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Fractal graphs

Pierre Ille∗† Robert Woodrow‡

August 16, 2018

Abstract

The lexicographic sum of graphs is defined as follows. Let G be a
graph. With each v ∈ V (G) associate a graph Hv. The lexicographic sum
of the graphs Hv over G is obtained from G by substituting each v ∈ V (G)
by Hv. Given distinct v,w ∈ V (G), we have all the possible edges in the
lexicographic sum between V (Hv) and V (Hw) if vw ∈ E(G), and none
otherwise. When all the graphs Hv are isomorphic to some graph H,
the lexicographic sum of the graphs Hv over G is called the lexicographic
product of H by G, and denoted by G ≀H.

We say that a graph G is fractal if there exists a graph Γ, with at
least two vertices, such that G ≃ Γ ≀G. There is a simple way to construct
fractal graphs. Let Γ be a graph with at least two vertices. The graph
Γω is defined on the set V (Γ)ω of functions from ω to V (Γ) as follows.
Given distinct f, g ∈ V (Γ)ω, fg is an edge of Γω if f(m)g(m) is an edge
of Γ, where m is the smallest integer such that f(m) ≠ g(m). The graph
Γω is fractal because Γ ≀ Γω

≃ Γ1+ω
≃ Γω.

We prove that a fractal graph is isomorphic to a lexicographic sum
over an induced subgraph of Γω, which is itself fractal.

Mathematics Subject Classifications (2010): 05C63, 05C76, 05C75

Key words: lexicographic sum, lexicographic product, fractal graph

1 Introduction

We introduce a notion of a fractal graph. It comes from the idempotency under
lexicographic product, which was studied by Sabidussi [8]. Precisely, let us
consider graphs G and H. The lexicographic product G ≀ H of H by G is
obtained from G by replacing each vertex of G by a copy of H. We retain the
edges inside the copies, and we add all the possible edges between two copies
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just when the corresponding vertices of G form an edge of G. A graph G is
said to be idempotent under the lexicographic graph if G is isomorphic to the
lexicographic product of G by itself. Hence, a graph idempotent (under the
lexicographic graph) is a fixed point of the mapping, which associates G ≀ G
with each graph G. (To avoid trivialities, we require that an idempotent graph
has at least two vertices and hence is infinite.) Sabidussi [8] built idempotent
graphs from linear orders, that are idempotent under the usual sum of linear
orders, like the usual linear order on the rationals or on the reals. We do not
know if there are other examples of idempotent graphs. The study of graphs
built by Sabidussi reveals a self replication in their modular structures described
in [2].

Initially, Sabidussi [8] considered the relationship between the wreath prod-
uct of automorphism groups of graphs and the automorphism group of the lex-
icographic product of graphs. Obviously, the wreath product of automorphism
groups of graphs is a subgroup of the automorphism group of the lexicographic
product of graphs. In the special case of an idempotent graph G, Sabidussi
asked if the automorphism group of G ≀G is larger than the wreath product of
the automorphism group of G by itself. Ille [3] answers the question positively.

To analyze the structure of an idempotent graph, we need the notion of a
quotient. Let G be a graph. A subset M of V (G) is a module of G if each vertex
outside M is adjacent to all the elements of M or to none of them. A modular
partition of G is a partition of V (G), all the blocks of which are modules of G.
The links between two disjoint modules are the same, all are edges or none are.
This property justifies the following notion of a quotient. With each modular
partition P of G, we associate the quotient G/P of G by P , defined on P , which
is obtained from G by reducing each block of P to a single vertex, a vertex of
the quotient.

LetG be an idempotent graph. SinceG is idempotent, there exists a modular
partition P of G such that the corresponding quotient G/P is isomorphic to
G, and for each X ∈ P , G[X] is isomorphic to G. Let X ∈ P . Since G[X]
is isomorphic to G, G[X] is decomposable into G ≀ G. In other words, G is
isomorphic to G ≀ (G ≀G). By continuing this decomposition, we obtain a tree,
from which the fractal structure of G appears. In fact, to obtain such a fractal
structure through this decomposition process, we do not need to require that
the quotient G/P is isomorphic to G. Indeed, it is sufficient to require that there
exists a modular partition P of G, with at least two blocks, such that for each
X ∈ P , G[X] is isomorphic to G. Equivalently, we say that a graph G is fractal
if there exists a graph Γ, with at least two vertices, such that G is isomorphic to
Γ ≀G. Hence, a fractal graph is a fixed point of the mapping, which associates
Γ ≀G with each graph G, for some graph Γ with at least two vertices.

It is easy to construct fractal graphs. Consider any graph Γ with at least
two vertices. The graph Γω is defined on the set V (Γ)ω of functions from ω
to V (Γ) in the following manner. Given distinct f, g ∈ V (Γ)ω, fg is an edge
of Γω if f(m)g(m) is an edge of Γ, where m is the smallest integer such that
f(m) ≠ g(m). The graph Γω is fractal because Γ ≀ (Γω) ≃ Γ1+ω ≃ Γω.

