:

N (µ,Σ) (A.1)

In the non-degenerate case (i.e. Σ is definite positive), the PDF of the
multivariate real normal law is written:

[x|µ,Σ] = N (µ,Σ) =
1

(2π)N/2det
1
2 Σ

e−
1
2 (x−µ)tΣ−1(x−µ) (A.2)

where det • stand for the determinant of a matrix.

Inverse-Gamma distribution

The Inverse-Gamma distribution can be parametrized using the shape
parameter α and the rate parameter β. The Inverse-Gamma distribu-
tion of a random variable x is noted:

InvGamma(α, β) (A.3)

The corresponding PDF is written as:

[x|α, β] = InvGamma(α, β) =
βα

Γ(α)
x−α−1e−

β
x (A.4)
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Multivariate complex normal distribution

If the complex normal random vector x is proper, than the PDF is
written:

[x|µx,Σxx] = NC(µx,Σxx) =
1

πndetΣxx
exp

{
−(x− µx)HΣ−1

xx (x− µx)
}

(A.5)
where µx and Σxx are respectively the mean and the covariance of x.

B Posterior laws calculation

In what follows, the details about the computation of the Bayesian
posterior distributions are proposed.
The basis of the posterior computation is the Bayes theorem as pre-
sented in (7) and (8). The posteriors are obtained as follows:

1. Posterior law of zi, ∀i = 1, . . . , Iobs is:

Likelihood of ri [ri|G, zi, σ
2
r1 . . . σ

2
rNr

] ∼ Nri(Gzi,diag(σ2
r1 , . . . , σ

2
rNr

))

Likelihood of di [di|h, zi, d0, σ
2
d] ∼ Ndi(htzi + d0, σ

2
d)

Prior : [zi] ∼ Nzi(0, I)
(B.1)

[zi|rest] ∝ [ri|G, zi, σ
2
r1 . . . σ

2
rNr

][di|h, zi, d0, σ
2
d][zi]

∝ Nri(Gzi,diag(σ2
r1 . . . σ

2
rNr

)) · Ndi(htzi + d0, σ
2
d) · Nzi(0, I)

∝ exp

(
−(ri −Gzi)

Hdiag(
1

σr1,...,Nr
)(ri −Gzi)

)
·

exp

(
− 1

σ2
d

((di − d0)− htzi)
H((di − d0)− htzi)

)
· exp

(
−zHi zi

)
∝ exp

(
−zHi

(
h∗ht

σ2
d

+ GHdiag(
1

σr1,...,Nr
)G + I

)
zi

)
·

exp

(
zHi (

h∗

σ2
d

(di − d0) + GHdiag(
1

σr1,...,Nr
)ri) + ((di − d0)

ht

σ2
d

+ ridiag(
1

σr1,...,Nr
)G)

)
(B.2)

A Multivariate Gaussian distribution for a random variable z
with mean m and covariance matrix S would lead to:

[z|m,S] ∝ exp
(
−zHS−1z + zHS−1m + mHS−1z

)
(B.3)

Equations (B.2) and (B.3) have the same form and by identifica-
tion it can be recognised that the posterior distribution of zn is
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a Multivariate Gaussian distribution with parameters:

µzi = Ωzi(h
∗(di − d0)/σ2

d + GH

 σ−2
r1

0 0

0
. . . 0

0 0 σ−2
rNr

 ri)

Ωzi = (h∗ht/σ2
d + GH

 σ−2
r1

0 0

0
. . . 0

0 0 σ−2
rNr

G + I)−1.

(B.4)

2. Posterior law of σ2
d:

Likelihood : [di|h, zi, d0, σ
2
d] ∼ Ndi(htzi + d0, σ

2
d)

Prior : [σ2
d] ∼ InvGamma(ad, bd)

(B.5)

[σ2
d|rest] ∝

Iobs∏
i=1

[di|h, zi, d0, σ
2
d][σ2

d]

∝
Iobs∏
i=1

Ndi(htzi + d0, σ
2
d) · InvGamma(ad, bd)

∝ 1

(σ2
d)Iobs

exp

(
− 1

σ2
d

Iobs∑
i=1

|di − d0 − htzi|2
)

1

(σ2
d)ad+1

exp

(
− bd
σ2
d

)

∝ 1

(σ2
d)Iobs+ad+1

exp

(
− 1

σ2
d

(

Iobs∑
i=1

|di − d0 − htzi|2 + bd)

)
(B.6)

This corresponds to an Inverse-Gamma distribution with param-
eters a′d = Iobs + ad and b′d =

∑Iobs
i=1 |di − d0 − htzi|2 + bd.

