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Abstract

In a previous work, an attempt was made to give a unified view of some acoustic holographic methods within a
Bayesian framework. One advantage of the so-called “Bayesian Focusing” approach is to introduce an aperture
function that acts like a lens and thus significantly improves the reconstruction results in terms of spatial resolution,
but also of quantification over a larger frequency interval than allowed by conventional methods. This is particularly
remarkable when the aperture function is allowed to become very narrow as in the case of sparse sources. The aim
of the present paper is to demonstrate that the aperture function – which was previously manually tuned by the user –
can be automatically estimated, together with the source distribution, in the same inverse problem. The principle is to
use the current estimate of the source distribution to update the aperture function in the next iteration. The resulting
algorithm is an iterated version of Bayesian Focusing, which can be formalized as an Expectation-Maximization
algorithm with proved convergence. The proof of convergence is based on modeling the aperture function as a random
quantity, which assigns the source coefficients with prior probability distribution in the form of a “scale mixture of
Gaussians” that enforces sparse solutions. Various types of sparsity enforcing priors can thus be constructed, in a
much richer setting than the usual `1 penalized approach, leading to different updating rules of the aperture function.
Some immediate byproducts of iterating Bayesian Focusing are 1) to provide a technique for the automatic setting
of the regularization parameter, 2) to apply on the cross-spectral matrix of the measurements, and 3) to easily allow
the grouping of frequencies for the broadband analysis of sources that are stationary in space. Experimental results
confirm that sparse holography improves the reconstruction of sources not only in terms of localization, but also of
quantification and of directivity in a frequency range considerably enlarged as compared to classical methods. These
improvements can be achieved even with regular arrays, provided that sparser priors than those leading to the standard
`1 penalization are used.
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List of acronyms
AF Aperture Function
BIBF Broadband Iterated Bayesian Focusing
BF Bayesian Focusing
GMCG Generalized multivariate complex Gaussian
IBF Iterated Bayesian Focusing
LS Least-Square
MAP Maximum Aposteriori
MCK Multivariate complex K-distribution
MCL Multivariate complex Laplace
MCS Multivariate complex Student-t
MMCG Mixture of multivariate complex Gaussians
PDF Probability Density Function
SMoG Scaled Mixture of Gaussians
SNR Signal-to-Noise Ratio
ULA Uniform Linear Array

1. Introduction

The reconstruction of sound sources from acoustic array measurements is known as a difficult inverse problem.
Several methods have been proposed over the years with sustained efforts to reach improved performance. An un-
avoidable limitation arises from the fact that reconstructing a continuous acoustical field from a limited number of
discrete and remote measurements, as returned by an array of microphones, has no unique solution in general. This
issue is particularly critical in near-field configurations, where the spectrum of the propagation operator is character-
ized by a fast exponential decay and is therefore hardly invertible. Consequently, sound sources cannot be reliably
reconstructed unless additional information is incorporated into the inverse problem in order to reduce the space of
possible solutions. So far, Tikhonov regularization has been the prevalent method to address this issue, by selecting
solutions with minimal energy. However, this is often at the expense of accuracy of the reconstruction, and especially
in term of spatial resolution. When the sources of interest are known to have a sparse representation, much better
strategies than Tikhonov regularization are actually feasible.

Compressed sensing and the related concept of sparsity have recently encountered a huge success for solving ill-
posed problems in many scientific fields [1]. Compressed sensing is essentially a new sampling theory which provides
a valid alternative to Shannon theory in situations where samples are forced to remain limited. It relies on the premise
that there exists a sparse representation of the quantities of interest and furnishes unexpected optimistic bounds on
the number of measurements required to reconstruct it without loss. When applied to inverse problems that seek a
sparse solution, sparsity intervenes as an alternative to Tikhonov regularization by imposing an apriori on the shape
of the expected solution and not only on its energy. This is apt to considerably narrow the space of possible solutions
and, in some situations, even shrink it to a unique solution. Technically speaking, the difference is in replacing the
`2-norm penalty used in Tikhonov regularization by a `p-norm, with p a power strictly less than 2, typically equal to
1. Whereas Tikhonov regularization tries to minimize the energy (reflected by the `2-norm) of the solution with the
side-effect of spreading the source in space, “sparse regularization” controls the source magnitude by forcing it to take
only a few high values and shrinking it towards zero everywhere else.

The above benefits have been recognized early for the localizing of sources, a subject which has nourished an
abundant literature in array processing (beamforming, Direction Of Arrival) [2, 3]. In these seminal works, sparsity
arrives from the assumption that the acoustical field is produced by a few point sources (monopoles) located in the far-
field. Remarkable results have been obtained based on minimizing the `1-norm, which proved superior to those of the
state-of-the-art, such as returned by classical high-resolution (parametric) methods (e.g. Capon, MUSIC). Numerous
works have followed, which constitute a body of literature known as compressive beamforming [4]. Applications to
acoustics are found in Refs. [5, 6, 7, 8, 9, 10].

Incidentally, compressive beamforming shares some similarities with deconvolution algorithms – originally de-
rived as a post-processing of beamforming results – such as DAMAS [11], DAMAS2, SC-DAMAS [12], CLEAN-SC
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[13], NNLS, since they all try to return a final beamforming map made of a few point sources [14]. Another connec-
tion can be made with covariance matching methods [15], which also enforce sparse solutions as pointed in [16]. This
fact has been exploited in Refs. [17, 18] which proposed super-resolution algorithms derived in a Bayesian setting
to estimate the power of incoherent point sources in the presence of background noise. In addition to refining spatial
resolution, deconvolution and covariance matching methods have been shown to improve the estimation of source
powers over a large interval of frequencies; this pushes still further one of the recurrent limits of acoustic imaging
techniques. However, this family of techniques critically relies on the assumption of uncorrelated sources, a constraint
which is actually relaxed in compressive beamforming [8].

Generalized versions of beamforming with sparsity constraints have also been investigated in acoustics inde-
pendently from the recent literature on compressive beamforming. The so-called Generalized inverse beamforming
(GIBF) is truly an inverse problem that tries to recover a limited number of monopoles and dipoles by imposing a
`1-norm penalty [19, 20]. Strongly inspired by deconvolution algorithms, it has been shown to outperform them in
several instances, in particular in the presence of correlated sources. More general configurations have recently been
investigated where the acoustical field is parsimoniously represented by a few elements taken in dictionaries different
from a set of monopoles or dipoles. Reference [21] proposes to use a dictionary made of spherical harmonics so as to
jointly localize the sources and identify their directivity.

Although compressive beamforming (broadly speaking as including all the aforementioned techniques) has proba-
bly reached its maturity, it has so far mostly relied on the far-field approximation of the acoustic propagator. This is an
explicit assumption in Refs. [5, 6, 7, 8, 9, 10] concerned with DOA and is often implicit in deconvolution approaches
based on beamforming. While GIBF is theoretically not subjected to this constraint, it seems that it has been mostly
validated in the far-field as well.

There are few reports to date of the application of sparse inversion to (near-field) acoustical holography (NAH).
Reference [22] was probably first to address the subject. The objective therein was to demonstrate that a substantial
reduction in the number of microphones can be achieved (by more than a factor 10) without affecting the reconstruction
performance by exploiting the sparsity of the acoustical field. The two fundamental assumptions are that the acoustical
field can be represented by a few plane waves (sparsity in the wavenumber domain) and that the microphones are
distributed randomly.

Steered by somewhat different objectives, Ref. [23] recently introduced the concept of wideband acoustical holog-
raphy (WBH). The motivation in this work is for a method that can bridge the gap between NAH and classical beam-
forming in order to reconstruct sources over a wide frequency range. On the one hand, NAH can cover the low
frequencies but requires the array to be placed at a small distance. On the other hand, beamforming has good perfor-
mance in a high frequency range but requires the array to be moved at a larger distance. By enforcing sparsity in the
Equivalent Source Method (ESM) (i.e. representation by a few point sources), the proposed WBH method is able to
reconstruct sources with a remarkable quantification of the sound power over a wide frequency range. A numerical
experiment seems to indicate that WBH is also able to consider extended sources such as produced by the vibration of
a plate. The algorithm proposed in Ref. [23] is named “fast” because it uses an Iterative Hard Thresholding algorithm
instead of a direct `1-norm minimization, yet it still depends on several user-dependent parameters.

Following a similar same idea, Ref. [24] also proposed a sparse version of ESM, yet based on direct `1-norm
minimization. In accordance with the results of Ref. [22], the authors also stress the importance of using a sam-
pling scheme that leads to low column coherence of the sensing matrix, a condition which is better met when the
distance between the measurement plane and the source plane is decreased. As in Ref. [23], the applicability to the
reconstruction of extended sources is also demonstrated by placing the equivalent sparse sources behind the actual
radiating surface. The investigated frequency range is limited to that of classical NAH, where moderate improve-
ment is observed in the reconstruction of source spatial distribution as compared to `2 regularization. Reference [25]
introduced independently a sparse wave superposition method (with sparsity placed on the so-called “charge points”
which actually coincide with the monopoles generating the acoustic field), yet its validation was limited to a numerical
simulation. Most recently, the spare ESM has been extended to the case where a limited number of acoustical modes
rather than monopoles are recovered in order to explain a source field; in Ref. [26] the “radiation” modes are obtained
from the eigenvalue decomposition of the power resistance matrix [27], whereas in Ref. [28] they are computed from
a finite element model of the radiating object.

It is noteworthy that Ref. [29] introduced a sparse ESM before the former publications, which was later named
Iterative ESM (iESM). It was compared with GIBF in Ref. [30] and also with deconvolution approaches in Ref. [31].
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Two remarks are worthwhile in light of the above literature review on compressive beamforming and sparse NAH.
First, most of the aforementioned works enforce sparsity through an `1-norm penalty and essentially differ in the
optimization algorithm used to minimize it. Although few methods set up the inverse problem with a general `p-
norm, p ≤ 2, the inverse problem is often solved with p = 1 in order to allow the use of a convex optimization
algorithm (e.g Iterated Reweighted Least Squares (IRLS) in [19] and linear programming in [24]). One exception is
Ref. [31] which shows the advantage of using p < 1 and in particular p→ 0 by inserting a thresholding step in IRLS.
Another exception is WBH which introduces an optimization algorithm similar to Iterative Hard Thresholding, yet
without specifying which norm is actually minimized.

Second, a challenging aspect of all the above approaches is to involve a regularization parameter (sometimes
implicitly) that balances the effect of the sparsity enforcing penalty with the data fidelity term. Although setting the
regularization parameter is known to be extremely critical, especially in NAH, no systematic rule seems to have found
a consensus in the sparse case, contrary to state-of-the-art on `2-norm Tikhonov regularization [32]. The “cross-
validation” criterion is often advocated, yet it is costly to apply since it has no “generalized” equivalent as can be for
Tikhonov regularization [33].

The main contribution of the present paper is to demonstrate that sparse NAH is naturally devised by iterating the
Bayesian Focusing (BF) method introduced in Ref. [34]. BF solves the inverse acoustical problem by considering
the sound sources as random variables. They are first vaguely described by a prior probability density function (PDF)
which reflects the user expectation before the experiment is run. Next, the posterior PDF is found as the product
of the likelihood function and the prior PDF, which provides the probability of the sound sources after taking the
measurements. A typical point estimate is then returned by the maximum value of the posterior PDF – the maximum
aposteriori (MAP) – i.e. the source configuration with highest probability of occurrence given the observed data.
In BF, the variance of the prior PDF – coined the aperture function (AF) – appears as a key quantity; intuitively, it
will take high values where the sound sources are expected to radiate from and nil values elsewhere. Therefore, by
shrinking the space of solutions to a confined region, the AF improves the quality of the reconstruction in terms of
spatial resolution and of source strength quantification over a larger frequency interval than allowed by conventional
methods. This is all the more remarkable as the AF is allowed to become very narrow, as in the case of sparse sources.
By analogy with optics, it plays the role of a lens that focuses the light onto a point.

In Ref. [34], the AF was manually tuned by the user. A natural idea is to automate this process by using the current
estimate of the source distribution as the AF to apply in the next iteration. It is shown in this paper that iterating BF
generally leads to the recovery of sparse solutions. Not only is the common `1-norm penalty recovered as a particular
case, but many other sparsity enforcements – possibly stronger than the `1-norm – can be devised depending on how
the AF is updated. The reason is that when the AF is considered as a random quantity (in the Bayesian setting all
unknowns are described by random variables), it then assigns the sound sources with a prior PDF in the form of a
“scale mixture of Gaussians” (SMoG), which necessarily promotes sparsity. Based on this finding , the convergence
of the iterations can be proved by establishing a formal equivalence with the Expectation-Maximization algorithm.
This algorithm will be referred as Iterating Bayesian Focusing (IBF), which is reminiscent of the general concept of
“sparse Bayesian learning”.

One advantage of IBF is to provide some physical insight into the mechanism of sparsity enforcement. Through
the role played by the AF, it explains why promoting sparse solutions not only increases the spatial resolution, but
also improves the estimation of the source levels and the source directivity over a larger frequency range.

Another prime advantage of the approach is to inherit the automated regularization of BF [35]. Contrary to
Tikhonov regularization for which well established algorithms exist (e.g. the L-curve, GCV), this point remains an
issue in compressive beamforming. Here, by taking a Bayesian perspective, the regularization parameter is jointly
inferred in IBF with proved convergence.

The Bayesian framework also easily allows the processing of multiple snapshots and multiple frequencies, which
both involve the consideration of group sparsity [36]. The multi-snapshot case is addressed here by means of the
cross-spectral matrix (CSM), which turns out a sufficient statistic (the approach differs in this aspect from that of Ref.
[9]). The advantage of using the CSM is purely practical, since it is often the only quantity recorded by commercial
data acquisition systems; indeed, it happens to be sufficient for running most imaging methods while allowing at the
same time a substantial reduction of the amount of stored data. The multi-frequency approach is of interest when the
sound sources have a constant position in space, independently of their frequency content, thus leading to broadband
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processing. Both the multi-snapshot and the multi-frequency considerations are shown to improve the estimation of
the sound sources.