Finally, we characterize fractal graphs by using the lexicographic sum, of
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which the lexicographic product is a special case. Let G be a graph. With each
v ∈ V (G) associate a graph Hv. The lexicographic sum of the graphs Hv over
G is obtained from G by substituting each v ∈ V (G) by Hv. Given distinct
v,w ∈ V (G), we have all the possible edges in the lexicographic sum between
V (Hv) and V (Hw) if vw ∈ E(G), and none otherwise. Let G be a fractal graph.
Let Γ be a graph such that G ≃ Γ ≀ G. We prove that G is isomorphic to a
lexicographic sum over an induced subgraph of Γω, which is itself fractal.

At present, we formalize our presentation. We use the following notation.
Let G be a graph. For distinct v,w ∈ V (G), set

[v,w]G =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if vw ∈ E(G)
or

0 if vw /∈ E(G).

Let G be a graph. A subset M of V (G) is a module [1, 6, 9] of G if for any
x, y ∈ M and v ∈ V (G) ∖M , we have [x, v]G = [y, v]G. (Gallai [1] used closed
set instead of module.) A partition P of V (G) is a modular partition of G if
each block of P is a module of G. Given disjoint modules M and M ′ of G, we
have [x,x′]G = [y, y′]G for x, y ∈M and x′, y′ ∈M ′. This property justifies the
following definition of a quotient. Let G be a graph. We associate with each
modular partition P of G the quotient G/P of G by P defined on V (G/P ) = P
as follows. For distinct M,N ∈ P ,

[M,N]G/P = [x, y]G,

where x ∈M and y ∈ N .
Now, we give a definition of fractal in terms of quotient, which is shown in

Proposition 2 to be equivalent to the definition in terms of lexicographic product.
A graph G is fractal if there exists a modular partition P of G satisfying

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣P ∣ ≥ 2,

and

for each M ∈ P , G[M] ≃ G.

(1)

The following weakening of the notion of isomorphism is useful (see Re-
mark 1). Let G and H be graphs. A function f ∶ V (G) Ð→ V (H) is a (strong)
egamorphism [5] from G to H if for v,w ∈ V (G) such that f(v) ≠ f(w), we have

[v,w]G = [f(v), f(w)]H .

Remark 1. Given graphs G and H, consider an egamorphism f from G to H.
Set W = f(V (G)), and

Π(f) = {f−1(w) ∶ w ∈W}.

The set Π(f) is a modular partition of G. Moreover, the function

f/Π(f) ∶ G/Π(f) Ð→ H[W ]
f−1(w) (w ∈W ) z→ w,

is an isomorphism from G/Π(f) onto H[W ].

3



The inverse operation of the quotient is the lexicographic sum defined in
the following manner. Consider a graph G, and associate with each v ∈ V (G)
a graph Hv. Suppose that the vertex sets V (Hv) are pairwise disjoint. We
consider the function

p ∶ ⋃
v∈V (G)

V (Hv) Ð→ V (G),

which maps each x ∈ ⋃v∈V (G) V (Hv) to the unique vertex p(x) of G such that
x ∈ V (Hp(x)). The lexicographic sum

∑
G

Hv

of the graphs Hv over G (or the G-join of the family {Hv ; v ∈ V (G)} [7]) is
defined on ⋃v∈V (G) V (Hv) as follows. Given distinct x, y ∈ ⋃v∈V (G) V (Hv),

[x, y](∑GHv) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[p(x), p(y)]G if p(x) ≠ p(y)
or

[x, y]Hp(x) if p(x) = p(y).

If there exists a graph H such that Hw is isomorphic to H for every w ∈ V (G),
then the lexicographic sum ∑GHv of the graphs Hv over G is called the lexico-
graphic product of H by G, and is denoted by G ≀H. Precisely, we can define
G ≀H on V (G)×V (H) as follows. Given distinct (v,w), (v′,w′) ∈ V (G)×V (H),

[(v,w), (v′,w′)](G≀H) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[v, v′]G if v ≠ v′

or

[w,w′]H if v = v′.

We obtain the following characterization of a fractal graph in terms of lexi-
cographic product.

Proposition 2. For a graph G, G is fractal if and only if there exists a graph
Γ satisfying

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v(Γ) ≥ 2,

and

G ≃ Γ ≀G.
(2)

Let G be a fractal graph. A graph Γ satisfying (2) is called a fractal factor
of G. Now, consider a fractal factor Γ of G, and an isomorphism ψ from G onto
Γ ≀G. We say that a subset W of V (G) is ψ-invariant if

ψ(W ) = V (Γ) ×W.

Remark 3. Let G be a fractal graph. Consider a fractal factor Γ of G, and
an isomorphism ψ from G onto Γ ≀ G. Given W ⊆ V (G), W is ψ-invariant if
and only if ψ↾W is an isomorphism from G[W ] onto Γ ≀G[W ]. Therefore, if a
subset W of V (G) is ψ-invariant, then G[W ] is fractal, and Γ is a fractal factor
of G[W ].
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1.1 A simple construction of fractal graphs

Consider any graph Γ such that v(Γ) ≥ 2. (Observe that Γ can be infinite.)
Consider the set V (Γ)ω = {f ∶ ω Ð→ V (Γ)}. Given distinct f, g ∈ V (Γ)ω, set

µ(f, g) = min({n ∈ ω ∶ f(n) ≠ g(n)}).

