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Abstract—Synchronization is a critical operation in digital
communications. An important part of the synchronizer struc-
tures relies on the digital phase locked loop (PLL) principle.
The PLL structure can be derived from the maximum likelihood
(ML) criterion, leading to a sinusoidal phase error detector
(PED). This PED offers robustness at low signal-to-noise ratio
(SNR) transmissions. However, the reduced linear zone of the
PED characteristic leads to unwanted cycle slips in the presence
of large frequency offset. On the other side, the tanlock PED has
an extended linear characteristic but is still limited in the case of
simultaneous large frequency offset and low SNR transmissions
in both acquisition and tracking modes.
We propose in this paper a software PLL which stays quasi-
linear for low SNR and large frequency offset transmissions.
Simulations show that the proposed system is robust to cycle
slips. Moreover, this system can be designed with the classical
tools used for the linear model of the PLL.

I. INTRODUCTION

Software PLLs (or all-digital PLLs) are nowadays com-
monly implemented on digital signal processor (DSP). [1],
and more recently [2]–[4] provide a detailed overview on the
implementation of software PLL. All-digital PLL may offer
significant advantages compared to their analogic counterpart
in term of performance and flexibility.
Sinusoidal phase error detectors (PED) have been used exten-
sively in the past in digital PLL implementation. They offer
good properties in a noisy environment: the sinusoidal PED is
extracted from the maximum likelihood criterion [1]. However,
it exhibits poor frequency tracking capabilities in the presence
of large frequency offset due to its reduced linearity zone,
particularly in the case of low signal-to-noise ratio (SNR).
Changing the loop filter coefficients to improve the tracking
range of the PLL will result in extending the noise equivalent
bandwidth [3]–[5], resulting simultaneously in a better acqui-
sition time and an extended tracking range but also causing a
degradation on the variance of the carrier phase estimation.
A smart approach to overcome the trade-off between the ac-
quisition time and the variance of the carrier phase estimation
is to use an adaptive algorithm that jointly optimizes the phase
estimation and the loop filter parameters [6]. This solution will
not be detailed further in this paper but we can note that this
algorithm already assumes a linear PED.
Extending the linear zone of the PED characteristic (also
denoted S-Curve in the literature) results in extending the
tracking range of the PLL without altering the precision of the

carrier phase estimation. Compared to the sinusoidal PED, the
tanlock PED characteristic has an extended linear zone [5], [7].
The digital tanlock PED is proposed in [7] for a non-uniform
sampling PLL.
In [3] it is proposed to extend further the tanlock loop via
an unwrapping of the phase error signal (tanlock-unwrapping
PED). This system enables the loop to face potentially an
infinite range of residual frequency for high SNR transmis-
sions. No further details are given in [3] about the acquisi-
tion performance of the PLL implemented with the tanlock-
unwrapping PED. However, simulations show that it exhibits
poor performance in a low SNR context due to the non-
linearity introduced by the unwrapping system.
The contribution of this paper is to propose an additive
filtering device to the unwrapping system proposed in [3],
which produces a quasi-linear system even for low SNR
transmissions. Simulations show that this PLL is particularly
robust to simultaneously large frequency offset and low SNR
transmissions. The system can be designed with the classical
tools used for the linearized PLL. Finally, the quasi-linearity
of the system provides high robustness to cycle slips.
The paper is organized as follow: in section II we present the
PLL used in the practical case of carrier recovery for digital
transmissions. Then, we present in section III the linear model
of the software PLL and the main tools to design the digital
loop filter. In section IV we compare the sinusoidal and the
tanlock loop performance to the linear model of the PLL.
Section V of this paper gives details on the innovation and
finally section VI concludes.