The rest of the manuscript is organized as follows. Section 2 starts with a review of BF and of the key concept
of an AF. Next, Section 3 explains the focusing mechanism produced by the AF and the resulting improvement in
the estimation of the source strength over a wide frequency range. Section 4 then introduces the principle of the IBF
method and its formalization by means of prior PDFs in the form of an SMoG. Specific cases are detailed relating
to the multivariate complex Student-t, K-distribution, Laplacian, Generalized Gaussian and mixture of Gaussians.
Section 5 compares these different possibilities in terms of the number of parameters to set and of systematic and
random errors. Section 6 extends IBF to the broadband case. Finally, section 7 illustrates the application of IBF to
experimental data. In order to ease the reading of the manuscript, all technical parts are moved to the Appendix.

The following notations are used throughout the document. By convention, vectors are denoted by bold lower-case
letters and matrices by bold upper-case letters (e.g. u and U, respectively). I stands for the identity matrix. Symbol ∗

stands for the complex conjugate of a complex variable. Symbol H stands for the transpose conjugate of a vector or a
matrix. Diag(aq) is the diagonal matrix with element aq in its q-th diagonal entry. Operator E{X} denotes the expected
value of a random variable X and E{X|Y} the expected value of X conditioned to random variable Y . By convention,
square brackets are used to denote a PDF (e.g. [X] denotes the PDF of random variable X). Notation [X|Y] stands
for the PDF of X conditioned on Y . NC(x; µ,Ω) means that vector x follows a complex Gaussian with mean µ and
covariance matrix Ω. The collection of indexed vectors {pi}

N
i=1, pi ∈ CM (resp. {si}

N
i=1) is denoted as P (resp. S), an

M × N matrix whose i-th column is pi. The `p-norm of a vector x in CN is defined as ||x||p
.
= (

∑N
q=1 |xq|

p)1/p. The
position vector in the continuous space is denoted by r. A function of space (e.g. σ) may be noted in three different
forms: i) the functional notation, σ(r), where it is viewed as a continuous function of the space variable r, ii) the
discrete notation, σq

.
= σ(rq), where it is viewed as a sample at position rq, and iii) the matrix notation, Σ

.
= Diag(σq),

which collects all the space samples in a diagonal matrix.

2. Review of Bayesian Focusing (BF)

2.1. Parametrization of the problem

The array is composed of M microphones indexed by the lower-case letter m, located at positions rm, m = 1, ...,M.
All measurements are considered at a given frequency f , after application of the Fourier transform on a series of N
snapshots indexed by the lower-case letter i (i = 1, ...,N). The Fourier coefficients of the sound pressure measured
by microphone m and assigned to snapshot i then reads pm,i, where explicit dependence on frequency f is dropped
to simplify the notation. The M Fourier coefficients pm,i, m = 1, ...,M are collected in the column vector pi. The
cross-spectral matrix (CSM) of the measurements averaged over N snapshots is defined as

Spp =
1
N

N∑
i=1

pipH
i . (1)

In the following, formulations in either continuous or discrete space will be used alternatively, the former because
it provides deeper physical insight and the latter because it corresponds to the numerical resolution of the problem.
In the continuous formulation, the source distribution is assumed to be a scalar field – e.g. parietal pressure, normal
velocity – that adheres on the source surface Γs. In a functional notation, it is noted si(r) where r ∈ Γs stands for
the position vector. In the discrete formulation of the problem, the spatial samples of the source distribution taken at
positions rq, q = 1, ...,Q are noted sq,i

.
= si(rq). They are referred to as the “source coefficients” and are collected in

the column vector si, with dimension Q. The power spectrum of the source coefficients at position rq, averaged over
N snapshots, is defined as

S qq =
1
N

N∑
i=1

|sq,i|
2. (2)
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2.2. Direct problem

The relationship between the source distribution and the radiated pressures measured by the microphones is here-
after considered in the form of a Fredholm integral. In a functional notation, the direct problem therefore reads

pm,i =

∫
Γs

G(rm|r)si(r)dΓ(r) + nm,i, i = 1, ...,N (3)

where G(rm|r) is the Green function between the source point r ∈ Γs and the microphone location rm subjected to
Neumann boundary conditions on Γs. The quantity nm,i stands for additive noise at microphone m. In anticipation of
a numerical resolution of the inverse problem, the discrete version of Eq. (3) is considered,

pi = Gsi + ni, i = 1, ...,N, (4)

where G stands for an M × Q matrix whose entry (i, q) is fed with G(rm|rq)∆Γ(rq) – with ∆Γ(rq) a small surface
element at position rq – and where vector ni stacks the noise terms nm,i.

The aim of the inverse problem is to recover an estimate of the source distribution si(r) from the observation of
the measured pressures P .

= {pi}
N
i=1 returned by the array of microphone. BF provides a solution to this problem that

makes intensive use of prior information about the spatial structure of the source field to be recovered.

2.3. The Bayesian program

The philosophy in the Bayesian approach is to see all unknowns in the inverse problem as random variables and
to infer them through their PDFs. Of interest here is the posterior PDF [si|pi] of the vector si of coefficients given the
measurement pi. The knowledge of [si|pi] completely characterizes the information that can be gained on si once the
data have been measured. A popular point estimate used in this paper is the MAP estimate,

ŝi = Argmax
si

[si|pi], (5)

to be interpreted as the value of si with maximum probability, yet another plausible estimate is the posterior mean
E{si|pi} =

∫
si[si|pi]dsi.

Bayes’s rule then makes it possible to express the “inverse probability” [si|pi] in terms of the probabilities assigned
to the direct problem, that is

[si|pi] =
[pi|si][si]

[pi]
(6)

where [pi|si] is the PDF of observing the data given an instance of si (the so-called likelihood function), [si] is the PDF
of the values possibly taken by si before the data are observed (the so-called prior) and [pi] =

∫
[pi|si][si]dsi is the

“evidence”. The Bayesian program is to introduce the PDFs [pi|si] and [si] according to the specificity of the problem
and to deduce the posterior PDF [si|pi] by using Eq. (6).

Since the data are processed in the Fourier domain, it holds from the Central Limit Theorem applied to the
Fourier transform that the elements of the noise vector ni rapidly converge to a complex Gaussian [37]. Assuming for
simplicity a zero mean and a covariance matrix proportional to the identity (i.e. a homogeneous field),

[pi|si] =
e−β

−2(pi−Gsi)H (pi−Gsi)

β2MπM = NC(pi; Gsi, β
2I) (7)

where β2 stands for the value of the noise power spectrum at frequency f (independently of space according to the
previous assumption) and π = 3.14159... is Archimedes’ constant.

The specification of the prior PDF [si] allows much more flexibility and is actually central in this paper. The
assumption initially used in Ref. [34] – to be shortly abandoned from section 4 – is to resort to a complex Gaus-
sian, mainly because it makes analytic calculation tractable and also because it coincides with classical Tikhonov
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regularization. Namely,

[si] =
e−α

−2sH
i Σ−2

0 si

α2QπQ|Σ2
0|

= NC(si; 0, α2Σ2
0) (8)

where α2Σ2
0 = E{sH

i si} stands for the prior covariance matrix of the coefficients, α2 for their mean power and Σ2
0 for

a matrix of correlation coefficients conventionally normalized such that trace{Σ2
0} = Q. The fact that α2Σ2

0 does not
depend on index i reflects the assumption of a stationary acoustic field, i.e. with constant statistical properties during
the acquisition of the N snapshots. Using Eq. (6), one then finds the posterior PDF in the form of a complex Gaussian,
[si|pi] = NC(si; ŝi,Ω), with posterior mean and covariance matrix

ŝi = Σ2
0GH(GΣ2

0GH + η2I)−1pi, η2 =
β2

α2 (9)

Ω =
(
β−2GHG + α−2Σ−2

0

)−1
.

In this case, the posterior mean ŝi coincides with the MAP estimate as well as with the Tikhonov regularized least-
square solution (LS) returned by

ŝi = Argmax
si

[pi|si][si] = Argmin
si

(− ln[pi|si][si]) = Argmin
si

(
||pi −Gsi||

2
2 + η2‖Σ−1

0 si‖
2
2

)
(10)

with ‖Σ−1
0 si‖

2
2
.
= sH

i Σ−2
0 si and wherein all terms not depending on si have been dropped out. The ratio η2 = β2/α2 in the

above equations acts as the Tikhonov regularization parameter which controls the stability of the solution. One benefit
of the Bayesian framework is to provide a solution to automatically tune η2, as described in Ref. [35] and resumed in
Appendix B.

It is explicit from Eq. (9) that the MAP estimate directly depends on the setting of the prior covariance Σ0. This
aspect is crucial in the present paper, since it is the mechanism by which sparse solutions will be promoted as explained
in the next subsections.

2.4. Definition of a spatial prior through the aperture function

Although the exact source distribution will remain unknown until the inverse problem is solved, prior information
is often available before the experiment is run, even in a vague form. Typically, spatial regions may be identified
where sources are expected to radiate from – or not – and a certain degree of spatial correlation may be specified on
the expected source field. Such elements of information constitute the “spatial prior”.

Of specific concern in this paper is the case where a majority of the source coefficients are nil (or nearly so)
whereas a few coefficients are allowed to take large values. This is referred to as a “sparse” source distribution.
Although this situation will be properly addressed in section 4 by introducing specific non-Gaussian prior PDFs [si],
a necessary condition to meet from the onset is to assume a priori that the source distribution is incoherent on the
surface Γs. This will return the finest spatial resolution among all possible spatial priors. It is important to emphasize
at this juncture that the assumption of prior incoherence does not imply that the reconstructed sources are a posteriori
incoherent as well: correlation among the estimated source coefficients is truly allowed as seen immediately from
the structure of Eq. (9). Indeed, most methods of the literature (e.g. such as NAH or ESM) happen to assume prior
incoherence in an implicit manner when interpreted from a Bayesian perspective.

Assuming time stationarity and a finite-power (i.e. with integrable squared-magnitude) spatial spectrum, the
spatial correlation of an incoherent source field has the functional form

E
{
si(rq)si(rq′ )∗

}
= α2σ2

0(rq)δqq′ (11)

where δqq′ stands for the Kronecker delta and σ2
0(rq) reflects the intensity of the field at position rq. The continuous

function σ2
0(r), r ∈ Γs, arbitrarily normalized to unit volume,

∫
Γs
σ2

0(r)dΓ(r) = 1, is called the “aperture function” (AF)
[34] for reasons to become clear soon and α2 the prior “source power”. This allows for possible non-homogeneity
of the source field with prior local variance E{|si(r)|2} = α2σ2

0(r). Therefore, spatial regions with high likelihood of
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radiation are assigned a relatively high value of σ2
0(r) whereas regions less likely to radiate are given a value of σ2

0(r)
close to zero. Based on this model, one has the Q × Q diagonal prior covariance matrix

Σ2
0 = Diag

(
σ2

0,q

)
, (12)

where σ2
0,q

.
= σ2

0(rq). It is proved in Appendix A that this parameterization of the problem actually minimizes the
mean-square error of the estimated source. In a discrete setting, this implies the following probabilistic model for the
source coefficients,

sq,i = α · σ0,q · εq,i, εq,i ∼ NC(0, 1), (13)

where εi,q denotes a standardized (i.e. zero-mean and unit variance) complex Gaussian random variable. The latter
encodes the fluctuations of the source coefficient in time – hence its dependence on the snapshot index i – whereas the
(squared) product α2σ2

0,q returns the source power at spatial position rq independently of i. Since σ2
0,q is normalized,

it is convenient to endow the global variable α with the physical dimension of the sources sq,i.

Eventually, more insight is provided by the functional notation of Eq. (9) as allowed by the introduction of the AF
σ2

0(r). It is seen that the source at position r is then estimated as

ŝi(r) = σ2
0(r)

M∑
m=1

G(r|rm)∗qm,i (14)

where the coefficients qm,i are the elements of vector

qi = (G + η2I)−1pi with [G]kl =

∫
Γs

G(rk |r)G(rl|r)∗σ2
0(r)dΓ(r). (15)

Formula (14) explicitly shows that the number of “degrees of freedom” of the estimated source distribution is equal
to the number of microphones. Its physical interpretation is that ŝi(r) is estimated by constructively interfering on
surface Γs the waves radiated by the M microphones as if they were point sources with “strength” qm,i – from the
principle of reciprocity, the conjugated Green function G(r|rm)∗ appearing in Eq. (14) means that the direction of
propagation is reversed, from the microphone position rm to the source coordinate r. At last, the estimated source is
focused on the region of interest by multiplication of the sum in Eq. (14) with the AF σ2

0(r).

3. Focusing mechanism and its link to wideband acoustical holography

The AF σ2
0(r) plays a fundamental role in BF. By shrinking the reconstruction of the source distribution on a

restrained spatial region where sound is a priori supposed to radiate from, it can considerably improve the estimation
performance in terms of spatial resolution, quantification of sound levels, and frequency range. The improvement
in spatial resolution is an obvious consequence of using a narrow AF. If S σ denotes the effective area of the surface
covered by σ2

0(r), then the spatial resolution of ŝ(r) is on the order of S σ/M.
The improvement in the quantification of sound levels is perhaps more unexpected. It may be explained as follows:

since a narrow AF alleviates the effort of localizing the sources, more “degrees of freedom” are left available to
improve the accuracy of the source amplitudes. An extreme example is when a small number – say Ns – of point
sources are to be estimated with a priori known positions; the AF is then shrunk into a few Dirac deltas at the source
positions so that the inverse problem boils down to estimating Ns amplitudes from M observations. As long as Ns ≤ M
the problem is potentially over-determined and can be solved more accurately than if the full spatial distribution coded
on Q spatial samples had to be inferred.

Eventually, the use of a narrow AF can also enlarge the frequency range of the reconstructed source distribution.
This is particularly compelling since traditional approaches in inverse acoustics are known to be fundamentally limited
downward and upward in frequency. The reason may be better explained trough an example.