The graph Γω is defined on V (Γ)ω as follows. Given distinct f, g ∈ V (Γ)ω,

[f, g]Γω = [f(µ(f, g)), g(µ(f, g))]Γ.

The graph Γω is fractal because

Γ ≀ Γω ≃ Γ1+ω ≃ Γω.

Precisely, consider the shift function

σ ∶ ω Ð→ ω
n z→ n + 1.

The bijection
ϕ ∶ V (Γ)ω Ð→ V (Γ) × V (Γ)ω

f z→ (f(0), f ○ σ) (3)

is an isomorphism from Γω onto Γ ≀ Γω. By Proposition 2, Γω is fractal. Fur-
thermore, Γ is a fractal factor of Γω.

1.2 Results

To begin, we provide a sufficient condition for a lexicographic sum over a fractal
graph to be fractal as well.

Proposition 4. Let G be a fractal graph. Consider a fractal factor Γ of G, and
an isomorphism ψ from G onto Γ ≀G. With each v ∈ V (G) associate a graph
Hv. Suppose that the vertex sets V (Hv) are pairwise disjoint.

If for each v ∈ V (G), {w ∈ V (G) ∶ Hw ≃ Hv} is ψ-invariant, then the
lexicographic sum ∑GHv is fractal, and Γ is a fractal factor of ∑GHv.

The next result is an immediate consequence of Proposition 4.

Corollary 5. Let G be a fractal graph. For every graph H, G ≀H is fractal,
and the fractal factors of G are fractal factors of G ≀H.

The opposite direction in Corollary 5 is not true. Nevertheless, we obtain
the next result (see Proposition 6). We need the following notion of primality.
Let G be a graph. The empty set, the vertex set of G, and the singletons are
modules of G, called trivial. A graph G is prime if v(G) ≥ 3, and all the modules
of G are trivial. (Observe that there is no prime graph on 3 vertices.)

Proposition 6. Given graphs G and H, if G ≀H is fractal and H is prime,
then G is fractal, and the fractal factors of G ≀H are fractal factors of G.
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The main result follows.

Theorem 7. Let G be a fractal graph. Consider a fractal factor Γ of G, and
an isomorphism ψ from G onto Γ ≀G.

There exists a unique function θ ∶ V (G) Ð→ V (Γ)ω such that the following
diagram commutes.

G
ψÐÐÐÐ→ Γ ≀G

θ
×××Ö

×××Ö
IdV (Γ)×θ

Γω ÐÐÐÐ→
ϕ

Γ ≀ Γω
(D1)

Moreover, the following assertions hold, where W = θ(V (G)) and

Π(θ) = {θ−1(f) ∶ f ∈W}.

(A1) The function θ is an egamorphism from G to Γω.

(A2) The function θ induces an isomorphism θ/Π(θ) from G/Π(θ) onto Γω[W ].

(A3) We have
G = ∑

Γω[W ]
G[θ−1(f)].

(A4) The subset W of Γω is ϕ-invariant.

(A5) For each f ∈W , {g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]} is ϕ-invariant.

(A6) The function

Ψ ∶ Π(θ) Ð→ V (Γ) ×Π(θ)
θ−1(f) (f ∈W ) z→ (f(0), θ−1(f ○ σ))

is an isomorphism from G/Π(θ) onto Γ ≀ (G/Π(θ)). Moreover, the follow-
ing diagram commutes.

G/Π(θ) ΨÐÐÐÐ→ Γ ≀ (G/Π(θ))

θ/Π(θ)
×××Ö

×××Ö
IdV (Γ)×(θ/Π(θ))

Γω[W ] ÐÐÐÐ→
ϕ↾W

Γ ≀ (Γω[W ])

(D2)

Finally, all the functions occurring in Diagram (D2) are isomorphisms.
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2 Proofs

We begin with the easy proof of Proposition 2.

Proof of Proposition 2. To begin, suppose that G is fractal. There exists a
modular partition P of G, which satisfies (1). Since G[M] ≃ G for each M ∈ P ,
we get

G ≃ (G/P ) ≀G.

Thus G/P satisfies (2).
Conversely, suppose that there exists a graph Γ satisfying (2). Set

P = {{x} × V (G) ∶ x ∈ V (Γ)}.

Clearly, P is a modular partition of Γ ≀G. Since Γ satisfies (2), there exists an
isomorphism ψ from G onto Γ ≀G. Therefore,

ψ−1(P ) = {ψ−1(M) ∶M ∈ P}

is a modular partition of G. Since v(Γ) ≥ 2 by (2), we have ∣P ∣ ≥ 2, so ∣ψ−1(P )∣ ≥
2. Furthermore, consider N ∈ ψ−1(P ). There exists x ∈ V (Γ) such that N =
ψ−1({x} × V (G)). Therefore, we have

G[N] = G[ψ−1({x} × V (G))]
≃ (Γ ≀G)[{x} × V (G)]
≃ G (by definition of Γ ≀G).

It follows that ψ−1(P ) satisfies (1). Hence G is fractal.