3. Posterior law of σ2
rj , ∀j = 1, . . . , Nr:

Likelihood : [rji|gj , zi, σ2
rj ] ∼ Nrji(gjzi, σ

2
rj )

Prior : [σ2
rj ] ∼ InvGamma(ar, br)

(B.7)

[σ2
rj |rest] ∝

Iobs∏
i=1

[rji|gj , zi, σ2
rj ][σ

2
rj ]

∝
Iobs∏
i=1

Nrji(gjzi, σ2
rj ) · InvGamma(ar, br)

∝ 1

(σ2
rj )

Iobs
exp

(
− 1

σ2
rj

Iobs∑
i=1

|rji − gjzi|2
)

1

(σ2
rj )

ar+1
exp

(
− br
σ2
rj

)

∝ 1

(σ2
rj )

Iobs+ar+1
exp

(
− 1

σ2
rj

(

Iobs∑
i=1

|rji − gjzi|2 + br)

)
(B.8)
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This corresponds to an Inverse-Gamma distribution with param-
eters a′r = Iobs + ar and b′r =

∑Iobs
i=1 |rji − gjzi|2 + br.

4. Posterior law of σ2
hk
, ∀k = 1, . . . , Nz:

Likelihood : [hk|σ2
hk

] ∼ Nhk(0, σ2
hk

)

Prior : [σ2
hk

] ∼ InvGamma(ahk , bhk)
(B.9)

[σ2
hk
|rest] ∝ [hk|σ2

hk
][σ2

hk
]

∝ Nhk(0, σ2
hk

) · InvGamma(ahk , bhk)

∝ 1

σ2
hk

exp

(
− 1

σ2
hk

|hk|2
)

1

(σ2
hk

)ahk+1 exp

(
− bhk
σ2
hk

)

∝ 1

(σ2
hk

)1+ahk+1 exp

(
− 1

σ2
hk

(|hk|2 + bhk)

)
(B.10)

This corresponds to an Inverse-Gamma distribution with param-
eters a′hk = ahk + 1 and b′hk = |hk|2 + bhk .

5. Posterior law of σ2
Gjk

, ∀j = 1, . . . , Nr ∀k = 1, . . . , Nz:

Likelihood : [Gjk|σ2
Gjk

] ∼ NGjk(0, σ2
Gjk

)

Prior : [σ2
Gjk

] ∼ InvGamma(aGjk , bGjk)
(B.11)

[σ2
Gjk
|rest] ∝ [Gjk|σ2

Gjk
][σ2

Gjk
]

∝ NGjk(0, σ2
Gjk

) · InvGamma(aGjk , bGjk)

∝ 1

σ2
Gjk

exp

(
− 1

σ2
Gjk

|Gjk|2
)

1

(σ2
Gjk

)aGjk+1 exp

(
−
bGjk
σ2
Gjk

)

∝ 1

(σ2
Gjk

)1+aGjk+1 exp

(
− 1

σ2
Gjk

(|Gjk|2 + bGjk)

)
(B.12)

This corresponds to an Inverse-Gamma distribution with param-
eters a′Gjk = aGjk + 1 and b′Gjk = |Gjk|2 + bGjk .

6. Posterior law of ht is:

Likelihood : [di|h, zi, d0, σ
2
d] ∼ Ndi(htzi + d0, σ

2
d)

Prior : [ht] ∼ Nht(0,diag(σ2
h1
, . . . , σ2

hNz
))

(B.13)
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[ht|rest] ∝
Iobs∏
i=1

[di|h, zi, d0, σ
2
d][ht]

∝
Iobs∏
i=1

Ndi(htzi + d0, σ
2
d) · Nht(0,diag(σ2

h1
, . . . , σ2

hNz
))

∝ exp

(
− 1

σ2
d

Iobs∑
i=1

((di − d0)− htzi)((di − d0)− htzi)
H

)
·

exp

(
−htdiag(

1

σ2
h1

, . . . ,
1

σ2
hNz

)(ht)H

)

∝ exp

(
−ht

(
Iobs∑
i=1

ziz
H
i

σ2
d

+ diag(
1

σ2
h1

, . . . ,
1

σ2
hNz

)