Example 1. Let us consider the case of a monopole source on a linear domain Γs = {r : −1 ≤ r ≤ 1} parallel to a

8



uniform linear array (ULA) of M = 11 microphones located at a distance R = 0.35 m – see Fig. 1. A “high” frequency
f = 6 kHz is purposely selected that makes the resolution of the inverse problem difficult in this configuration. The
signal-to-noise ratio (SNR) is set to 20 dB. The situation without AF is first considered, which is implicitly equivalent
to using an uniform AF with unit amplitude over Γs. The reconstructed source ŝ(r) (whose real and imaginary parts
are shown by the black and grey curves, respectively, in Fig. 2(a)) exhibits marked fluctuations over the full domain Γs

and significantly differs from the theoretical monopole. As a result, the pressure field radiated by ŝ(r) (real part shown
in Fig. 2(a)) comprises a lot of fictitious interferences. The squared modulus of the radiated pressure field (shown in
Fig. 2(d)) – which represents one part of the acoustic energy – evidences a complex radiation of the energy from Γs

towards the array and some hot spots are seen at the positions of the microphones. This can be understood as an artifact
of the classical LS solution with Tikhonov regularization when no AF is used. In this case, the regularization term tries
to globally minimize the energy of the source while still matching the measurements at the microphones. Therefore,
a source distribution is found with a directivity pattern that primarily points towards the microphone positions. As a
result, the average acoustic power produced by the reconstructed source is also largely underestimated: in the present
case, it is found equal to only 14.4% of the true value.

The situation is next considered where a narrow AF is inserted in the form of a Hann function (see Fig. 2(c)) in
order to encourage the reconstruction of the source in a small neighborhood of r = 0. The reconstructed source (real
and imaginary parts shown by the black and grey curves, respectively, in Fig. 2(b)) now resembles much more the
theoretical monopole and it radiates a pressure field (real part shown in Fig. 2(b)) that correctly reproduces outgoing
spherical waves. The squared modulus of the radiated pressure field (shown in Fig. 2(e)) also correctly follows the
spherical spreading law of a monopole, without artificial directivity towards the microphones. The average acoustic
power is now found equal to 97% of the true value.

The benefit offered by the insertion of a narrow AF can be understood from a different perspective by introducing
the concept of a representation basis. From the interpretation following Eq. (14), the source estimate ŝ(r) is con-
structed by interfering waves radiated from the microphones and focused through the AF on the source surface Γs.
Therefore, these waves provide a spatial basis, {φk(r) = σ2

0(r)G(r|rk)∗, r ∈ Γs}
M
k=1, for representing ŝ(r) (note that

the basis is not necessarily complete). Figure 3(a) illustrates how one basis function is produced by the radiation of
one microphone. The full family of basis functions relating to Example 1 is illustrated in Fig. 3(b-c). In the ab-
sence of an AF – or equivalently when the latter is set uniform – the basis functions reduce to the Green functions,
{G(r|rk)∗, r ∈ Γs}

M
k=1, which oscillate in Γs with wavelength λ ∼ c0/ f . Because the array is parallel to Γs, the basis is

composed of the same waveform shifted at different locations. The corresponding spatial spectra are displayed in Fig.
4(a), which all have the same magnitude and only differ by a linear phase. It is seen that the spectra have a marked
peak around the spatial frequency f /c0, which explains why the source distribution in Fig. 2(a) has been reconstructed
with so many ripples. On the contrary, the insertion of a narrow AF produces a much richer representation basis, quite
close to “Gabor wavelets” as seen in Fig. 3(c). The corresponding spatial spectra (see 4(b)) are close to a filterbank
decomposition, where each basis function spans a different frequency band. In addition, the spectral range has been
enlarged, which explains why a sharper source can be reconstructed. This is a manifestation of the uncertainty prin-
ciple stating that the product of the widths of the AF,say ∆r, and of its spatial spectrum, say ∆k, is upper bounded,
i.e. ∆r∆k ≤ C for some constant C. There is indeed no limit to the highest spatial frequency that can be reconstructed
this way since it is inversely proportional to the AF width which can be tuned arbitrarily narrow – i.e. ∆k ∼ C/∆r. In
particular, a monopole can be reconstructed perfectly when the AF ultimately tends to a Dirac delta. This phenomena
– although not explained from this point of view – has been coined “wideband holography” in Ref. [23].
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Figure 1: Scheme of a simple inverse problem comprising an ULA of microphones (black circles) and a monopole source (red dot) on a linear
source domain Γs (black segment).
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Figure 2: (a-b) Reconstructed source distribution ŝ(r) on Γs (the real and imaginary parts are shown by the black and grey curves, respectively)
together with the corresponding real parts of the radiated pressure field ( f = 6 kHz). The black circles represent microphones in the array.
Configurations (a) and (b) are based on an uniform aperture function and the narrow aperture function displayed in (c), respectively. (d-e) Squared
modulus of the pressure fields corresponding to (a) and (b).
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Figure 3: a) b) Real part of the pressure field radiated by one microphone in the array (here the central one) as if it was a source ( f = 6 kHz). The
black (resp. grey) curve is the real (resp. imaginary) part of the pressure radiated on Γs as a function of r. b) Real and imaginary parts (black and
grey curves, respectively) of the basis functions (as obtained by the mechanism illustrated in (a)) rooted on an uniform aperture function and c) the
narrow aperture function of Fig. 2(c). The aperture function used in (c) is displayed by the black dotted curves.
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Figure 4: Amplitudes of spatial spectra of the M basis functions of a) Fig. 3(a) and b) Fig. 3(b). Note that all amplitude spectra are superimposed
in (a).
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4. Sparse Bayesian Focusing

BF, as reviewed in the previous section, involves a manually-tuned AF. If properly designed, the AF can greatly
improve the quality of the reconstructed source distribution in terms of localization, quantification and frequency
range. The question then arises as whether it is possible to automatically tune the AF, by considering it as another
unknown quantity in the inverse problem. An intuitive solution consists in first solving the inverse problem with a
large AF and next in using the so-estimated source distribution as a new AF to solve the inverse problem a second
time. By iterating the process several times, the initial AF progressively tunes itself so as to focus on the different
point sources that constitute the source distribution, as depicted in Fig. 5. This section justifies the strategy from a
theoretical point of view in the Bayesian setting. It also demonstrates that it applies with various adaptation rules
depending on the choice of the prior PDF of the source coefficients. The principle is to consider the AF as a random
quantity that is inferred in an iterative resolution of the inverse problem. How to model the AF as random quantity
is first addressed in subsection 4.1. By assigning the AF with a PDF, various source priors can thus be generated,
different from the Gaussian one of Eq. (8), which promote sparse sources; they are explored in subsections 4.2.
Subsection 4.3 then introduces an iterative algorithm – coined IBF – which jointly infers the source coefficients and
updates the AF.

Γs

s[0](r)
σ2(r)0

σ2 (r)[1]

σ2 (r)[2]

s[1](r)

...

Figure 5: Principle of Iterated Bayesian Focusing: the reconstructed source ŝ[k](r) at the current iteration k is used to refine the aperture function
σ2

[k+1](r) used in the next iteration.

4.1. Sparse spatial prior
In the context of this paper, the sources coefficients are assumed to be sparsely distributed in space; this means

that only a very elements in vector si (always the same independently of snapshot i) are expected to have significant
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values, the other ones being close (or ideally equal) to zero. One way to enforce this property is to assign to si a prior
PDF with heavy tails and very peaked at zero as compared to the Gaussian, which is denoted hereafter as leptokurtic
(i.e. with a kurtosis greater than the Gaussian). The use of leptokurtic prior PDFs (sometimes referred to as sparse
priors, sparsity enforcing priors or shrinkage prior) within the Bayesian framework for enforcing sparse solutions has
been extensively studied in the recent statistical literature and is also known as sparse Bayesian learning1 (see e.g.
[38, 39]).

A physical interpretation is given hereafter in terms of SMoGs. Following the same lines as in subsection 2.3, let
the source coefficients have the following probabilistic model,

sq,i = α · σ0,q · τq · εq,i, εq,i ∼ NC(0, 1), (16)

where the source power α2, the AF σ2
0,q and the random variables εq,i have been defined in Eq. (13). Equation (16)

separates the source coefficients into time-dependent (index i) and space-dependent (index q) variables. All variables
are dimensionless, except α which carries the dimension of sq,i. All variables are also seen as random, except σ2

0,q
which is “deterministically” designed by the user to reflect a global (or “initial”) AF (e.g. see dotted bell-shaped curves
in Fig. 7); it is introduced for the sake of generality, yet it could just as well be ignored to simplify the exposition. As
compared to Eq. (13), τq is now an additional non-negative random variable, which reflects the “relative intensity”
at the spatial position rq (see Fig. 6). It may also be interpreted as the variance of τq · εq,i ∼ NC(0, τ2

q), which is
the mechanism by which “local” aperture functions can be produced at position rq. It is noted at this juncture that α
cannot be absorbed into τq because the latter will be shortly seen to act as a “sparsifying” variable, with high degree
of sparsity achieved for (very) small values of its scale parameter; this means that the scale parameter of τq must be
left free and the global scaling assigned to α. The stochastic model (16) is actually equivalent to considering right out
a random AF

σ2(r) = σ2
0(r)τ2(r), (17)

(given here in functional notation with τq
.
= τ(rq)) instead of a deterministic one as done in the previous section.

The random AF in Eq. (17) yields the conditional prior variance E{|si(r)|2|τ2(r)} = α2 · σ2
0(r) · τ2(r) at position

r on Γs, independently of the snapshot index i, which locally and constantly encourages high values of the source
coefficients where the relative intensity τ2(r) is large and tends to switch them off where the relative intensity is small.
As compared to the uniform relative intensity used in BF (see Eq. (11)), the resulting spatial distribution of the source
coefficients is thus sparser.

It is noteworthy that the proposed probabilistic model allows enforcing sparsity directly on the modulus of the
source coefficients. This is advantageous as compared to the situation imposed by some solvers for `1 minimization,
implemented for real-value data and whose extension to the complex case is not trivial. Sparsity on the modulus –
which is equivalent to group sparsity on the real and imaginary parts – easily allows switching off a large number of
source coefficients. On the contrary, enforcing separate sparsity on the real and imaginary parts – as would be done
by mapping a complex number to a two-dimensional real vector – can only switch off a source coefficient when both
the real and imaginary happen to vanish simultaneously, which occurs with a much lower probability. In addition,
separate sparsity would produce several instances of exactly nil real (resp. imaginary) parts together with non-zero
imaginary (resp. real) parts, which reflects unrealistic physical combinations.

Although it is difficult to specify the values of τ2
q before the inverse problem is solved, it is possible to assign them

a hyperprior PDF,
[
τ2

q

]
, that allows local variations in space. Given a spatial position rq and considering all snapshots

i = 1, ...,N observed at this position, the prior PDF of the source coefficients S .
= {sq,i}

N
i=1 then reads

[S] =

∫ ∞

0

[
S|τ2

q

] [
τ2

q

]
dτ2

q = E
τ2

q

 N∏
i=1

NC
(
sq,i; 0, α2σ2

0,qτ
2
q

) (18)

where Eτ2
q

means that the expected value is taken with respect to the random variable τ2
q. Inspection of Eq. (18) shows

that the prior PDF of the source coefficients is a continuous mixture of GaussiansNC
(
sq,i; 0, α2σ2

0,qτ
2
q

)
weighted by the

1Note that sparse Bayesian learning should be undertood as a general terminology that embodies the family of Bayesian methods dedicated to
enforcing sparsity, yet it is not an algorithm by itself.
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“scale”
[
τ2

q

]
– the so-called SMoG. This is in general no longer a Gaussian, but a leptokurtic PDF. Figure 6 illustrates

how a leptokurtic PDF is obtained by mixing Gaussians with random variances distributed according to a given law.
It is seen that PDFs with very heavy tails can thus be obtained by allowing the variance to be broadly distributed.

2 2 2
0,q qα σ τ× ×

2
qσ

updated aperture 
function

source power relative intensity

initial aperture 
function

0

iii) [s] =   [s|τ2][τ2]dτ2

τ2

i) [τ2] ii) [s|τ2]

s

 ∫

a) b)

Figure 6: a) Structure of the variance of the sparse spatial prior, where index q relates to spatial position rq. α2 is the global source power and
the initial aperture function σ2

0,q reflects its expected spatial distribution before the experiment is run. The spatial variance α2σ2
0,q is used in the

Gaussian prior PDF of BF; its multiplication by the relative intensity τ2
q returns the spatial variance α2σ2

0,qτ
2
q used in the SMoG prior PDF of

Iterated Bayesian Focusing. The method updates the aperture function as σ2
q ← σ2

0,qτ
2
q. b) Principle of construction of an SMoG. i) PDF [τ2] of

the variance τ2, ii) isoprobabiliy contours of the conditional Gaussian PDF, [s|τ2] = NC
(
s; 0, τ2

)
, as a function of the random variable s and of

the variance parameter τ2, iii) PDF [s] =
∫

[s|τ2][τ2]dτ2 of the random variable s averaged over all values of the variance τ2 (continuous curve)
together with the Gaussian PDF with same variance (dotted curve). It is seen that a leptokurtic PDF is produced, with heavy tails and a peaked
mode.

Examples of prior source fields simulated with the SMoGs investigated in the next subsection are displayed in
Fig. 6. In order to allow an easy representation, the source domain is limited to a line segment. The initial AF σ2

0,q
has been designed in the form of a Hann function that progressively downsizes the values at the extremities of the
domain where sound is less likely to radiate from. In each case, the value of α2 is tuned so as to impose a unit variance
(spatially averaged over the source domain). The source coefficients are displayed as a function of the space position
for a given snapshot i. It is seen that the real and imaginary parts are jointly sparse, which means that they both have
the same variance proportional to the updated AF σ2

0,qτ
2
q. In other words, sparsity is enforced on the modulus – and

not on the real and imaginary parts, independently – in order to force a majority of source coefficients to take small
values and, ideally, to switch off completely.
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Figure 7: Examples of one-dimensional cuts through complex random fields synthesized with different SMoG PDFs (the real and imaginary parts
are displayed by black and gray curves, respectively). a) Complex Gaussian, b) complex Student-t (rooted on the inverse Gamma PDF [τ2] with
a = b = 1), c) complex K-distribution (rooted on the Gamma PDF [τ2] with a = b = 0.05), d) complex Laplacian (generalized complex Gaussian
with p = 1), e) generalized complex Gaussian with p = 0.1, f) mixture of complex Gaussians with π̄ = 0.1, τ̄2

1 = 0.1 and τ̄2
2 = 10. Also shown is

the initial AF σ2
0,q (dotted curve).
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4.2. Prior PDFs in the SMoG family
Different prior PDFs are obtained depending on the choice of the hyperprior

[
τ2

q

]
in Eq. (18). Although closed-

form results exist in the literature in the case of real-valued random variables, they must be extended here to the
scenario with complex-valued source coefficients and with several snapshots – i.e. to the complex multivariate case.
Explicit formula are derived in Appendix C for some particular cases of interest and resumed in Tab. 1. As far as the
authors know, some of these formula are given here for the first time.