2.1 Proof of Proposition 4 and Corollary 5

We use the following notation in the proof of Proposition 4.

Notation 8. Let G and H be graphs. The function from V (G) × V (H) to
V (G), which maps (v,w) ∈ V (G) × V (H) to v, is denoted by qG. Note that qG
is an egamorphism from G ≀H to G. Similarly, the function from V (G) ×V (H)
to V (H), which maps (v,w) ∈ V (G) × V (H) to w, is denoted by qH .

Proof of Proposition 4. Consider the function p ∶ ⋃v∈V (G) V (Hv) Ð→ V (G),
which maps each x ∈ ⋃v∈V (G) V (Hv) to the unique vertex p(x) of G such that
x ∈ V (Hp(x)).

Let v ∈ V (G). Since {w ∈ V (G) ∶ Hw ≃ Hv} is ψ-invariant, we have (qG ○
ψ)(v) ∈ {w ∈ V (G) ∶Hw ≃Hv}. Thus

H(qG○ψ)(v) ≃Hv.

By the axiom of choice, there exists a function ν, which associates with each
v ∈ V (G) an isomorphism ν(v) from Hv onto H(qG○ψ)(v).
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Consider the function

ψ̃ ∶ ⋃v∈V (G) V (Hv) Ð→ V (Γ) × ⋃v∈V (G) V (Hv)
x z→ ((qΓ ○ ψ ○ p)(x), ν(p(x))(x)).

We show that ψ̃ is an isomorphism from ∑GHv onto Γ ≀ (∑GHv). For distinct
x, y ∈ ⋃v∈V (G) V (Hv), we have to verify that

[x,y](∑GHv) =
[((qΓ ○ ψ ○ p)(x), ν(p(x))(x)), ((qΓ ○ ψ ○ p)(y), ν(p(y))(y))]Γ≀(∑GHv). (4)

We distinguish the following cases.

1. Suppose that p(x) ≠ p(y). We obtain

[x, y]∑GHv = [p(x), p(y)]G = [(ψ ○ p)(x), [(ψ ○ p)(y)](Γ≀G). (5)

(a) Suppose that (qΓ ○ ψ ○ p)(x) ≠ (qΓ ○ ψ ○ p)(y). We obtain

[((qΓ ○ ψ ○ p)(x), ν(p(x))(x)),
((qΓ ○ ψ ○ p)(y), ν(p(y))(y))]Γ≀(∑GHv)

=[(qΓ ○ ψ ○ p)(x), (qΓ ○ ψ ○ p)(y)]Γ
=[(ψ ○ p)(x), (ψ ○ p)(y)](Γ≀G).

It follows from (5) that (4) holds.

(b) Suppose that (qΓ ○ ψ ○ p)(x) = (qΓ ○ ψ ○ p)(y). We obtain

[((qΓ ○ ψ ○ p)(x), ν(p(x))(x)),
((qΓ ○ ψ ○ p)(y), ν(p(y))(y))]Γ≀(∑GHv)

=[ν(p(x))(x), ν(p(y))(y)](∑GHv)

We have
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ν(p(x))(x) ∈ V (H(qG○ψ○p)(x))
and

ν(p(y))(y) ∈ V (H(qG○ψ○p)(y)).

Since p(x) ≠ p(y), (ψ ○ p)(x) ≠ (ψ ○ p)(y). Since (qΓ ○ ψ ○ p)(x) =
(qΓ ○ψ ○ p)(y), we obtain (qG ○ψ ○ p)(x) ≠ (qG ○ψ ○ p)(y). It follows
that

[ν(p(x))(x), ν(p(y))(y)](∑GHv)
=[(qG ○ ψ ○ p)(x), (qG ○ ψ ○ p)(y)]G
=[(ψ ○ p)(x), (ψ ○ p)(y)]Γ≀G.

It follows from (5) that (4) holds.
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2. Suppose that p(x) = p(y). We obtain

[((qΓ ○ ψ ○ p)(x), ν(p(x))(x)),
((qΓ ○ ψ ○ p)(y), ν(p(y))(y))]Γ≀(∑GHv)

=[ν(p(x))(x), ν(p(y))(y)](∑GHv)
=[ν(p(x))(x), ν(p(x))(y)]H(qG○ψ○p)(x)
=[x, y]Hp(x)
=[x, y](∑GHv).

As indicated in Subsection 1.2, Corollary 5 is an immediate consequence of
Proposition 4. Also, a direct proof of Corollary 5 is immediate by using the
associativity of the lexicographic product.

Proof of Corollary 5. Let Γ be a fractal factor of G. We have G ≃ Γ ≀G. For
any graph H, we obtain

Γ ≀ (G ≀H) ≃ (Γ ≀G) ≀H ≃ G ≀H.

As seen in Proposition 4, the ψ-invariant subsets of V (G) play an important
role. We complete the subsection with their examination.

Notation 9. Let G be a fractal graph. Consider a fractal factor Γ of G. Let
ψ be an isomorphism from G onto Γ ≀G. The set of the ψ-invariant subsets of
V (G) is denoted by Iψ.