)
(ht)H

)
·

exp

(
1

σ2
d

Iobs∑
i=1

(di − d0)zHi (ht)H +
ht

σ2
d

Iobs∑
i=1

zi(di − d0)∗

)
(B.14)

A Multivariate Gaussian distribution for a random variable ht

with mean m and covariance matrix S would lead to:

[ht|m,S] ∝ exp
(
−htS−1(ht)H + htS−1mH + mS−1(ht)H

)
(B.15)

Equations (B.14) and (B.15) have the same form and by identi-
fication it can be recognised that the posterior distribution of ht

is a Multivariate Gaussian distribution with parameters:

µh =

Iobs∑
i=1

(di − d0)zHi Ωh/σ
2
d

Ωh = (

Iobs∑
i=1

ziz
H
i /σ

2
d +

 σ
−2
h1

0 0

0
. . . 0

0 0 σ−2
hNz

)−1.

(B.16)

7. Posterior law of gj , ∀j = 1, . . . , Nr is:

Likelihood : [rji|gj , zi, σ2
rj ] ∼ Nrji(gjzi, σ

2
rj )

Prior : [gj ] ∼ Ngj (0,diag(σ2
Gj1 , . . . , σ

2
GjNz

))
(B.17)
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[gj |rest] ∝
Iobs∏
i=1

[rji|gj , zi, σ2
rj ][gj ]

∝
Iobs∏
i=1

Nrji(gjzi, σ2
rj ) · Ngj (0,diag(σ2

Gj1 , . . . , σ
2
GjNz

))

∝ exp

(
− 1

σ2
rj

Iobs∑
i=1

(rji− gjzi)(rji− gjzi)
H

)
· exp

(
−gjdiag(

1

σ2
Gj1

, . . . ,
1

σ2
GjNz

)gHj

)

∝ exp

(
−gj(

Iobs∑
i=1

ziz
H
i

σ2
rj

+ diag(
1

σ2
Gj1

, . . . ,
1

σ2
GjNz

))gHj +
1

σ2
rj

Iobs∑
i=1

rjiz
H
i gHj +

gj
σ2
rj

Iobs∑
i=1

zir
∗
ji

)
(B.18)

A Multivariate Gaussian distribution for a random row vector g
with mean m and covariance matrix S would lead to:

[g|m,S] ∝ exp
(
−gS−1gH + gS−1mH + mS−1gH

)
(B.19)

Equations (B.18) and (B.19) have the same form and by identi-
fication it can be recognised that the posterior distribution of gj
is a Multivariate Gaussian distribution with parameters:

µgj =

Iobs∑
i=1

rjiz
H
i Ωgj/σ

2
rj

Ωgj = (

Iobs∑
i=1

ziz
H
i /σ

2
rj +

 σ
−2
Gj1

0 0

0
. . . 0

0 0 σ−2
GjNz

)−1.

(B.20)

8. Posterior law of d0 is:

Likelihood : [di|h, zi, d0, σ
2
d] ∼ Ndi(htzi + d0, σ

2
d)

Prior : [d0] ∼ Nd0(0, σd0)
(B.21)

[d0|rest] ∝
Iobs∏
i=1

[di|h, zi, d0, σ
2
d][d0]

∝
Iobs∏
i=1

Ndi(htzi + d0, σ
2
d) · Nd0(0, σd0)

∝ exp

(
− 1

σ2
d

Iobs∑
i=1

((di − htzi)− d0)H((di − htzi)− d0)

)
· exp

(
−|d0|2

σ2
d0

)

∝ exp

(
−

(
Iobs
σ2
d

+
1

σ2
d0

)
|d0|2 +

d0

σ2
d

Iobs∑
i=1

(di − htzi)
∗ +

d∗0
σ2
d

Iobs∑
i=1

(di − htzi)

)
(B.22)
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A Gaussian distribution for a random variable d0 with mean m
and variance s2 would lead to:

[d0|m, s2] ∝ exp

(
−|d0|2

s2
+
d∗0m

s2
+ +

m∗d0

s2

)
(B.23)

Equations (B.22) and (B.23) have the same form and by identi-
fication it can be recognised that the posterior distribution of d0

is a Gaussian distribution with parameters:

µd0 = νd0

Iobs∑
i=1

(di − htzi)/σ
2
d

νd0 = (σ−2
d0

+ Iobsσ
−2
d )−1.