It is noteworthy that the SMoG model allows expressing the prior PDF [S] by means of the power spectrum of the
source coefficients only. Specifically, the quantity

χ2
q = N

S qq

α2σ2
0,q

, (19)

which involves the ratio of the source power spectrum S qq (see Eq. (2)) to the prior spatial variance α2σ2
0,q at position

q, is a sufficient statistic. It will be used from now on as a shortcut notation.
Prior source distributions of Tab. 1 are illustrated in Fig. 7 and also displayed in Fig. 11 (a-b) for N = 1 and N = 50

snapshots. It is verified that all PDFs are apt to produce very sparse fields, even though the Laplacian (corresponding
to the `1 penalty) seems slightly inferior than the other candidates.

Table 1: Prior PDFs constructed in the SMoG family

Hyperprior PDF
[
τ2

q

]
Hyperparameters Sparse prior PDF [S] =

∫ [
S|τ2

q

] [
τ2

q

]
dτ2

q

Inverse Gamma
shape parameter a > 0
scale parameter b > 0 Multivariate complex Student-t (MCS)

Gamma
shape parameter a > 0
scale parameter b > 0

Multivariate complex K-distribution (MCK)
particular case:
Multivariate complex Laplace (MCL)
when a = N + 1

2 and b = 1
4

(Not required) power 0 < p ≤ 2

Generalized multivariate complex Gaussian (GMCG)
particular cases:
Multivariate complex Gaussian (MCG) when p = 2
Multivariate complex Laplace (MCL) when p = 1

Discrete:
τ̄2

1 with probability π̄
τ̄2

2 with probability 1 − π̄

τ̄2
1, τ̄2

2, 0 < π̄ < 1
assume τ̄2

1 � τ̄2
2

Mixture of multivariate complex Gaussians (MMCG)

4.3. Inference in the SMoG family
The price to pay for the introduction of a non-Gaussian prior PDF is that, generally, a closed-form solution no

longer exists for estimating the source coefficients. However, it is shown hereafter that a point estimate can still be
expressed with the same structure as in Eq. (9), yet where Σ2

0 is replaced by a different AF. This is a direct consequence
of the fact that an SMoG is a weighted average of Gaussian priors as expressed in Eq. (18). To see this, let us introduce
the notation

ŝi(Σ2) = Σ2GH(GΣ2GH + η2I)−1pi (20)

for the classical penalized LS solution given in Eq. (9) rooted on a given AF, Σ2 = Diag(σ2
q) (note that, as a particular

case, Eq. (9) is exactly recovered with Σ2 = Σ2
0). Then, it is established in Appendix D that the posterior mean under

an SMoG prior is

E{si|P} =

∫
ŝi(Σ2)[Σ2|P]dΣ2 (21)

where [Σ2|P] is the posterior PDF of the AF given the measurements P. Equation (21) is recognized as a weighted
average of ŝi(Σ2) over realizations of the AF conditioned on the data. More importance is therefore given to solutions
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whose posterior PDF [Σ2|P] is high. In the extreme case where the latter PDF is very peaked, the posterior mean may
be evaluated directly from Eq. (20) wherein the AF is replaced by its MAP estimate Σ2

MAP = Diag(σ2
0,q ·Arg max[τ2

q|P]).
Alternatively, it is proved in Appendix D that the MAP estimate under an SMoG prior – which will be considered

from now on – is ŝi(Σ2) with AF

Σ2 = Diag

 σ2
0,q

E
{
τ−2

q |Ŝ
}  (22)

where Ŝ .
= {ŝi}

N
i=1. This means that the MAP is obtained by updating the AF σ2

0,q by dividing it with the expected
value of τ−2

q conditioned on Ŝ. This is expected to provide a “sharper” AF than the initial one. It appears in light of
these results that the MAP estimate will generally differ from the posterior mean in the SMoG family – contrary to
the Gaussian case of section 2 – which reflects the fact that [si|P] is not a symetric PDF.

Although inserting Eq. (22) into (20) returns an implicit equation with no closed-form solution, it can be solved
iteratively as shown in the next subsection.

At this juncture, the inverse problem has been formally reformulated as inference in a Bayesian hierarchical model
with a structured prior, as depicted in Fig. 8. In short, the essential difference with BF is that the AF is now an unknown
quantity to be inferred simultaneously with the source coefficients.

2

2

0
2

S

P

2

( , )a b

Structured prior 
on source 
coefficients

Hyper-prior on 
relative intensity

2

Figure 8: Directed graph of the hierarchical model for inferring S. Unknown parameters to infer are shown in circles and known quantities in
rectangles. Note that P and S can be replaced by the CSM Spp and the source power spectrum S qq.

4.4. Iterated Bayesian Focusing (IBF)
An algorithm is proposed hereafter to reach the MAP estimated given in Eq. (22). The IBF algorithm is described

hereafter in terms of the normalized sum of squares

χ2
q,[k−1] = N

S qq,[k−1]

α2
[k−1]σ

2
0,q

(23)

which involves the power spectrum S qq,[k−1] = 1
N

∑N
i=1 |ŝq,i,[k−1]|

2 of the source coefficients and the source power
α2

[k−1] estimated at iteration k − 1. The reason for introducing this variable is manifold: beyond greatly simplifying
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forthcoming notations, it is also a sufficient statistics which plays a central role in the IBF algorithm. As seen from its
definition, it also has the physical significance of the “normalized” power of the sources.

Algorithm 1

• Step 0: Design an initial AF σ2
0,q and construct the diagonal matrix Σ2

0 whose q-th diagonal entry is σ2
0,q.

• Step 1: Set k = 0. Estimate the source power α2
[0] and the regularization parameter η2

[0] by using Eqs.
(B.3) and (Appendix B) evaluated with Σ2

0. Initialize the algorithm with the MAP solution ŝi,[0] of Eq.
(9) as returned from a Gaussian prior.

Repeat steps 2 to 5 until convergence.

• Step 2: Do k ←− k + 1.
Estimate the relative intensity as

τ̂2
q,[k] = −

 ∂

∂(χ2
q)

ln
([
χ2

q

])−1
∣∣∣∣∣∣∣
χ2

q=χ2
q,[k−1]

, (24)

where [χ2
q,[k−1]] is the prior PDF expressed as a function of the normalized sum of squares χ2

q,[k−1] at
iteration k−1 (closed-form expressions of τ̂2

q,[k] are given by Eqs. (G.1), (G.2), (G.4), (G.5), (G.6), (G.8),
and (G.9)).

• Step 2(bis): Set τ̂2
q,[k] = max

{
τ̂2

q,[k]; ε1 ·max
q

{
τ̂2

q,[k]

}}
where 0 < ε1 � 1.

• Step 3: Update the AF as
σ2

q,[k] = σ2
q,0τ̂

2
q,[k] (25)

and construct the diagonal matrix Σ2
[k] whose q-th diagonal entry is σ2

q,[k].

• Step 4: Estimate the source power and the regularization parameter as(
α2

[k], η
2
[k]

)
= Argmax

[
α2, η2|Spp,Σ

2
[k]

]
(26)

by using Eqs. (B.3) and (Appendix B) evaluated with the updated AF.

• Step 5: Estimate the source coefficients as

ŝi,[k] = Σ2
[k]G

H(GΣ2
[k]G

H + η2
[k]I)−1pi. (27)

Convergence criterion: Stop iterations when ||ŝi,[k] − ŝi,[k−1]||/||ŝi,[k−1]|| is smaller than a given threshold,
0 < ε2 < 1.

(Step 2(bis) is optional with the MCS and MMCG priors, yet it is recommended with the MCK, MCL and GMCG
priors as explained later in subsection 5.4.)

IBF belongs to the family Iterative Re-weighted Least Squares (IRLS) algorithms [40], since at each iteration it
solves a weighted least square problem whose solution is given by Eq. (9) with Σ2

0 replaced by it updated version
Σ2

[k] as obtained from Eq. (25). Yet, it is more rigorously derived in Appendix E as an Expected-Maximization (EM)
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algorithm, which makes possible to prove its convergence to the MAP solution – insightful connections between IRLS
and EM have been investigated in Ref. [41]. The proposed IBF algorithm has the following features:

1. It applies generally in the SMoG family, as long a closed-form expression of the prior PDF is available. Con-
sequently, different structures and degrees of sparsity can be promoted by choosing among the various possible
prior PDFs of subsection 4.2.

2. The regularization parameter η2 is iteratively updated together with the source coefficients with proved con-
vergence (see Appendix B). This is to be contrasted with other approaches found in the literature where the
regularization parameter is either arbitrarily imposed or tuned afterwards, typically by using cross-validation or
the L-curve. The latter approaches require running the optimization as many times as values of the regulariza-
tion parameter are to be tested, and are therefore computationally more demanding – if not prohibitive in some
applications such as that illustrated in subsection 6. In addition, the estimation of the regularization parameter
by means of the Bayesian criterion used in Step 4 has been found more efficient than the cross-validation or the
L-curve in many inverse acoustic scenarios [35].

3. The algorithm applies to complex-valued source coefficients and sparsity is enforced to their modulus (and not
to the real an imaginary coefficients independently). Consequently, a majority of sources are forced to switch
off.

4. A key step in the algorithm is the update of the AF in Eq. (25) rooted on the current estimate of the relative
intensity given by Eq. (24). Closed-form expressions of the updating rules corresponding to the prior PDFs of
Tab. 1 are given in Appendix G.

5. The updating rule involves the consideration of possibly several snapshots and therefore involves the power
spectra of the source coefficients – see Eq. (23). Accordingly, the IBF algorithm can be formulated in terms of
the CSM of the measurements, Spp, only (see Eq. (1)). As explained in the introduction, this may be determi-
nant in practice, since some commercial data acquisition system used in acoustic imaging only record the CSM
by default. The algorithm is as follows.

Algorithm 2
Step 1 to 4: Unchanged.
Step 5: Estimate the power spectrum of the source coefficients at position rq as

S qq,[k−1] = σ4
q,[k]g

H
q (GΣ2

[k]G
H + η2

[k]I)−1Spp(GΣ2
[k]G

H + η2
[k]I)−1gq (28)

where gq is the q-th column of matrix G.

Example 2. The IBF algorithm is illustrated on Example 1 of section 3 which involved the reconstruction of a
monopole source at f = 6 kHz with an ULA placed at a distance R = 0.35 m (see Fig. 2) under an SNR of 20
dB. The MCS prior is used with hyperparameters a = b = 0.01 (comparison between the several priors introduced
in subsection 4.2 will be addressed in the next section). To start with, only N = 1 snapshot is recorded. The IBF
algorithm is initialized with the BF solution of section 2 with an AF σ2

q,0 shaped like a Hann window (raised cosine)
over the domain Γs = {r : −1 ≤ r ≤ 1} (with discretizaton step of 0.01 m). The algorithm is stopped after 10 iterations.
Figure 9(a-b) displays the evolution of the AF σ2

q,[k] on linear and dB scales with respect to the iteration number k.
It is seen that the initial AF quickly tuned itself into a narrow peak around the actual source position shown by a red
dot. At the same time, the dynamic range of the AF improves from 5 dB (for σ2

q,0) to more than 70 dB (for σ2
q,[9]). As

explained in section 3, the shrinkage of the AF introduces a focusing mechanism that improves the accuracy of the
estimated acoustic power. Whereas it was only 17.6% of the true value at the first iteration (note a slight improvement
as compared to 14.4% for the uniform window used in section 3), it is 99.9% at the ninth iteration.

Figure 10 displays the spectra of the estimated acoustic power (relatively to the true value) for several working
frequencies in the range [0.02; 50] kHz. The monopole is driven by a white Gaussian signal and results are averaged
over 100 independent draws of complex Gaussian noise added to the measurements with an SNR of 20 dB. As
expected, the BF solution has an upper frequency limit on the order of fmax ∼ c0/d ' 2.3 kHz with d = 0.15 m the
spacing between the microphones. On the other hand, the IBF solution does not show such a limit. In the present case
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with a monopole source, it is virtually unlimited in frequency since the AF is allowed to become arbitrarily narrow.
The IBF solution is remarkably accurate over the full frequency range as compared to the BF one. It is also found more
precise with a 3-sigma confidence interval about half as large as that of the BF solution. In addition, the coefficient of
variation (CV) is constant (CV = 0.44%) as compared to that of the BF solution which increases when approaching
the upper frequency limit fmax.

The same experiment is now run with two incoherent monopole sources driven by white Gaussian signals in order
the check the ability of the IBF algorithm to self-tune the AF around several distinct source points. The first monopole
is located at r = 0 m and the second one at r = −0.05 m. They are both fed with mutually independent complex
Gaussian random noises. The level of the second monopole is set to 4% the level of the first one. In this case,
N = 100 snapshots are recorded in order to better estimate the partial power due to each monopole (i.e. to average out
incoherent cross-terms). The IBF is run with the same settings as before. Figure 9(c-d) displays the evolution of the
AF on linear and dB scales; it is seen to quickly split in two narrow peaks anchored to the two monopole positions. As
before, the dynamic range after 10 iterations is greater than 70 dB. The two peaks have different magnitudes – which
actually makes it difficult to see the smallest one on the linear scale although its presence is obvious on the dB scale –
yet their respective areas converges to exactly the same ratio as the levels of the two monopoles, i.e. 0.04. This might
be an issue only for detecting very small sources masked by a dominant source (here below 70 dB of the largest one),
a situation which places the performance of IBF much higher than CV or BF in this respect. Despite the two peaks
of the updated AF having different magnitudes, the estimated source coefficients are perfectly calibrated to recover
the correct strengths of the two monopoles. After convergence, the acoustic power radiated by the first monopole is
found equal to 100.1% of theoretical power and that of the second one to 100.7%. This is to be compared to 8.6%
and 304.6%, respectively, for the initial estimation at k = 0, which on the one hand still underestimates the largest
source but on the other hand largely overestimates the smallest one due to the presence of sidelobes from the dominant
source.
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5. Comparison of priors

The use of an SMoG model has been shown to yield several possible candidates for the prior PDF of the source
coefficients. The question naturally arises as which one(s) should be selected in practice. Although the exact answer
to this question is surely problem dependent, some considerations are possible based on the following arguments.