Remark 10. Let G be a fractal graph. Consider a fractal factor Γ of G. Let
ψ be an isomorphism from G onto Γ ≀G. Clearly, Iψ is closed under comple-
mentation and intersection. Hence Iψ is a boolean algebra. For each v ∈ V (G),
set

Iψ(v) = {W ∈ Iψ ∶ v ∈W}.

Clearly Iψ(v) ≠ ∅ because V (G) ∈ Iψ(v). It follows that

⋂
W ∈Iψ(v)

W

is ψ-invariant. Set
⟨v⟩ψ = ⋂

W ∈Iψ(v)
W.

Clearly, ⟨v⟩ψ is the smallest ψ-invariant subset of V (G) containing v. Therefore,
the atoms of Iψ are ⟨v⟩ψ for v ∈ V (G). Given W ⊆ V (G), it follows that W is
ψ-invariant if and only if for each v ∈W , ⟨v⟩ψ ⊆W .

Lastly, let Γ be a graph such that v(Γ) ≥ 2. Consider the isomorphism ϕ
defined in (3). We characterize the atoms ⟨f⟩ϕ, where f ∈ V (Γ)ω, of the boolean
algebra Iϕ (see Lemma 11 below).
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Let f ∈ V (Γ)ω. Given n ≥ 1, consider u ∈ V (Γ)n, that is,

u ∶ {0, . . . , n − 1} Ð→ V (Γ).

We define the concatenation u ● f ∶ ω Ð→ V (Γ) as follows. For p ≥ 0,

(u ● f)(p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u(p) if p ≤ n − 1

or

f(p − n) if p ≥ n.

The set V (Γ)0 contains a unique function denoted by 1. For every f ∈ V (Γ)ω,
we have 1 ● f = f . Furthermore, for every f ∈ V (Γ)ω, f ○ σ0 = f .

Since the proof of the next lemma is a straightforward verification, we leave
the details to the reader.

Lemma 11. For every f ∈ V (Γ)ω,

⟨f⟩ϕ = ⋃
m,n≥0

{u ● (f ○ σm) ∶ u ∈ V (Γ)n}. (6)

Using a ϕ-invariant subset of V (Γω), we define a more complicated fractal
graph than Γω, which is decomposed into a lexicographical sum over an induced
subgraph of Γω, which is itself fractal. Consider a nonempty set C of nonempty
ϕ-invariant subsets of V (Γ)ω that are pairwise disjoint. Set

W = ⋃
C∈C

C.

As already noticed, W is a ϕ-invariant subset of V (Γ)ω. By Remark 3, Γω[W ]
is fractal. With each C ∈ C , we associate a graph HC . For each f ∈ C, set

Hf = αf ≀HC ,

where αf is the graph defined on {f}. (In this manner, the vertex sets V (Hf),
where f ∈ W , are pairwise disjoint.) It follows from Proposition 4 that the
lexicographic sum

G = ∑
Γω[W ]

Hf

is fractal. The purpose of Theorem 7 is to establish that any fractal graph is
isomorphic to such a lexicographic sum.

2.2 Proof of Proposition 6

The following strengthening of the notion of a module is helpful to establish
Proposition 6. Given a graph G, a subset M of V (G) is a strong module [1, 6]
of G if M is a module of G satisfying: for every module N of G, if M ∩N ≠ ∅,
then M ⊆ N or N ⊆ M . (Gallai [1] used strongly closed set instead of strong
module.)
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Remark 12. Let G be a graph. Consider a module M of G. Suppose that
M is not a strong module of G. There exists a module N of G such that
M ∩N ≠ ∅, M ∖N ≠ ∅, and N ∖M ≠ ∅. It follows that {M ∩N,M ∖N} is a
modular partition of G[M]. Thus, G[M] (or its complement) is disconnected.
Consequently, given a module M of G, if G[M] is connected and coconnected,
then M is a strong module. In particular, given a module M of G, if G[M] is
prime, then M is a strong module.

We complete the remark with the following property. Let G be a graph.
Given modules M and N of G, if G[M] and G[N] are prime, then M ∩N = ∅
or M = N .

Proposition 6 is a consequence of the next result.

Lemma 13. Given graphs G,G′ and H, if G ≀H ≃ G′ ≀H and H is prime, then
G ≃ G′.

Proof. Let ρ be an isomorphism from G ≀H onto G′ ≀H. With each x ∈ V (G)
associate the subset

W ′(x) = {x′ ∈ V (G′) ∶ ρ({x} × V (H)) ∩ ({x′} × V (H)) ≠ ∅}

of V (G′). Let x ∈ V (G). Since H is prime, (G ≀ H)[{x} × V (H)] is prime,
and hence (G′ ≀H)[ρ({x} ×V (H))] is as well. Moreover, since {x} ×V (H) is a
module of G ≀H, ρ({x}×V (H)) is a module of G′ ≀H. Similarly, for x′ ∈ V (G′),
(G′ ≀H)[{x′} × V (H)] is prime, and {x′} × V (H) is a module of G′ ≀H.