II. THE PLL IN A DIGITAL TRANSMISSION CONTEXT

We consider a QPSK modulated data signal received with
an unknown phase and corrupted by an additive white gaus-
sian noise (AWGN) introduced by the channel. We assume
in this study perfect symbol timing synchronization and no
inter-symbol interference (ISI). Under these assumptions, the
received and sampled signal from the input channel can be
written as:

rθ[k] = rθ(kT ) =
√

2P �{
dk ej(ω0kT+θ[k] )

}
+ N [k],

where ω0 is the carrier pulsation supposed to be known at the
receiver and θ[k] the unknown carrier phase. �{u} denotes
the real part of the complex u, P the carrier signal power



Fig. 1. Block diagram of a digital data-aided carrier demodulator

and N [k] the additive noise signal, supposed to be white and
gaussian, with variance σ2. The input SNR is expressed as
P/σ2. dk is a QPSK data symbol transmitted at time kT where
T is the known symbol period. We consider the particular case
of data-aided feedback algorithm derived from the maximum
likelihood criterion (DAMLFB). The phase of the received
carrier is equal to:

θ[k] = ωdkT + Θ0, (1)

where ωd = 2πfd and fd is the frequency offset (also known
as the phase ramp), due to a residual carrier offset and/or
a supposed constant Doppler shift. Θ0 is the phase step,
which can be considered as a random variable with a uniform
distribution on [−π, π]. Fig.1 depicts a baseband carrier phase
demodulator using the DAMLFB criterion classically used in
a all-digital receiver, in particular in low SNR transmission
context where the use of pilot symbols is particularly relevant.
The single frequency sinusoid is transposed into a complex
baseband signal by means of a multiplication with a complex
exponential running at the carrier frequency. Assuming perfect
low pass filters at the demodulation part, the demodulated
signal can be expressed in its complex envelope as:

xθ[k] =
A

2
dk ejθ[k] + W [k]. (2)

where W [k] is the noise component. The output signal from
the numerically controlled oscillator (NCO) is given by

yθ̂[k] = ejθ̂[k], (3)

where θ̂[k] is the phase output from the NCO at time t = kT .
The PED is characterized by the function f{u}: f{u} = �{u}
for the sinusoidal PED, where �{u} denotes the imaginary
part of the complex u and f{u} = Arg{u} for the tanlock
PED, where Arg{u} denotes the argument of the complex u.
At the PED output the phase error signal is expressed as:

eθ[k] = Kc f
{
xθ[k]d∗ke−jθ̂[k]

}
, (4)

where Kc is the phase detector gain and ∗ denotes the complex
conjugate operator. For both PEDs, this result in a non-linear
feedback control system, leading to a non-straightforward
analysis.
The loop filter, characterized by the transfer function Q(z),
filters the phase detector output and controls the nature of the
loop response [1]. Several loop filters are proposed in [1], but

the most commonly used is the proportional plus integrator
(PI) loop filter, which has the property to have no steady
state phase error in the presence of a frequency offset on the
received carrier phase:

Q(z) = K1 + K2
z

z − 1
, (5)

where K1 and K2 are the two loop filter parameters that
control the stability and are designed to offer the best trade-off
between the signal error variance and the acquisition time of
the PLL [4].
The numerical controlled oscillator is the digital counter part
of the voltage controlled oscillator used in the classical analog
PLL. It comprises an integrator and a digital modulator that
uses sine and cosine look up tables ( Fig.1).

III. LINEAR MODEL AND LOOP FILTER DESIGN

The block diagram of the linear model is given in Fig.2.
The linearized model of the PLL is obtained by replacing the
incoming and the corrected signal by their phases. The local
oscillator is removed, keeping only the integrator of the NCO.
Thus, only operations made on the phase are kept in the loop.
We note:

∆θ[k] = θ[k] − θ̂[k] + Wθ[k], (6)

where Wθ[k] is a noise component. Assuming Kc = 1, when
the approximation:

eθ[k] ≈ ∆θ[k]

is true, the PLL is said to be in lock and the linear model of the
PLL is considered as valid. The PLL can then be considered as
a digital filter. Noting h[k] the impulse response of the digital
filter, θ̂[k] can be expressed as:

θ̂[k] = (θ ∗ h)[k], (7)

where ∗ denotes the convolution operation. The impulse re-
sponse h[k] can be expressed in the Z domain:

H(z) =
K1(z − 1) + K2z

(z − 1)2 + K1(z − 1) + K2z
(8)

Expressing the transfer function H(z) in term of its poles
and zeros, in the particular case of the second-order loop we
obtain:

H(z) = α
z − z0

(z − z1)(z − z2)
,

where z1 and z2 are the two poles and z0 is the zero of the
transfer function H(z). It can be also written in the discrete-
time domain through straightforward computations using the
inverse Z transform:

h[k] =
α

z1 − z2

[
(1 − z0

z1
)zk

1 − (1 − z0

z2
)zk

2

]
, k ≥ 1 (9)