5.1. Number of hyperparameters

Unless the user has a very accurate knowledge of the prior PDF, it is often convenient to adopt a choice that
involves the fewest hyperparameters. In this respect, The MCL arrives in first position without any hyperparameter
to set. The GMCG arrives in second position with only one hyperparameter, p, which directly reflects the amount
of expected sparsity. The MCS and the MCK come next with two hyperparameters, a and b. However, as seen in
Eq. (G.1), the effect of hyperparameter a in the MCS tends to vanish when the number of snapshots becomes large.
Therefore, a convenient choice is to set a = 0 and keep b as the only hyperparameter to tune; another possibility
is to set a = b to a small value that promotes sparsity. No similar simplification seems to hold for the MCK, for
which the presence of two hyperparameters is the price to make it very flexible. The MMCG comes last with three
hyperparameters, τ̄1, τ̄2 and π̄. It has been checked in simulations that their ratio is really determinant, so that one can
set τ̄2 = 1 for instance from the onset. These findings are resumed in Tab. 2.

Table 2: Hyperparameters in the SMoG family
Sparse prior PDF Number of relevant hyperparameters Setting
Multivariate complex Laplace (MCL) 0
Generalized multivariate complex Gaussian (GMCG) 1 0 < p ≤ 2

Multivariate complex Student-t (MCS) 2 reduced to 1
a = 0 and b small
or a = b small

Multivariate complex K-distribution (MCK) 2 a and b
Mixture of multivariate complex Gaussians (MMCG) 3 reduced to 2 π̄ and τ̄2

1/τ̄
2
2

5.2. Sensitivity to hyperparameters

The hyperparameters of the SMoG model arrive in the last level of the Bayesian hierarchical model (see Fig. 8) and
are therefore, in theory, much less influential than hyperparameters in lower levels such as typically the regularization
parameter η2 to which the inverse problem is known to be extremely sensitive (see e.g. Ref. [42] for an excellent
discussion on the influence of hyperparameters in high-level priors). As explained in the previous subsection, the
general recommendation is to tailor the prior PDF to make it sparse. Extensive experiments have shown that, on the
one hand, the MCS prior is very stable when a and b are set small as indicated in Tab. 2. On the other hand, the
MCK, the MMCG and the GMCG are quite sensitive to the setting of their hyperparameters. This is indeed the price
to pay for the PDF to gain flexibility in its shape. The GMCG has yet an advantage in that it is controlled by only one
parameter, the power p, with perhaps a clearer meaning than for the MCS and MCK hyperparameters. In this respect,
the GMCG prior is a relevant choice if the prior PDF has to be carefully tuned in a simple way, as will be evidenced
in the experiments of section 7. Automatic tuning of the power p remains challenging; although theoretically possible
in the Bayesian setting [43], this issue is outside the scope of the present paper.

5.3. Bias

The choice of a particular SMoG has a direct impact on the estimation error of the source coefficients. This may
be investigated by considering independently the bias and the variance of the MAP estimate. Based on the results of
subsection 4.3, the bias can be expressed as (see Appendix I)

si − E {ŝi} =

(
I + η−2GHG · Diag

(
σ2

0,qE
{
τ−2

q |Ŝ
}−1

))−1
si. (29)
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Therefore, it is seen that a reduced bias is generally achieved by SMoG models which can return high values of the
relative intensity τ̂2

q. As seen in Fig. 11(c-d), this puts the MCS, the MCK with N > a, and the GMCG with p & 0
(symbol & means close to but greater than), in first position. On the opposite, the MMCG is expected to return the
strongest bias as its relative intensity in Eq. (G.9) is bounded upward by τ̄2

2.
Incidentally, expression (29) for the bias also indicates that matrix G should be designed such that GHG is as

close as possible to a diagonal matrix in order for the bias at position rq not to be influenced by the non-zero values
of the source coefficients at other positions rq′ , rq. This condition is actually reminiscent of the “restricted isometry
property” [6] and “mutual coherence criterion” [8, 24] of compressed sensing.

Eventually, it is seen from Eq. (29) that the bias is inflated by the regularization parameter η2, which is the price
to pay for stabilizing an ill-posed inverse problem. Given a non-zero AF, the bias completely vanishes only in the
particular case when η2 is nil.

5.4. Variance and rate of convergence

The exact expression of the covariance matrix of the estimated source coefficients is not easy to derive. However, it
can be shown within the framework of the EM algorithm that it directly depends on the so-called “missing information
matrix” Im [44], which measures the discrepancy of information due to the introduction of the unknown relative
intensity τ2

q in the EM algorithm as compared to the case where it would be known for all indices q: the larger the
norm of Im, the larger that of the covariance matrix. Besides, the speed of convergence of the EM algorithm is
similarly controlled by the norm of Im: the larger the “missing information” and the slower the convergence.

It is proved in Appendix J that the missing information matrix averaged over N snapshots takes the following
expression

Im =
1

α2N
Diag

 χ2
q

σ2
0,q

· Var
{
τ−2

q |Ŝ
} where Var

{
τ−2

q |Ŝ
}

=
∂2

(∂χ2
q)2 ln

[
χ2

q

]
. (30)

This result shows that the measure of missing information essentially depends on the conditional variance of the
inverse of the relative intensity, Var{τ−2

q |Ŝ}, which is the price paid for sparsity. This unveils a connection between the
missing information matrix and sparsity: missing information increases when more sparsity is introduced; intuitively,
this corresponds to requiring more information to tune the unknown random variables τ2

q when moving from a smooth
LS solution (no sparsity) to a highly structured (highly sparse) solution. This equivalently reflects a balance between
high sparsity and reduced estimation variance. Equation (30) also evidences that the variance decreases proportionally
with the number of snapshots; therefore taking N large should be encouraged in general. The conditional variance of
the PDFs introduced in subsection 4.2 are displayed in Fig. 11(e-f) for N = 1 and N = 50 snapshots.

An important requirement for the convergence of the IBF is to verify that the diagonal elements of Im remain
bounded for all 0 ≤ χ2

q < ∞. It is established in Appendix J that this is the case for the MCS and the MMCG, yet
not for the GMCG with p < 2 neither for the MCK in general. This has a practical implication for the IBF algorithm
based on the GMCG and MCK priors since the AF should be controlled in some way in order to keep it stable when
χ2

q takes very small values. One such strategy is to systematically set to zero the relative intensities τ̂2
q,[k] that converge

below a small threshold and to remove them from the subsequent iterations. Another simple strategy is to replace
them by the value of the threshold. This is the rationale behind Step 2(bis) in Algorithm 1.

In conclusion, the considerations of subsections 5.1, 5.3 and 5.4 place the MCS in first position since it 1) allows
very sparse solutions while 2) requiring the setting of only one significant hyperparameter and 3) having a reduced
bias and 4) an unconditionally bounded variance.
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Example 3. Experimental comparison of the above priors is carried on in a configuration similar to Examples 1
and 2. The range distance is R = 0.5 m and an ULA with 20 microphones and spacing 0.1 m is used. The SNR is set to
20 dB. The source domain Γs = {r : −1 ≤ r ≤ 1} (in meters) is discretized with a spatial step of 0.01 m. Initialization
of the IBF algorithm is done as in Example 2 with a Hann window for the AF. A threshold set to ε2 = 10−3 times
the highest amplitude is imposed with the GMCG and MCK priors in order to avoid possible divergence of the EM
algorithm (see discussion of subsection 5.4). The threshold used in the stopping criterion of the iteration is ε1 = 10−3.
The MCS prior is used with a = b = 0.01, the MCK prior with a = b = 0.1 and the MMCG prior with π̄ = 0.99 and
τ̄2

2/τ̄
2
1 either set to 10 or to 100. These parameters have been kept constant for all experiments in order to fairly test

the robustness of the method in this respect. With these settings, the EM algorithm has been found to converge within
a few iterations (about 10 on the average), with the fastest speed attained with the MMCG prior and the slowest one
with the MCL prior.

The first experiment investigates the reconstruction of two incoherent monopoles with equal strengths, located
at r1 = −0.05 m and r2 = 0.1 m, at frequency f = 1 kHz and with N = 1 snapshot. Reconstruction results are
superimposed for 4 independent draws of the snapshot. Figure 12(a) displays the results of conventional beamforming
and BF, which both suffer from a poor spatial resolution in this case. Apart from an offset due to a different scaling (the
amplitude of beamforming returns the source strength whereas BF returns a source density), the two curves are quite
similar. Figure 12(b) displays the result of the MCL prior (corresponding to the `1-norm penalty), which improves
the spatial resolution but still has a limited dynamic range. Numerous sidelobes are however present, probably due
to the use of a uniform array, and a marked dispersion is observed with respect to snapshot draws. The estimation
using the MCK prior is found very similar to the MCL prior in this case (Figure 12(e)). The GMCG (`0-norm penalty)
and MCS priors in Figure 12(c-d) show the sparsest results, by refining even more the spatial resolution and greatly
increasing the dynamic range. At the same time, they are found rather stable with respect to snapshot draws. The
MMCG reconstruction shown in Fig. 12(f) shows intermediate sparsity, which have been checked to strongly depend
on the value of the ratio τ̄2

2/τ̄
2
1. In some cases, only one of the two sources is identified.

The second experiment repeats the first one, yet using the CSM computed with N = 100 snapshots. The main
finding is that results have been considerably stabilized in accordance with the conclusions of subsection 5.4 (they
are now almost invariant with respect to draws of the CSM). While the use of the CSM has clearly upgraded the
MCK estimation by placing it to close to the GMCG (p = 0) and MCS results, it has reduced the spatial resolution
of MMCG. This is explained by the fact that the updating rule (G.9) tends to a hard threshold when N increases,
which basically clips the source coefficients estimated in the first iteration of the IBF algorithm, whose magnitudes
are smaller than γc as given by Eq. (G.10).

The third experiment tackles a more difficult configuration with a very low frequency f = 100 Hz and with the
first monopole strength 20% smaller than the second one (i.e. 14 dB difference in power level). Only results obtained
with the CMS computed on 100 snapshots are displayed (see Fig. 14). It is seen that both beamforming and BF fail to
detect the smallest source due to a poor spatial resolution. Although the MCL can correctly identify the two sources,
even better results are achieved by sparser priors such as the GMCG (p = 0) and the MCS (note a small bias on the
localization of the small source). Both the MCK and the MMCG priors failed to reconstruct the small source with the
given parameter settings. The spatial resolution of MMCG is only slightly better than that of beamforming.

The fourth experiment investigates another extreme case with a very high frequency f = 10 kHz and the same two
unequal source strengths (see Fig. 15). Beamforming and BF both fail in this case. The MCL prior clearly improves
the situation, yet GMCG (p = 0) and MCS still return the best estimates with the deepest dynamic range achieved by
the latter. Although sparse, the MMCG fail to correctly identify the two sources.

Similar conclusions have been obtained in several other experimental configurations not reported in the paper.
In general, it turned out that sparser results than allowed by the `1-norm penalty could be obtained by using the
other priors investigated in the paper. However, only the GMCG (`0-norm penalty) and the MCS priors showed a
constant stability of the estimates. On the contrary, the MMCG prior was found extremely dependent on the setting
of its parameters τ̄1 and τ̄2. Overall, results have been found remarkably independent of whether the point sources
are incoherent or partially coherent (with the above settings, perfectly coherent sources of equal strengths could be
resolved, while sources with 14 dB difference in power could be correctly identified up to 80% coherence).
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Figure 12: Estimated source power spectrum S qq at f = 1kHz with N = 1 snapshot in the case of two incoherent monopoles with equal strengths
(indicated by blue circles). Results from four independent snapshot realizations are superimposed. The positions of the microphones is marked by
black circles in (a). a) Results returned by conventional beamforming (blue) and Bayesian Focusing (red). Results returned by Iterated Bayesian
Focusing with b) the MCL prior (GMCG with p = 1), c) the GMCG prior with p = 0, d) the MCS prior (a = b = 0.01), e) the MCK prior
(a = b = 0.1) and f) the MMCG prior with π̄ = 0.99, τ̄2

2 = 1, τ̄2
1 = 0.01 (red) and τ̄2

1 = 0.001 (orange). The red/orange curves in (b-f) relate to the
source power spectrum S qq and the black/gray curves to the updated aperture function σ2

q.

6. Broadband Iterated Bayesian Focusing (BIBF)

So far, a different AF has been assumed at each frequency f . Nevertheless, it is meaningful to consider instances
where the AF is independent of frequency, as would typically occur when the sound source is attached to a specific
device (e.g. an obstruction, an opening, etc.). This situation has been considered for example in acoustic imaging in
Refs. [45, 46] and is reminiscent of the concept of “multi-frequency” group sparsity, where the same sparse structure
is enforced to the source distribution for a group of frequencies.

Forcing a constant AF in a frequency band is straightforward within the proposed IBF framework. It is also found
to yield improved results. The algorithm proceeds as follows (see Appendix K).
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Figure 13: Same configuration as in Fig. 12 with N = 100 snapshots.
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Figure 14: Same configuration as in Fig. 12 at f = 0.10 kHz, N = 100 snapshots and two incoherent monopoles with 14 dB difference in levels.
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Figure 15: Same configuration as in Fig. 14 at f = 10 kHz.
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Algorithm 3

• Define a frequency band B = { f1, ..., fB} as a collection of frequency bins (as typically returned by the
discrete Fourier transform) where the self-tunning AF – as introduced in Eq. (17) – is invariant.

• Apply Algorithm 1 of section 4.4 where

– steps 0 and 3 are unchanged,

– step 2 is modified with

χ2
q,[k−1] =

∑B
l=1

∑N
i=1 |ŝq,i,[k−1]( fl)|2

α2
[k−1]σ

2
0,q

= N
∑B

l=1 S qq,[k−1]( fl)

α2
[k−1]σ

2
0,q

(31)

substituted for χ2
q,[k−1], where ŝq,i,[k−1]( fl) stands for the evaluation of ŝq,i,[k−1] at frequency fl and

snapshot i,

– steps 1, 4 and 5 are unchanged but performed for each frequency fk in band B.