Now, consider x ∈ V (G). Let x′ ∈W ′(x). We have ρ({x} × V (H)) ∩ ({x′} ×
V (H)) ≠ ∅. Since ρ({x} × V (H)) and {x′} × V (H) are modules of G′ ≀H such
that (G′ ≀H)[ρ({x} × V (H))] and (G′ ≀H)[{x′} × V (H)] are prime, it follows
from Remark 12 that ρ({x} × V (H)) = {x′} × V (H). Hence W ′(x) = {x′}.
Consequently

∣W ′(x)∣ = 1

for every x ∈ V (G).
It is easy to verify that the function from V (G) to V (G′) that maps each

x ∈ V (G) to the unique element of W ′(x) is an isomorphism from G onto G′.

Proof of Proposition 6. Since G ≀H is fractal, it follows from Proposition 2 that
there exists a graph Γ, with v(Γ) ≥ 2, such that G ≀ H ≃ Γ ≀ (G ≀ H). Since
Γ ≀ (G ≀H) ≃ (Γ ≀G) ≀H, we obtain G ≀H ≃ (Γ ≀G) ≀H. Since H is prime, it follows
from Lemma 13 that G ≃ Γ ≀G. By Proposition 2, G is fractal.

2.3 Proof of Theorem 7

Let G be a fractal graph. Consider a fractal factor Γ of G. There exists an
isomorphism ψ from G onto Γ ≀G.

With each v ∈ V (G), we associate a sequence (fv(n), xv(n))n≥0 of elements
of V (Γ) × V (G) defined by recursion as follows. First, set

(fv(0), xv(0)) = ψ(v).
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Second, given (fv(n), xv(n)), where n ≥ 0, set

(fv(n + 1), xv(n + 1)) = ψ(xv(n)).

Consider the function

θ ∶ V (G) Ð→ V (Γ)ω
v z→ fv.

Claim 14. Given γ ∈ V (Γ) and v,w ∈ V (G), if ψ(v) = (γ,w), then γ = θ(v)(0),
and θ(w) = θ(v) ○ σ.

Proof. We have ψ(v) = (fv(0), xv(0)), that is, ψ(v) = (θ(v)(0), xv(0)). Hence
γ = θ(v)(0) and w = xv(0). It is easy to verify by induction on n ≥ 0 that

(fv(n + 1), xv(n + 1)) = (fw(n), xw(n)).

It follows that fv(n + 1) = fw(n) for every n ≥ 0. Therefore fv ○ σ = fw, that is,
θ(v) ○ σ = θ(w).

The next claim follows from Claim 14.

Claim 15. For every v ∈ V (G), we have

(ϕ ○ θ)(v) = ((IdV (Γ) × θ) ○ ψ)(v).

Proof. Let v ∈ V (G). We have

ϕ(θ(v)) = (θ(v)(0), θ(v) ○ σ).

Furthermore, there exist γ ∈ V (Γ) and w ∈ V (G) such that ψ(v) = (γ,w). We
get (IdV (Γ) × θ)(ψ(v)) = (IdV (Γ) × θ)(γ,w). By Claim 14, γ = θ(v)(0). Thus

(IdV (Γ) × θ)(ψ(v)) = (IdV (Γ) × θ)(θ(v)(0),w)
= (θ(v)(0), θ(w)).

By Claim 14, θ(w) = θ(v) ○ σ. It follows that

(IdV (Γ) × θ)(ψ(v)) = (θ(v)(0), θ(v) ○ σ).

By Claim 15, Diagram (D1) commutes. Now, we prove that θ is unique.

Claim 16. Let θ′ ∶ V (G) Ð→ V (Γ)ω. If ϕ ○ θ′ = (IdV (Γ) × θ′) ○ ψ, then θ′ = θ.

Proof. Consider θ′ ∶ V (G) Ð→ V (Γ)ω such that ϕ ○ θ′ = (IdV (Γ) × θ′) ○ ψ. Let
v ∈ V (G). We have

(ϕ ○ θ′)(v) = (θ′(v)(0), θ′(v) ○ σ)

and

((IdV (Γ) × θ′) ○ ψ)(v) = (IdV (Γ) × θ′)(fv(0), xv(0)) = (fv(0), θ′(xv(0)).

12



Thus, for each v ∈ V (G), we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

θ′(v)(0) = fv(0)
and

θ′(v) ○ σ = θ′(xv(0)).
(7)

We prove by induction on n ≥ 0 that for each v ∈ V (G),

θ′(v)(n) = fv(n). (8)

It follows from (7) that (8) holds for n = 0. Now, suppose that (8) holds for
n ≥ 0. Consider v ∈ V (G). Set

w = xv(0).

We have

θ′(v)(n + 1) =(θ′(v) ○ σ)(n)
=θ′(w)(n) by (7)

=fw(n) because (8) holds for n.

As observed in the proof of Claim 14, we have

(fv(m + 1), xv(m + 1)) = (fw(m), xw(m))

for every m ≥ 0. It follows that

θ′(v)(n + 1) = fv(n + 1).

Therefore, (8) holds for every n ≥ 0. It follows that for each v ∈ V (G), θ′(v) = fv,
so θ′(v) = θ(v).

We prove that Assertion (A1) of Theorem 7 holds.

Claim 17. For v,w ∈ V (G), if θ(v) ≠ θ(w), then [v,w]G = [θ(v), θ(w)]Γω .