(B.24)

9. Posterior law of σ2
d0

:

Likelihood : [d0|σ2
d0 ] ∼ Nd0(0, σ2

d0)

Prior : [σ2
d0 ] ∼ InvGamma(ad0 , bd0)

(B.25)

[σ2
d0 |rest] ∝ [d0|σ2

d0 ][σ2
d0 ]

∝ Nd0(0, σ2
d0) · InvGamma(ad0 , bd0)

∝ 1

σ2
d0

exp

(
− 1

σ2
d0

|d0|2
)

1

(σ2
d0

)ad0+1 exp

(
− bd0
σ2
d0

)

∝ 1

(σ2
d0

)1+ad0+1 exp

(
− 1

σ2
d0

(|d0|2 + bd0)

)
(B.26)

This corresponds to an Inverse-Gamma distribution with param-
eters a′d0 = ad0 + 1 and b′d0 = |d0|2 + bd0 .

C Expressing the Gibbs filter as a combi-
nation of Wiener filters

For the sake of clarity the development corresponds to the case where
Nz is equal to one. Moreover, in order to compare the Bayesian filter to
the Wiener filters, the variances σhk are reduced to zero to simulate the
deterministic result characteristic of the Wiener approach. Under these
hypothesis, the variance of the Gibbs estimate for the filter becomes

ωh =
σ2
d∑Iobs

i=1 |zi|2
(C.1)
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and the expected value of the filter can thus be written as:

µh =

∑Iobs
i=1 (di − d0)z∗i∑Iobs

i=1 |zi|2
(C.2)

where •∗ stands for the complex conjugate. Some manipulation is nec-
essary to make the Wiener filters appear. To this aim, their formulation
is reminded here after:

h =

∑Iobs
i=1 diz

∗
i∑Iobs

i=1 |zi|2
(C.3)

hc =

∑Iobs
i=1 (di − d)(zi − z)∗∑Iobs

i=1 |zi − z|2
=

∑Iobs
i=1 (di − d)z∗i∑Iobs
i=1 |zi − z|2

(C.4)

where the synchronous average (deterministic part) of the terms is
noted •.
Equation (C.2) can then be manipulated as follows:

µh =

∑Iobs
i=1 (di − d0)z∗i∑Iobs

i=1 |zi|2
(C.5)

=

∑Iobs
i=1 ((di − d)− d0 + d)z∗i∑Iobs

i=1 |zi|2
(C.6)

=

∑Iobs
i=1 ((α+ (1− α))(di − d)− d0 + d)z∗i∑Iobs

i=1 |zi|2
(C.7)

= α

∑Iobs
i=1 (di − d)z∗i∑Iobs

i=1 |zi|2
+

∑Iobs
i=1 ((1− α)(di − d)− d0 + d)z∗i∑Iobs

i=1 |zi|2
(C.8)

= α

∑Iobs
i=1 (di − d)z∗i∑Iobs

i=1 |zi|2
+ (1− α)

∑Iobs
i=1 diz

∗
i∑Iobs

i=1 |zi|2
+

∑Iobs
i=1 (αd− d0)z∗i∑Iobs

i=1 |zi|2
(C.9)

= α

∑Iobs
i=1 |zi − z|2∑Iobs
i=1 |zi|2

∑Iobs
i=1 (di − d)z∗i∑Iobs
i=1 |zi − z|2

+ (1− α)

∑Iobs
i=1 diz

∗
i∑Iobs

i=1 |zi|2
+

∑Iobs
i=1 (αd− d0)z∗i∑Iobs

i=1 |zi|2
(C.10)

Noting C =
∑Iobs
i=1 |zi−z|

2∑Iobs
i=1 |zi|2

, the Wiener filter hc can be recognised in the

first term, whereas the h filter in the second. Therefore, equation (C.2)
can be rewritten as:

µh = αChc + (1− α)h+

∑Iobs
i=1 (αd− d0)z∗i∑Iobs

i=1 |zi|2
(C.11)
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Finally, the arbitrary value α can be chosen in order to eliminate the
third term:

α =
d0

d

=
d0∑Iobs
i=1 di
Iobs

=
d0∑Iobs

i=1 (d0+xi+ni)

Iobs

=
d0

d0 + x+ εσd/
√
Iobs

(C.12)

where xi is the contribution of the source, x its deterministic part and
the mean of the random noise

∑Iobs
i=1 ni follows a complex Gaussian

distribution defined by εσd/
√
Iobs with ε ∼ NC(0, 1) being a standard

circular complex Gaussian random variable.
This yields equations (10) and (11).
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