Equation (31) is the main modification to address the broadband case. The quantity χ2
q,[k−1] may be interpreted

as the normalized energy of the source coefficients – as measured by their power spectra – summed in band B. A
resolution in terms of the CSM is also trivially by proceeding as in Algorithm 3. Eventually, it is noteworthy that a
different regularization parameter is reasonably assumed at each frequency.

Since BIBF solves the inverse problem at once for all frequencies in band B (say a total B frequencies), its
computational cost is obviously increased as compared to one call of BF (for one frequency). However, it is lower
than repeating Algorithm 1 successively for each frequency in the band, since only one AF is inferred instead of
B. In addition, according to subsection 5.4, BIBF is expected to converge more rapidly than IBF solved at a single
frequency since the corresponding missing information matrix (see Eq. (30)) is divided by an extra factor B. Overall,
this endows BIBF with less computational effort than the repeated call of BF for scanning all frequencies in the band.

Example 4. BIBF is illustrated here for the reconstruction of four uncorrelated monopole sources driven by white
noises in a wide frequency interval B ranging from 100 Hz to 20 kHz. The sources are located at r1 = −0.1, r2 = 0,
r3 = 0.1 and r4 = 0.2 m on the source domain Γs = {r : −1 ≤ r ≤ 1} (in meters) and have decreasing levels in the
proportion 1, 0.25, 0.04 and 0.01 (i.e. 0dB, -6dB, -14dB, -20dB). The array is the same as in Example 3 and the range
distance is R = 0.1 m. The SNR is set to 20 dB. BIBF is run with the CSM computed on 100 snapshots and a spatial
resolution of 10 Hz is used (thus leading to B = 1991 frequency bins). The results of conventional beamforming, BF,
IBF and BIBF are compared in Fig. 16. It is again checked that beamforming and BF both suffer from 1) a poor spatial
resolution which makes the localization of the sources difficult below 2 kHz and 2) a limited dynamic range which
prevents the two smallest sources from being identified. On the one hand, whereas IBF greatly upgrades the results,
it is limited downward to 1 kHz for the reconstruction of the strongest source and to 2 kHz for the smallest source.
The identification of the two small sources is actually intermittent and the smallest one is missed at most frequencies.
On the other hand, BIBF completely fixes these errors. The accuracy in terms of localization and quantification is
excellent over the full frequency range and for all sources. This is because a frequency-independent AF is better
estimated from an “average” of the map in Fig. 16(c), which in turns improves the estimation of the sources at low
frequencies and low SNRs.

Figure 17 displays the estimated hyperparameters α2 and η2 as a function of frequency. The prior source power
spectrum α2( f ) is constant on the average, as expected from sources driven by white noises. The spectrum of the
regularization parameter, η2( f ), shows a hyperbolic decrease because the conditioning of the inverse problem actually
improves with frequency. The fact that theses hyperparameters have to estimated repeatedly for all frequencies in the
band B justifies the need for the automatic process based on Bayesian regularization given in Appendix B.

Concerning computational time, the BIBF algorithm was actually found faster than repeating the IBF for all
frequencies in the scrutinized band. As previoulsy explained, this is because accounting for all frequencies at once
makes the convergence of the iterations faster (convergence was achieved after 7 iterations for BIBF while each run
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of the IBF required about twice as many iterations on the average).
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Figure 16: Estimated source distribution on the 1D domain Γs = {r : −0.2 ≤ r ≤ 0.3}, as a function of frequency, when the theoretical distribution
comprises four monopoles placed at r = 0.2 m, r = 0.1 m, r = 0 m and r = −0.1 m, driven by uncorrelated white Gaussian signals with levels
in the proportion 1, 0.25, 0.04 and 0.01, respectively, and SNR of 20 dB. Estimates returned by a) BF with a fixed uniform aperture function, b)
conventional beamforming, c) IBF with the MCS prior, and d) broadband IBF with the MCS prior.

7. Experimental application

Experiments have been conducted to validate the theoretical results of the previous sections. The experimental
setup is displayed in Fig. 18. It consists of an 117 microphone LMS Sound Camera Digital Array placed in a semi-
anechoic room, 30 cm away from “point” sources flush-mounted on a wood plate and spaced apart by a distance of
14 cm. The sources are fed by mutually uncorrelated white-noise signals with a global level difference of about 12
dB. The radiation of each source with the other one switched off was first recorded by an intensity probe in order to
provide a reference based on a normative sound power measurement technique.

Since the radiation of the acoustic energy is in the half space, the baffled-source Green functions were used in the
inverse problem. In addition, since the position of the sources is expected to be invariant in frequency, the experimental
setup provides an excellent example to test the BIBF algorithm. Two priors are chosen to enforce sparsity of the
reconstructed sources: i) the MCS prior (with a = b = 0.01 =) because it has been previously found to enforce high
sparsity while being simple to use and ii) the GMCG prior with p = 1.3 because it best matches the actual sources
which, in this experience, do not reduce to perfect points. The results are displayed by means of the sound power,
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Figure 17: Estimated hyperparameters a) α2 and b) η2, as a function of frequency, returned by broadband IBF with the MCS prior.
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Figure 18: Layout of the experimental set-up (left) and its geometrical configuration (right) showing the locations of the two sources (red dots), the
microphone positions (blue circles) and the nodes of the calculation grid (black dots).

W(rq), calculated at each node q of the calculation grid with the formula

W(rq) =
ρc0k2

8π
S qq −

ρc0k
2

∑
l,q

Im
{
G(rq|rl)S ql

}
, (32)

where operator Im{· · · } extracts the imagy part, k stands for the wavenumber, ρ for the air density, c0 for the sound
speed, and S ql is the estimated cross-power spectrum between the complex volume velocities at positions rq and rl

[47].
Examples of sound power maps reconstructed in the third-octave band at 1 kHz by IBF and BIBF and using the

two aforementoned priors are shown in Fig. 19(a). It is seen that the benefit of using BIBF instead of IBF is to improve
the spatial resolution and thus to better reveal the presence of the smallest source. This is further evidenced by the
one dimensional cut of the sound power distribution at y = 0 shown in Fig. 19(b), where the very low frequency 300
Hz is now considered. Besides, it is observed in Fig. 19 that the MCS prior returns a sparser reconstruction than the
GMCG prior with p = 1.3. Although this may be advantageous for localization, it does not necessarily reflects to the
actual source characteristics as shown hereafter.

Figure 20(a) displays the sound power spectra estimated from BF and IBF with the two different priors. The sound
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Figure 19: Sound power maps reconstructed in the 1 kHz third-octave band from iterated Bayesian Focusing using a) the GMCG prior (with
p = 1.3) and b) the MCS prior (with a = b = 0.01). Reconstruction from Broadband Iterated Bayesian Focusing MCS using c) the GMCG prior
and d) the MCS prior. e) Comparison of the sound power distribution (|x| ≤ 0.5m, y = 0) at 300 Hz estimated from Iterated Bayesian Focusing and
Broadband Iterated Bayesian Focusing with GMCG (p = 1.3) and MCS (a = b = 0.01) priors.

power was evaluated from Eq. (32) by integrating over the large circular region depicted in Fig. 19(a), which encloses
the two sources. The spectra are also compared with the reference returned by the intensity probe, which imposes the
upper limit of 6.5 kHz of the frequency interval. On the one hand, it is seen that BF underestimates the actual sound
power, especially in the higher frequency range. This complies with previous numerical simulations, even though the
under-estimation is not as important as before since the array now covers a large solid angle from the source point
of view. On the other hand, the MCS prior is found to overestimate the sound power. This is not contradictory with
the results of the paper since the actual sources used in the experiment are not true monopoles: their supports are not
exactly point-wise on surface Γ and their directivities are not exactly omnidirectional. Consequently, the GMCG prior
with a controlled degree of sparsity (p = 1.3) seems to better reflect their actual nature. This observation points out
the importance of correctly choosing the prior type and, therefore, of having a general algorithm that allows testing
several of them.

Finally, Fig. 20(b) displays the estimated sound power of each source compared with the intensity reference
obtained with one of the two soures alternatively switched off. For the secondary source this is achieved by integrating
over the small circular region depicted in Fig. 19(a) and, for the primary source, by taking the difference with the
spectra of Fig. 20(a). Only the results obtained with the GMCG prior are shown, yet compared for IBF and BIBF. It
is again checked that BIBF allows a better resolution of the secondary source in the very low frequency range, down
to 300 Hz, which is compliant with the result shown in Fig. 19(b).

8. Conclusion

This paper has demonstrated how sparse acoustical holography is naturally achieved by simply iterating the
Bayesian Focusing method previously proposed in Ref. [34]. The principle consists in using the estimated sources in
the current iteration to update the aperture function in the next iteration. Formally, this is equivalent to considering the
aperture function as a random quantity (endowed with a prior probability density function) that is estimated conjointly
with the sources. Not only does this point of view provide physical insight into the mechanism of sparse acoustical
holography – and in particular why it can considerably improve the estimation of source quantification and directiv-
ity high in frequency – but it also allows direct extension to different scenarios. For instance, the method is easily
formulated in terms of the cross-spectral matrix and adapted to the broadband case (i.e. frequency group sparsity)
where source positions are assumed stationary in space. The method also allows complete flexibility in the choice
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Figure 20: a) Overall sound power spectra estimated with Iterated Bayesian Focusing, with the MCS (a = b = 0.01) and GMCG (p = 1.3) priors,
compared to Bayesian Focusing and to the intensity probe reference. b) Sound power spectra of each source estimated with Iterated Bayesian
Focusing and Broadband Iterated Bayesian Focusing, with the GMCG (p = 1.3) prior.

of the sparsity penalty. Several updating rules for the aperture function have been investigated, rooted on different
source priors. The multivariate complex Student−t prior appears to be a good candidate, which returns sparser results
than the typical `1-norm approach while at the time offering stable results. However, the Generalized multivariate
complex Gaussian may be advantageous in cases where the degree of sparisty needs to be controlled, for instance
when the actual sources are not truly pointwise. A last but not least advantage is that Iterated Bayesian Focusing
inherits the possibility of automatic setting of the regularization parameter, an issue which has remained critical in
sparse methods.

Overall, it is believed that Iterated Bayesian Focusing provides a comprehensive view of sparse acoustical holog-
raphy that might not be shared by other approaches.

Beyond methodological aspects, this paper has also confirmed the experimental results of Ref. [23] establishing
that sparse holography improves the reconstruction of sources not only in terms of localization – as does compressive
beamforming in the far-field – but also of quantification and of directivity, in a frequency range that is considerably
enlarged as compared to classical methods. It has been found that these improvements can be achieved even with
regular arrays, provided that sparser priors than those leading to the standard `1 penalty are used; therefore, using
random arrays is not a necessary condition as is in compressed beamforming or ESM.
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Appendix A. Optimal basis for sparse sources

In a general setting and in functional notation, the source distribution is expanded onto a spatial basis {φk(r)}Qk=1,
M ≤ Q, i.e.

si(r) =

Q∑
k=1

φk(r)ck,i (A.1)

where coefficients ck,i, k = 1, ...,Q, i = 1, ...,N, are the unknowns of the problem. In discrete form, this reads
si = Φci where [Φ]kq

.
= φk(rq) and vector ci collects coefficients ck,i. This parametrization imposes a priori the spatial
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correlation
E

{
sisH

i

}
= ΦE

{
cicH

i

}
ΦH = ΦΩcΦ

H (A.2)

where Ωc stands as the prior covariance matrix of ci. Therefore, by assigning to ci a prior PDF in the form of the
complex Gaussian, [ci] = NC(ci; 0,Ωc), one finds the MAP estimate

ĉi = ΩcΦ
HGH

(
GΦΩcΦ

HGH + β2I
)−1

pi (A.3)

with η2 as defined in Eq. (9). Equation (A.3) generally applies for any choice of Φ and Ωc. In the case of sparse
sources, it make sense to expect a priori an incoherent source field, yet possibly non-homogeneous, as given by Eq.
(11). It is proved in Ref. [35] that the prior covariance matrix Ωc which makes E

{
sisH

i

}
in Eq. (A.2) as close as

possible to α2Σ0 – with Σ2
0 diagonal as defined in Eq. (12) – in the mean-square sense is

Ωc = α2
(
ΦHΣ−2

0 Φ
)−1

. (A.4)

With such a choice, it is further proved in Ref. [34] that the optimal Φ that minimizes the mean-square error (or
returns the highest MAP) of the estimated source distribution is

Φ = Σ2
0GH ∈ CQ×M . (A.5)

This shows in passing that for Φ to be a basis, one must have M = Q. Substituting expressions (A.4) and (A.5)
back into Eqs. (A.1) and (A.3) then returns Eq. (9). Comparison of Eqs. (A.3) and (9) shows that, with a complex
Gaussian prior PDF NC(0, α2Σ2

0), the optimal parameterization that enforces an incoherent source field is actually
equivalent to using the canonical basis IQ×Q together with the prior covariance matrix α2Σ2

0 on the spatial samples si

of the source seen as the unknowns of the problem. The same parameterization can actually be adopted afterwards
with Q > M, provided that Eq. (9) remains invertible by properly setting the value of the regularization parameter η2.

Although this parameterization turns out somewhat similar to the Equivalent Source Method (ESM) [48, 24], it
bears several differences which are worth being highlighted.

• First, the present proof is deductive and it establishes that the parameterization of the problem is optimal under
the assumption of prior incoherence of the source distribution. Other assumptions on the prior spatial correlation
would lead to other parameterizations.

• Second, it emphasizes that the actual dimension of the problem (i.e. the dimension of the spatial basis Φ as
given in Eq. (A.5)) is K = M (the number of microphones) and not Q (the dimension of the discretized source
surface), which is advantagous since one often has M << Q. For this reason, the optimal basis introduced in
Eq. (A.5) leads to a minimal parameterization. This is not explicit in the ESM method.

• Third, it strictly involves Green functions satisfying Neumann boundary conditions on Γs and not necessarily
free-field Green functions (of monopoles) as is commonplace with the ESM.

Appendix B. Bayesian regularization

Following the Bayesian program, the regularization parameter appearing in Eqs. (9) together with the source
power needed in Eq. (23) are estimated as the MAP of the joint PDF [α2, η2|Spp,Σ

2] with Spp the CSM (see Eq. (1))
and Σ2 a given AF. This subsection resumes the results of Ref. [35] where the solution to this problem is addressed in
details. The algorithm is as follows.