Proof. Let v,w ∈ V (G) such that θ(v) ≠ θ(w). Set

m = µ(θ(v), θ(w)).

To begin, suppose that m = 0. We have

[v,w]G = [ψ(v), ψ(w)]Γ≀G
= [(θ(v)(0), xv(0)), (θ(w)(0), xw(0))]Γ≀G
= [(θ(v)(0), θ(w)(0)]Γ
= [θ(v), θ(w)]Γω .

Now, suppose that m ≥ 1. We prove by induction on i ∈ {0, . . . ,m − 1} that

[v,w]G = [xv(i), xw(i)]G.
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For i = 0, we have

[v,w]G = [ψ(v), ψ(w)]Γ≀G
= [(θ(v)(0), xv(0)), (θ(w)(0), xw(0))]Γ≀G
= [xv(0), xw(0)]G.

Suppose that i ≤m − 2. By induction hypothesis, we have

[v,w]G = [xv(i), xw(i)]G.

Thus, we obtain

[v,w]G = [xv(i), xw(i)]G
= [ψ(xv(i)), ψ(xw(i))]Γ≀G
= [(θ(v)(i + 1), xv(i + 1)), (θ(w)(i + 1), xw(i + 1))]Γ≀G
= [xv(i + 1), xw(i + 1)]G.

Consequently, we have

[v,w]G = [xv(m − 1), xw(m − 1)]G.

Lastly, we obtain

[v,w]G = [xv(m − 1), xw(m − 1)]G
= [ψ(xv(m − 1)), ψ(xw(m − 1))]Γ≀G
= [(θ(v)(m), xv(m)), (θ(w)(m), xw(m))]Γ≀G
= [(θ(v)(m), (θ(w)(m)]Γ
= [θ(v), θ(w)]Γω .

For convenience, set W = θ(V (G)) and Π(θ) = {θ−1(f) ∶ f ∈ W}. By
Remark 1, θ/Π(θ) is an isomorphism from G/Π(θ) onto Γω[W ]. Thus, Asser-
tion (A2) of Theorem 7 holds.

Since Π(θ) is a modular partition of G, we have

G = ∑
G/Π(θ)

G[X].

Since θ/Π(θ) is an isomorphism from G/Π(θ) onto Γω[W ], we obtain

G = ∑
Γω[W ]

G[θ−1(f)].

Therefore, Assertion (A3) of Theorem 7 holds.
We prove that Assertion (A4) of Theorem 7 holds.

Claim 18. For each f ∈W , we have f ○ σ ∈W .
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Proof. Let f ∈ W . There exists v ∈ V (G) such that f = θ(v). By Claim 14,
ψ(v) = (θ(v)(0),w), where w ∈ V (G) such that θ(w) = θ(v) ○ σ. It follows that
θ(w) = f ○ σ. Therefore f ○ σ ∈W .

It follows from Claim 18 that

ϕ(W ) ⊆ V (Γ) ×W. (9)

Claim 19. For any γ ∈ V (Γ) and g ∈W , we have ϕ−1(γ, g) ∈W .

Proof. Consider γ ∈ V (Γ) and g ∈W . Since g ∈W , there exists w ∈ V (G) such
that θ(w) = g. Set v = ψ−1(γ,w). We have

((IdV (Γ) × θ) ○ ψ)(v) = (IdV (Γ) × θ)(γ,w) = (γ, g).

It follows from Claim 15 that

(ϕ ○ θ)(v) = (γ, g).

Thus θ(v) = ϕ−1(γ, g). Consequently ϕ−1(γ, g) ∈W .

It follows from Claim 19 that

ϕ−1(V (Γ) ×W ) ⊆W. (10)

Therefore, it follows from (9) and (10) that W is ϕ-invariant. Hence, Asser-
tion (A4) of Theorem 7 holds. Since W is ϕ-invariant, the following diagram
commutes.

G
ϕGÐÐÐÐ→ Γ ≀G

θ
×××Ö

×××Ö
IdV (Γ)×θ

Γω[W ] ÐÐÐÐ→
ϕ↾W

Γ ≀ (Γω[W ])

We prove that Assertion (A5) of Theorem 7 holds.

Claim 20. For each f ∈W , we have ψ(θ−1(f)) = {f(0)} × θ−1(f ○ σ).

Proof. Let f ∈ W . Consider v ∈ θ−1(f). We have f = θ(v). It follows from
Claim 14 that ψ(v) = (f(0),w), where w ∈ θ−1(f ○ σ). Therefore

ψ(θ−1(f)) ⊆ {f(0)} × θ−1(f ○ σ).

Conversely, consider w ∈ θ−1(f ○ σ). We have θ(w) = f ○ σ. It follows from
Claim 14 that θ(ψ−1(f(0),w))(0) = f(0) and

θ(ψ−1(f(0),w)) ○ σ = f ○ σ.