Assuming that the poles are complex, the filter response will
be underdamped [2]. The condition:

|z1| = |z2| < 1 (10)



Fig. 2. Block diagram of the linear model
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Fig. 3. Plot of the phase error variance σ2
∆ function of ωnT

ensures the stability of the PLL.
The poles and the zeros of the filter can be expressed by more
appropriate variables than the loop filter parameters:

z1 = z∗2 = 1 − ωnTξ + jωnT
√

1 − ξ2,

where ξ and ωnT are expressed in terms of K1 and K2 as:

ξ =
1
2

K1 + K2√
K2

,

ωnT =
√

K2.

The same results can be found in [2] leading to strictly the
same numerical values for ξ and ωnT .
ξ is called the damping factor and has typically the value
ξ = 1/

√
2 [2]. ωnT is commonly referred as the normalized

natural pulsation of the loop.
It is well known that assuming the linear model of the PLL
valid, the signal error variance σ2

∆ is a linear function of the
SNR and the normalized noise equivalent bandwidth BLT [2],
[4]:

σ2
∆ =

BLT

SNR
.

The normalized noise equivalent bandwidth can be evaluated
through straightforward computation, knowing (9) and apply-
ing the Parseval’s theorem:

BLT =
+∞∑

l=−∞

∣∣h[l]
∣∣2,

we obtain:

BLT =
α2

2�{z1}
[ |z1 − z0|2

1 − |z1|2 −�{ (z1 − z0)2

1 − z2
1

}]
.

0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

6

8

Time index

∆ θ[k
] (

ra
d.

)

Linear Model

SNR = + 5 dB
Θ

0
 ∈ [−π ; π]

ω
d
T = 10−2

ξ = 0.7
ω

n
T = 2.10−2

100 realisations 

Fig. 4. Phase error signal ∆θ[k], SNR = +5 dB, ωdT = 0.01.
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Fig. 5. Phase error signal ∆θ[k], SNR = +5 dB, ωdT = 0.01.

An another expression of the noise equivalent bandwidth can
be found in [2]. We have verified that the two expressions lead
to the same numerical values.
Assuming ξ = 1/

√
2 and a constant SNR on the transmission,

we plot on Fig.3 the asymptotic phase error variance σ2
∆

function of the loop filter parameter value ωnT for QPSK
modulation. For a low SNR transmission (SNR = 0 to 5 dB)
context, we observe on Fig.3 that a reliable estimation of the
unknown phase θ[k] could be considered for ωnT = 2.10−2.
The acquisition time of the PLL can be defined as the
minimum value of the time index k where the estimation
error is close to a stable equilibrium point. At this point, the
PLL is said to be in lock. Setting the parameter ωnT at a
too small value will result in a excessive acquisition time.
Implementing the linear model of the PLL we plot on Fig.4 the
phase error signal ∆θ[k] and we verify that the acquisition time
is acceptable for a data-aided estimation (roughly 150 sample
time). Θ0 is assumed to be a random variable with uniform
distribution on [−π; π], SNR = 5 dB and ωdT = 0.01.

The acquisition time of the linear model gives a reference
compared to the acquisition time of the software PLL.

IV. COMPARISON OF THE SINUSOIDAL AND THE TANLOCK

PED

We implement the software PLL and we compare the results
obtained with the sinusoidal and the tanlock PED. For the first
simulation, we assume no noise on the transmission (SNR
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Fig. 6. Phase error signal ∆θ[k], SNR = +5 dB, ωdT = 0.01.
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Fig. 7. Phase error signal ∆θ[k], SNR = +5dB, ωdT = 0.01.
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Fig. 8. Phase error signal ∆θ[k], SNR = +5dB, ωdT = 0.01.