• Step 1: Compute the eigenvalue decomposition

GΣ2GH =

M∑
m=1

s2
mumuH

m (B.1)

where uk are and s2
k , k = 1, ...,M, are the eigenvectors and eigenvalues of GΣ2GH , respectively.
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• Step 2: Project the data in the space spanned by the eigenvectors:

< |yk |
2 >

.
= uH

k Sppuk, k = 1, ...,M. (B.2)

• Step 3: Estimate the source power as

α̂2(η2) =
1
M

M∑
k=1

< |yk |
2 >

s2
k + η2

. (B.3)

• Step 4: Estimate the regularization parameter as the minimum of the cost function

J(η2) =
1
M

M∑
k=1

ln(s2
k + η2) +

(
M −

2
N

)
ln α̂2(η2), (B.4)

which may be easily found by a simple grid search and eventually substitute back this result into Eq. (B.3).

Appendix C. Prior PDFs in the SMoG family

This appendix provides expressions of some prior PDFs in the SMoG family obtained from different choices of
the hyperprior

[
τ2

q

]
in Eq. (18). Expressions are given in terms of the sufficient statistic χ2

q
.
= NS qq/α

2σ2
0,q.

• Multivariate complex Student-t (MCS). Let us assume that τ2
q is distributed like an inverse Gamma, with

shape and scale parameters a > 0 and b > 0, respectively:

[
τ2

q

]
=

ba

Γ(a)
e−bτ−2

q

τ2(a+1)
q

. (C.1)

It then holds that [
χ2

q

]
=

Γ(N + a)ba

(πα2σ2
0,q)NΓ(a)

(
χ2

q + b
)(N+a) , (C.2)

which is recognized as a multivariate complex version of the Student-t distribution. This PDF is made very
leptokurtic by setting the value of a small. By substituting the MCS for the prior PDF into the MAP (see Eq.
(E.1) in appendix Appendix E), one arrives at an LS formulation with a logarithmic penalty, viz

ŝi = Argmax
si

[P|S][S] = Argmin
si

(− ln[pi|si][S])

= Argmin
si

||pi −Gsi||
2
2 + β2(N + a) ln

α−2
N∑

j=1

sH
j Σ−2

0 s j + b


 . (C.3)

The logarithmic penalty is here naturally endowed with a regularization term b > 0 that prevents it from
diverging.

• Multivariate complex K-distribution (MCK). let us assume that τ2
q is distributed like a Gamma, with shape

and rate parameters a > 0 and b > 0, respectively:[
τ2

q

]
=

ba

Γ(a)
e−bτ2

qτ2(a−1)
q . (C.4)

It then holds that [
χ2

q

]
=

2b
(N+a)

2

(πα2σ2
0,q)NΓ(a)

(
χ2

q

) (a−N)
2 KN−a

(
2
√

bχ2
q

)
, (C.5)
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where Kν(z) is the modified Bessel function of the second kind with order ν (note that Kν(z) = K−ν(z)). This is
recognized as a multivariate complex version of the K-distribution [49]. This PDF is made very leptokurtic by
setting the value of a small. The MCK also leads to an equivalent penalized LS problem with a flexible penalty
function that can be given various shapes depending on the values of a, b and N.

• Multivariate complex Laplacian (MCL). As a special case when a = N +1/2 and b = 1/4, the MCK becomes[
χ2

q

]
=

1/2
(πα2σ2

0,q)N

Γ(N)
Γ(2N)

e−
√
χ2

q (C.6)

which is a multivariate complex version of the Laplacian distribution [49] as well as a particular case of the
generalized multivariate complex Gaussian introduced in the next paragraph. The Laplacian PDF is a popular
choice to enforce sparsity of real-value coefficients since it corresponds to a cost function with a penalty term
based on the `1-norm. This is exploited in the Bayesian LASSO [50, 51]. It is noteworthy that in the complex
case, the Laplacian originates from an SMoG rooted on a different prior than in the real case (i.e. an exponential
PDF). The equivalent penalized LS problem reads

ŝi = Argmin
si

||pi −Gsi||
2
2 +

β2

α

 N∑
j=1

sH
j Σ−2

0 s j


1
2
 (C.7)

where the penalty function happens to mix the `1 and the `2 norms in a way that may not be obvious without
using the Bayesian approach.

• Generalized multivariate complex Gaussian (GMCG). The multivariate complex version of a generalized
Gaussian PDF reads [

χ2
q

]
=

p/2
(πα2σ2

0,q)N

Γ(N)
Γ(2N/p)

e−(χ
2
q)

p
2
, 0 < p ≤ 2. (C.8)

Since the generalized Gaussian (also known as the exponential power distribution in the statistical literature) is
an SMoG, the GMCG is also an SMoG (actually for p ≤ 2). The expression of

[
τ2

q

]
happens to be quite intricate,

yet only the expression of the marginal PDF (C.8) will be needed in the following. Formula (C.8) extends the
result of Ref. [52] to the multivariate case.

Sparsity is enforced by setting small values of p, strictly smaller than 2 and typically smaller than or equal to 1.
As special cases, p = 2 corresponds to the multivariate complex Gaussian (MCG) and p = 1 to the MCL.

The GMCG prior gives rise to the penalized LS problem,

ŝi = Argmin
si

||pi −Gsi||
2
2 +

β2

αp

 N∑
j=1

sH
j Σ−2

0 s j


p
2
 , (C.9)

where the penalty function mixes the `2 and the `p norms.

• Mixture of multivariate complex Gaussians (MMCG). Mixture of multivariate complex Gaussians are ob-
tained from the SMoG model when τ2

q is a discrete random variable. The simplest situation is when it takes two
values, say τ̄2

1 and τ̄2
2, with probabilities π̄ and (1 − π̄), respectively, which means that a fraction π̄ of the coef-

ficients are distributed like a complex Gaussian with variance τ̄2
1 and a fraction 1 − π̄ like a complex Gaussian

with variance τ̄2
2. The PDF then reads

[
τ2

q

]
= π̄δ(τ2

q − τ̄
2
1) + (1 − π̄)δ(τ2

q − τ̄
2
2) (with δ the Dirac delta) and the

corresponding SMoG is[
χ2

q

]
= π̄ · NC,N(χ2

q,[k−1]; 0, πα2σ2
0,qτ̄

2
1) + (1 − π̄) · NC,N(χ2

q,[k−1]; 0, πα2σ2
0,qτ̄

2
2) (C.10)

whereNC,N(χ2
q,[k−1]; 0, σ2) .= σ−2Ne−χ

2
q/σ

2
. Very sparse PDF can thus be constructed when τ̄1 << τ̄2 and π̄→ 1.

The extreme scenario when τ̄1 → 0 returns the Bernouilli-Gauss model where a fraction π̄ of the coefficients
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are exactly zero on the average, the other coefficients being distributed like a complex Gaussian with variance
τ̄2

2. The equivalence with a penalized LS problem is here less obvious.

Appendix D. Point estimates in the SMoG family of priors

It is proved in this Appendix that, in the SMoG family of priors, the MAP and the posterior mean estimates of si

both take the structure of the penalized LS solution given in Eq. (20).

Appendix D.1. Posterior mean

The posterior mean is defined as E{si|P} =
∫

si[si|P]dsi. Since

[si|P] =

∫
[si|P,Σ2][Σ2|P]dΣ2 =

∫
[si|pi,Σ

2][Σ2|P]dΣ2 (D.1)

where the notation Σ2 .
= Diag(σ2

q) has been used, E{si|P} =
∫ ∫

si[si|pi,Σ
2][Σ2|P]dsidΣ2. Recognizing that

∫
si[si|pi,Σ

2]dsi

is the posterior mean ŝi(Σ2) conditioned on Σ2 as given in Eq. (9), one has

E{si|P} =

∫
ŝi(Σ2)[Σ2|P]dΣ2

=

∫ (
Σ2GH(GΣ2GH + η2I)−1pi

)
[Σ2|P]dΣ2. (D.2)

Appendix D.2. MAP estimate

The MAP estimate satisfies the optimality condition ∂
∂sH

i
[S|P] = 0. Using Eq. (D.1), this is equivalent to∫

∂
∂sH

i
[S|P,Σ2][Σ2|P]dΣ2 = 0. Since [si|pi,Σ

2] = NC(si; ŝi,Ω) with Ω = (β−2GHG + α−2Σ−2)−1 and ŝi = β−2ΩGHpi,
the optimality condition becomes∫

Ω−1 (si − ŝi) [S|P,Σ2][Σ2|P]dΣ2 = 0,

⇔

(
β−2GHG[S|P] + α−2

∫
Σ−2[S|P,Σ2][Σ2|P]dΣ2

)
si − β

−2GHpi[S|P] = 0 (D.3)

where
∫

[S|P,Σ2][Σ2|P]dΣ2 = [S|P] has been used. Dividing all terms by β−2[S|P] and recognizing that

[S|P,Σ2][Σ2|P]
[S|P]

= [Σ2|S,P] = [Σ2|S] (D.4)

then yields β
−2GHG + α−2

∫
Σ−2[Σ2|S]dΣ2︸              ︷︷              ︸
E{Σ−2 |S}

 si = β−2GHpi. (D.5)

This proves Eq. (20).
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Appendix E. Convergence of the IBF algorithm

Let us first assume that the regularization parameter η2 and the prior source power α2 are known. Then, considering
all snapshots together, the Bayesian program is to find the MAP estimate

ŝi = Argmax
si

[S|P]

= Argmax
si

ln [S|P]

= Argmax
si

(ln [P|S] + ln [S]) .

The second line results from the application of Bayes rule (6) where the evidence [P] has been ignored since it does
not depend on the unknown quantity ŝi. Next, replacing [P|S] by its multivariate complex Gaussian expression and
using Eq. (18) to express [S] as an SMoG, it comes

ŝi = Argmax
si

−β−2||pi −Gsi||
2 + ln Diag

Eτ2
q


N∏

j=1

[
sq, j|τ

2
q

]
[τ2

q]



 (E.1)

where only functions of the unknown quantity ŝi have been kept in the expression to be maximized, the diagonal
operator applies with respect to index q and Eτ2

q
means that the expected value is taken with respect to the random

variable τ2
q. At this stage, it is noticed that if the order of the expectation operator and of the logarithm were reversed in

the last term of Eq. (E.1), the cost function would be quadratic in ŝi and its optimization would considerably simplify.
This is the essence of the EM algorithm, which solves problem (E.1) by iterating between the following two steps
[44].

E step: Calculate Q(S; S[k−1]) = Eτ2
q

{
ln

(∏N
j=1

[
sq, j|τ

2
q

])
|P,S[k−1]

}
where the expectation is now conditioned to the

data p j and the previous estimate of the source coefficients s j,[k−1] for all j = 1, ...,N.
M step: Calculate si,[k] = Argmaxsi

(
−β−2||pi −Gsi||

2 + Q(S; S[k−1])
)
.

The E step is further worked out as

Q(S; S[k−1]) =

N∑
j=1

E
τ2

q

{
ln

[
sq, j|τ

2
q

]
|P,S[k−1]

}
= −E{τ−2

q |P,S[k−1]}

N∑
j=1

|sq, j|
2

α2σ2
q,0

− E{ln(τ2
q)|P,S[k−1]} − N ln(πα2σ2

q,0)

where [sq, j|τ
2
q] = NC(sq, j; 0, α2σ2

q,0, τ
2
q) has been used (see Eq. (18)). By ignoring all quantities which do not depend

on s j,[k−1] and inverting the sign of the cost function, the EM algorithm takes the simplified form:

E step: Calculate
τ−2

q,[k] = E{τ−2
q |P,S[k−1]} (E.2)

which, in the SMoG, family takes the simplified form E{τ−2
q |χ

2
q,[k−1]} where conditioning is constricted to the normal-

ized sum of squares χ2
q,[k−1] defined in Eq. (19) and evaluated at the previous iteration k − 1.

M step: Calculate

si,[k] = Argmin
(
β−2||pi −Gsi||

2 + α−2sH
i Diag(σ−2

q,0τ
2
q, [k]−2)si

)
=

(
GHG + η2Diag(σ−2

q,0τ
−2
q,[k])

)−1
GHpi (E.3a)

= Diag(σ2
q,0τ

2
q,[k])G

H(GDiag(σ2
q,0τ

2
q,[k])G

H + η2I)−1pi. (E.3b)

This last equation is recognized as being equivalent to Eq. (9). Eventually, it is found that source coefficients can
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be estimated for each snapshot i, independently, yet by using estimates of η2 and τ2
q which are evaluated by using all

available snapshots j = 1, ...,N.

Let us now consider the situation where the regularization parameter and the source power are unknown. Then,
the goal is to estimate them jointly with the source coefficients, viz(

ŝi, α̂
2, η̂2

)
= Arg max

si,α2,η2

[
S, α2, η2|P

]
.

The maximization of the above cost function can be significantly simplified by alternating between the maximization
of [S|α2, η2,P] and [α2, η2|{s j,p j}

N
j=1], which is the principle of the Expectation-Conditional Maximization (ECM)

algorithm [44]. The convergence of the ECM is further accelerated by replacing the maximization of [α2, η2|{s j,p j}
N
j=1]

by that of its marginal over the source coefficients, that is

[α2, η2|P] =

∫
[α2, η2|P,S] [S] dS (E.4)

(where conditioning on P is eventually recognized to be equivalent to conditioning on Spp). This is known as “col-
lapsing” [53]. This justifies interlacing the Bayesian regularization algorithm described in Appendix Appendix B with
the EM steps.