Consequently, for each n ≥ 1, we have θ(ψ−1(f(0),w))(n) = f(n). Since
θ(ψ−1(f(0),w))(0) = f(0), we obtain

θ(ψ−1(f(0),w)) = f.
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Thus ψ−1(f(0),w) ∈ θ−1(f), so (f(0),w) ∈ ψ(θ−1(f)). It follows that

{f(0)} × θ−1(f ○ σ) ⊆ ψ(θ−1(f)).

Hence ψ(θ−1(f)) = {f(0)} × θ−1(f ○ σ).

The next two claims follow from Claim 20.

Claim 21. For each f ∈W , we have f ○ σ ∈W and

G[θ−1(f)] ≃ G[θ−1(f ○ σ)].

Proof. Let f ∈ W . By Claim 18, f ○ σ ∈ W . Furthermore, it follows from
Claim 20 that

ψ(θ−1(f)) = {f(0)} × θ−1(f ○ σ).

Since ψ is an isomorphism from G onto Γ ≀G, we obtain

G[θ−1(f)] ≃ (Γ ≀G)[{f(0)} × θ−1(f ○ σ)].

Since (Γ ≀G)[{f(0)} × θ−1(f ○ σ)] ≃ G[θ−1(f ○ σ)], we obtain

G[θ−1(f)] ≃ G[θ−1(f ○ σ)].

Claim 22. For any γ ∈ V (Γ) and g ∈W , we have ϕ−1(γ, g) ∈W and

G[θ−1(g)] ≃ G[θ−1(ϕ−1(γ, g))].

Proof. Consider γ ∈ V (Γ) and g ∈W . By Claim 19, ϕ−1(γ, g) ∈W . By Claim 21,

G[θ−1(ϕ−1(γ, g))] ≃ G[θ−1(ϕ−1(γ, g) ○ σ)].

Since ϕ−1(γ, g) ○ σ = g, we obtain G[θ−1(g)] ≃ G[θ−1(ϕ−1(γ, g))].

Claim 23. For each f ∈W , we have

ϕ({g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]}) =
V (Γ) × {g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]}. (11)

Proof. Let f ∈ W . To begin, consider g ∈ W such that G[θ−1(g)] ≃ G[θ−1(f)].
Recall that ϕ(g) = (g(0), g ○ σ). By Claim 21, g ○ σ ∈W and

G[θ−1(g)] ≃ G[θ−1(g ○ σ)].

Since G[θ−1(g)] ≃ G[θ−1(f)], we obtain

G[θ−1(g ○ σ)] ≃ G[θ−1(f)].

Thus

ϕ({g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]}) ⊆ V (Γ) × {g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]}.
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Conversely, consider γ ∈ V (Γ) and g ∈W such that G[θ−1(g)] ≃ G[θ−1(f)].
By Claim 22, ϕ−1(γ, g) ∈W and

G[θ−1(g)] ≃ G[θ−1(ϕ−1(γ, g))].

Since G[θ−1(g)] ≃ G[θ−1(f)], we obtain

G[θ−1(ϕ−1(γ, g))] ≃ G[θ−1(f)].

Thus

ϕ−1(V (Γ) × {g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]}) ⊆
{g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]},

so

V (Γ) × {g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]} ⊆ ϕ({g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]}).

Consequently (11) holds.

Remark 24. Consider f ∈W . By Claim 23, {g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]}
is ϕ-invariant. It follows from Remark 10 that

⟨f⟩ϕ ⊆ {g ∈W ∶ G[θ−1(g)] ≃ G[θ−1(f)]}.

It follows from Lemma 11 that for m,n ≥ 0 and u ∈ V (Γ)n,

G[θ−1(u ● (f ○ σm))] ≃ G[θ−1(f)].

Finally, we prove that Assertion (A6) of Theorem 7 holds. Set

ψ(Π(θ)) = {ψ(θ−1(f)) ∶ f ∈W}.

Since Π(θ) is a modular partition of G and ψ is an isomorphism from G onto
Γ ≀G, ψ(Π(θ)) is a modular partition of Γ ≀G. Moreover, the function

ψ/Π(θ) ∶ Π(θ) Ð→ ψ(Π(θ))
θ−1(f) (f ∈W ) z→ ψ(θ−1(f))

is an isomorphism from G/Π(θ) onto (Γ ≀G)/ψ(Π(θ)). Let f ∈W . By Claim 20,
ψ(θ−1(f)) = {f(0)} × θ−1(f ○ σ). It follows that

ψ(Π(θ)) = {ψ(θ−1(f)) ∶ f ∈W}
= {{f(0)} × θ−1(f ○ σ) ∶ f ∈W}
= {{γ} × θ−1(g) ∶ γ ∈ V (Γ), g ∈W}.

Furthermore, the function

F ∶ ψ(Π(θ)) Ð→ V (Γ) ×Π(θ)
{γ} × θ−1(g) (γ ∈ V (Γ), g ∈W ) z→ (γ, θ−1(g))

is an isomorphism from (Γ ≀G)/ψ(Π(θ)) onto Γ ≀ (G/Π(θ)). We obtain

Ψ = F ○ (ψ/Π(θ)),

so Ψ is an isomorphism from G/Π(θ) onto Γ ≀ (G/Π(θ)). Clearly, Diagram (D2)
commutes, and all the functions occurring in Diagram (D2) are isomorphisms.
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