= +∞), Θ0 a random variable with uniform distribution on
[−π; π] and ωdT = 0.01. We observe on Fig.6 that the
results obtained with the tanlock PED are very similar to those
obtained with the linear model (Fig.4). On the other hand, for
the sinusoidal PED we can observe cycle slip and/or hang-
up [9] that cause an impact on the acquisition time, since the
sinusoidal PED can no longer be assumed linear when Θ0

reaches a high value (Fig.5).
Since the phase estimation is correct modulo 2π, the PLL is
considered as in lock as soon as the phase error signal ∆θ[k]
is nearly equal to 0 modulo 2π. Therefore even in the case of
cycle slips, the PLL may still lock in the cost of additional
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Fig. 9. Phase error signal ∆θ[k], SNR = +∞, ωdT = 0.2.
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Fig. 10. Phase error signal ∆θ[k], SNR = 5dB, ωdT = 0.2.
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Fig. 11. Phase error signal ∆θ[k], SNR = 5dB, ωdT = 0.2.

acquisition time.
On a low SNR transmission (SNR = 5 dB), the linear ap-
proximation for the tanlock PED becomes also no more valid
(Fig.7), but the PLL still locks in a acceptable acquisition time
when a cycle slip occurs.
In the case of simultaneous large frequency offset (ωdT = 0.2)
and low SNR transmissions, we observe that the acquisition
time of the linear model is still acceptable (Fig.9). However,
on Fig.10 and Fig.11 we observe that the PLL keeps on
cycle-slipping, resulting in a crippling acquisition time: about
1000 T for the tanlock PED and 4500 T for the sinusoidal
PED in the worst case: the linear model of the PLL can not



Fig. 12. Block diagram of the equivalent unwrapping loop

be considered as relevant in the case of large frequency offset
transmissions.

V. PROPOSITION OF A NEW PHASE ERROR DETECTOR

We propose a new phase error detector, based on the
observation that the non linear behavior of the PLL comes
from the overshoot of the phase error signal that goes beyond
the linear zone [3]. We propose to add here the unwrapping
structure that has been proposed in [8] for an open loop
timing recovery scheme, and that we adapt to closed-loop
estimation scheme. The block diagram of the system proposed
is plotted in Fig.12. More details on the implementation of the
unwrapping structure can be found in [8] and [9]. Details of
the proposed PED are plotted in Fig.13.
The sawtooth function SAW (x[k]) is defined as:

SAW (x[k]) = MOD2π(x[k] − π) − π,

where MOD2π denotes the modulo 2π operation. We observe
that when −π ≤ x[k] ≤ π, SAW (x[k]) = x[k]. The
unwrapping structure can be considered in this particular case
as a filter with transfer function:

Funw(z) =
K

1 − z−1(1 − K)
.

Observing that the case −π ≤ x[k] ≤ π is the general case
when the PLL is in lock and that the PED is supposed to be
a memoryless function, we propose to cascade the filtering
structure F−1

unw(z) at the output of the unwrapping structure
(denoted on figure Fig.15 as the tanlock unwrapping + filtering
PED). Therefore, the proposed PED can be considered as
memoryless when the PLL is in lock. The transfer function of
the linear model of the PLL can be considered as a relevant
estimation.
Simulations show that the tanlock unwrapping PED imple-
mented on the PLL is unable to provide a reliable estimation
on low SNR transmissions when K = 1, due to the non
linearity present in the unwrapping structure (Fig.14). Sig-
nificant better results can be obtained setting K < 1. The
unwrapping structure introduces an additional filter when the
PLL is in lock, modifying the impulse response of the linear
model of the PLL. Moreover the PED characteristic of the
PLL comprises an unwanted memory operation. Adding the
filtering structure as depicted in Fig.13 restores the linear
PED characteristic of the PLL in lock and leads to great
improvements on the stability of the estimation. We observe
that the system proposed remains robust and approaches well
the linear model even for low SNR transmissions (Fig.15).

Fig. 13. Proposed equivalent PED
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Fig. 14. Phase error signal ∆θ[k], SNR = 5dB, ωdT = 0.2, K = 1
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Fig. 15. Phase error signal ∆θ[k], SNR = 5dB, ωdT = 0.2, K = 0.3

VI. CONCLUSION

We have proposed in this paper a software (or all-digital)
PLL which stays quasi-linear for low SNR and large frequency
offset transmissions. The PLL loop filter has been designed
with the help of the linear model of the PLL. The linear model
provides a reference on the desired performance of the loop.
Simulations have shown that the quasi-linearity of the system
proposed introduces high robustness to cycle slips. All these
improvements are obtained in the cost of a reduced additional
complexity.
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