Appendix F. Estimation of the relative intensity

The conditional expectation (E.2) is evaluated as follows

τ−2
q,[k] =

∫ ∞

0
τ−2

q

[
τ2

q|P,S[k−1]

] [
τ2

q

]
dτ2

q =

∫ ∞

0
τ−2

q

[
τ2

q|{sq, j,[k−1]}
N
j=1

] [
τ2

q

]
dτ2

q (F.1)

where it has been recognized that τ2
q depends directly and only on sq, j,[k−1]. Using Bayes’ rule,

τ−2
q,[k] =

∫ ∞
0 τ−2

q

[
{sq, j,[k−1]}

N
j=1|τ

2
q

] [
τ2

q

]
dτ2

q∫ ∞
0

[
{sq, j,[k−1]}

N
j=1|τ

2
q

] [
τ2

q

]
dτ2

q

=

∫ ∞
0 τ−2

q
∏N

j=1

[
sq, j,[k−1]|τ

2
q

] [
τ2

q

]
dτ2

q∫ ∞
0

∏N
j=1

[
sq, j,[k−1]|τ2

q

] [
τ2

q

]
dτ2

q

. (F.2)

Now, exploiting the fact that

N∏
j=1

[
sq, j,[k−1]|τ

2
q

]
=

N∏
j=1

NC
(
sq, j,[k−1]; 0, α2σ2

0,qτ
2
q

)
=

1
(α2σ2

0,qτ
2
q)N

e
−

∑N
j=1 |sq, j,[k−1] |

2

τ2
qα

2σ2
0,q (F.3)

in the SMoG model and setting χ2
q,[k−1] =

∑N
j=1 |sq, j,[k−1] |

2

α2σ2
0,q

, one finds

τ−2
q,[k] = −

∂

∂(χ2
q,[k−1])

ln

∫ ∞

0

N∏
j=1

[
sq, j,[k−1]|τ

2
q

] [
τ2

q

]
dτ2

q

 = −
∂

∂(χ2
q,[k−1])

ln
([
χ2

q,[k−1]

])
. (F.4)

Application of the latter formula to the prior PDFs (C.2), (C.5), (C.8) and (C.10) returns Eqs. (G.1), (G.2), (G.6) and
(G.9), respectively. Incidentally, the above result also proves that τ−2

q,[k] depends on χ2
q,[k−1] only, which justifies the

contracted notation τ−2
q,[k] = E{τ−2

q |χ
2
q,[k−1]} instead of the full notation of (E.2).

Appendix G. Updating rules for the aperture function

This appendix provides closed-form expressions for τ̂2
q,[k] in the case of the prior PDFs introduced in section 4.2

(see Eqs. (C.2), (C.5), (C.8) and (C.10)).

41



• Multivariate complex Student-t (MCS). The expected relative intensity related to the MCS prior PDF is easily
found by application of Eq. (24) to Eq. (C.2):

τ̂2
q,[k] =

χ2
q,[k−1] + b

N + a
. (G.1)

As seen in Fig. 11(c-d), the estimated relative intensity τ̂2
q,[k] is a linearly increasing function of the normalized

sum of squares χ2
q,[k−1], which means that source coefficients with high values are progressively emphasized

by the updating rule (25) in the IBF algorithm. At convergence, only the coefficients with largest moduli will
survive. Very sparse solutions are expected when small values are quickly attenuated, which requires b to be
small, and large values are amplified, which requires a to be small as well.

• Multivariate complex K-distribution (MCK). Using the properties of the modified Bessel functions, the
expected relative intensity related to the MCK is found as

τ̂2
q,[k] =

χ2
q,[k−1]

N − a

1 +

√
bχ2

q,[k−1]

N − a

KN−a−1

(
2
√

bχ2
q,[k−1]

)
KN−a

(
2
√

bχ2
q,[k−1]

)

−1

, N > a, (G.2)

with asymptotic behavior

τ̂2
q,[k] ∼

χ2
q,[k−1]

N − a
, N > a, for small χ2

q,[k−1] (G.3)

and

τ̂2
q,[k] ∼

χ2
q,[k−1]

N − a

1 +

√
bχ2

q,[k−1]

N − a


−1

, N > a, for large χ2
q,[k−1]. (G.4)

This is a crescent function of the normalized sum of squares χ2
q,[k−1], yet with a nonlinear behavior intermediate

between the linear and the square root case. It is noteworthy that for large χ2
q,[k−1] the MCK prior behaves like

the MCL given hereafter (see Eq. (G.6)).

In practice, the numerical evaluation of the modified Bessel functions may be troublesome at high orders and
for small values of χ2

q,[k−1]. A good approximation is proposed for large orders N−a is (see Appendix Appendix
H)

τ̂2
q,[k] ≈

χ2
q,[k−1]

N − a

1 +

√
bχ2

q,[k−1]

N − a

1 − e−
√

bχ2
q,[k−1]

N−a−1



−1

, N > a + 1. (G.5)

• Generalized multivariate complex Gaussian (GMCG). The expected relative intensity related to the GMCG
is readily found as

τ̂2
q,[k] =

2
p

(
χ2

q,[k−1]

)1− p
2 , 0 < p ≤ 2. (G.6)

This is again a monotonic power function of χ2
q,[k−1], where high sparsity can be reached by setting p small. The

special case p = 1 returns a square root behavior similar to the asymptote of the MCK. One definite advantage
of the GMCG is to involve only one parameter p.

The updating rule of the GMCG is particularly intuitive since it reads, in logarithmic scale,

lnσ2
q,[k] = ln

(
σ2

q,0

)
+ ln

(
τ̂2

q,[k]

)
=

p
2

ln
(
σ2

q,0

)
+

(
1 −

p
2

)
ln

(
S qq,[k−1]

)
+ C (G.7)
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where C .
= ln (2/p) + (1 − p/2) ln

(
N/α2

)
is a global scaling that does not depend on the local position rq.

Therefore, the updating is interpreted as the weighted geometric mean between the initial AF σ2
q,0 and the

previous estimation of the source power spectrum S qq,[k−1]. The value of p specifies the balance between the
two terms. For p = 1, uniform weights of value 1/2 are assigned to the two terms, whereas for 0 < p < 1, more
weight is given to the data-dependent term.

• Multivariate complex Laplacian (MCL). Since the multivariate complex Laplacian is a particular case of the
GMCG with p = 1, the expected relative intensity is

τ̂2
q,[k] = 2

√
χ2

q,[k−1] (G.8)

with updating rule lnσ2
q,[k] = 1

2 ln
(
σ2

q,0

)
+ 1

2 ln
(
S qq,[k−1]

)
+ C. This is found to generalize the Bayesian LASSO

[50] to the multivariate complex case.

• Mixture of multivariate complex Gaussians (MMCG). According to Eq. (C.10),

τ̂−2
q =

p1 · τ̄
−2
1 + p2 · τ̄

−2
2

p1 + p2
(G.9)

where p1
.
= π̄ · NC,N(χ2

q,[k−1]; 0, τ̄2
1) and p2

.
= (1 − π̄) · NC,N(χ2

q,[k−1]; 0, τ̄2
2). Equation (G.9) has an insightful

interpretation: τ̂−2
q is obtained as the weighted averaged of τ̄−2

1 and τ̄−2
2 where weights p1 and p2 reflect the

likelihood of the data χ2
q,[k−1] under a Gaussian model with relative intensities τ̄1 and τ̄2, respectively.

The MMCG case stands out from the other cases by producing a soft threshold, as shown in Fig. 11(c-d). Values
of χ2

q,[k−1] below a certain quantity γc are attenuated by a factor nearly equal to τ̄2
1 whereas values above γc are

amplified by a factor nearly equal to τ̄2
2. The value of the threshold may be assessed from the inflection point of

τ̂2
q,[k] as a function of χ2

q,[k−1], viz

γc = τ̄2
1 ·

ln
(

π̄
1−π̄

)
+ N ln

(
τ̄2

2/τ̄
2
1

)
1 − τ̄2

1/τ̄
2
2

, τ̄2 > τ̄1. (G.10)

For large values of N, this tends to a hard threshold where all values below it would be exactly zeroed.

Appendix H. Proof of approximation (G.5)

For N > a + 1, the ratio of the modified Bessel functions in Eq. (G.2) is very well fitted by a function of the form

1 − exp(−c
√

bχ2
q,[k−1]), where coefficient c = 1/(N − a − 1) is found so as to match the derivative at χ2

q,[k−1] = 0.

Appendix I. Derivation of the bias – Eq. (29)

Setting pi = Gsi in Eq. (20) and using the matrix inversion lemma, one has

si − E {ŝi} =
(
I − Σ2GH(GΣ2GH + η2I)−1G

)
si

=
(
I − (GHG + η2Σ−2)−1GHG

)
si (I.1)

with Σ2 as given in Eq. (22). Now, setting I = (GHG + η2Σ−2)−1(GHG + η2Σ−2) in the former equality yields Eq. (29)
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Appendix J. Missing information matrix

In accordance with Ref. [44], let define the observed information matrix of the incomplete data (i.e. without
introducing τ2

q),

Ii = −
∂2

∂si∂sH
i

ln [S|P] , (J.1)

and the expected information matrix of the complete data (i.e. marginalized over τ = {τ2
q, q = 1, ..,Q})

Ic,i = −E
τ2

{
∂2

∂si∂sH
i

ln
[
S|P, τ2

]
|P,S

}
, (J.2)

both conditioned to the observations P and evaluated for snapshot i. The missing information matrix is then defined
as

Im,i = Ic,i − Ii, (J.3)

which measures information deficiency when the relative intensity τ2
q is not directly observed.

As explained in Ref. [44], an estimate of the covariance matrix of the estimated source coefficients is returned
by the inverse of the observed information matrix Ii = Ic,i − Im,i averaged over all snapshots, whereas the speed of
convergence of the EM algorithm is controlled by the largest eigenvalue of Ji = I−1

c,iIm,i, both evaluated at the MAP
solution ŝi. In both cases, the missing information matrix is seen to act as the main leverage and its norm should
therefore be minimized in order to achieve good convergence of the estimates.

The missing information matrix is calculated hereafter from Eq. (J.2) after evaluating the expressions for Ic,i and
Ii. Since

[
S|P, τ2

q

]
∝ [P|S]

[
S|τ2

q

]
where [P|S] and

[
S|τ2

q

]
are complex Gaussians PDFs as given by Eqs. (7) and (8), it

readily comes that
Ic,i = β−2GHG + α−2Diag

(
σ−2

0,qE{τ
−2
q |S}

)
(J.4)

where E{τ−2
q |S} = − ∂

∂(χ2
q) ln

[
χ2

q

]
from Eq. (K.4). Similarly, since [S|P] ∝ [P|S] [S],

Ii = β−2GHG −
∂2

∂si∂sH
i

ln [S] = β−2GHG − α−2Diag

σ−2
0,q

 ∂

∂(χ2
q)

+
|sq,i|

2

α2σ2
0,q

∂2

(∂χ2
q)2

 ln
[
χ2

q

] (J.5)

where [S] is given by Eq. (18) and the chain rule, ∂
∂sq,i

=
s∗q,i

α2σ2
0,q

∂
∂(χ2

q) with χ2
q as defined in Eq. (23), has been used.

Therefore,

Im,i = Diag

 |sq,i|
2

(α2σ2
0,q)2

∂2

(∂χ2
q)2 ln

[
χ2

q

] , (J.6)

whose average over snapshot i = 1, ...,N and evaluation at the MAP solution returns the first equality in (30). Now,
considering that [χ2

q] ∝
∫

e−χ
2
q/τ

2
q [τ2

q]dτ2
q, it can be checked that

∂2

(∂χ2
q)2 ln

[
χ2

q

]
=

∫ ∞

0
τ−4

q

[
τ2

q|{sq, j,[k−1]}
N
j=1

] [
τ2

q

]
dτ2

q −

(∫ ∞

0
τ−4

q

[
τ2

q|{sq, j,[k−1]}
N
j=1

] [
τ2

q

]
dτ2

q

)2

= Var
{
τ−2

q |S
}
, (J.7)

which proves the second equality of Eq. (30).

The above results lead to the following particular cases:

• The diagonal elements of the information matrix of the MCS prior are upper bounded provided that b > 0:

[Im]MCS
qq =

1
α2σ2

0,q

(N + a)
N

χ2
q

(χ2
q + b)2 ≤

1
α2σ2

0,q

(N + a)
N

. (J.8)
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• The information matrix of the MMCG prior, [Im]MMCG
qq , is found upper bounded by 1

α2σ2
0,q

γ′c
4τ̄2

1

(
τ̄2

1
τ̄2

2
− 1

)2
, a maxi-

mum located at χ2
q = γ′c = τ̄2

1 ln( 1−π̄
π̄

( τ̄
2
1
τ̄2

2
)N).

• The information matrix of the GMCG prior with p < 2 (which includes the MCL) is seen to diverge at χ2
q = 0

since
[Im]GMCG

qq =
1

α2σ2
0,q

=
p(1 − p/2)

2N
1

(χ2
q)1−p/2 . (J.9)

• The MCK has unbounded variance,

[Im]MCK
qq ∼

1
α2σ2

0,q

N − a
N

1
χ2

q
, N > a, for small χ2

q,[k−1], (J.10)

which diverges at χ2
q = 0.

Appendix K. Broadband Iterated Bayesian focusing (BIBF)

The essential difference in BIBF is to assume that the AF is not a function of frequency. Therefore, the relative
intensity τ2

q should be estimated once for all frequencies. The equivalent of Eq. (F.1) then becomes

τ−2
q,[k] =

∫ ∞

0
τ−2

q

[
τ2

q|{sq,i,[k−1]( fl); i = 1, ...,N, l = 1, ..., B}
] [
τ2

q

]
dτ2

q (K.1)

(with explicit dependence of the source coefficients sq,i,[k−1]( fl) on frequency fl). Using Bayes’ rule, this gives

τ−2
q,[k] =

∫ ∞
0 τ−2

q
∏N

i=1
∏B

l=1

[
sq,i,[k−1]( fl)|τ

2
q

] [
τ2

q

]
dτ2

q∫ ∞
0

∏N
i=1

∏B
l=1

[
sq,i,[k−1]( fl)|τ

2
q

] [
τ2

q

]
dτ2

q

(K.2)

where independence of the source coefficients have been assumed with respect to frequencies (which holds true under
the assumption of a (time) stationary sound field). Since

N∏
i=1

B∏
l=1

[
sq,i,[k−1]( fl)|τ

2
q

]
=

1
(α2σ2

0,qτ
2
q)NB

e
−

∑B
l=1

∑N
i=1 |sq,i,[k−1]( fl ) |

2

τ2
qα

2σ2
0,q (K.3)

or, equivalently,
[
χ2

q,[k−1]

]
∝ e−χ2

q,[k−1] with χ2
q,[k−1] as defined in Eq. (31), one eventually finds

τ−2
q,[k] = −

∂

∂(χ2
q,[k−1])

ln
([
χ2

q,[k−1]

])
. (K.4)
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