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Using local node information in decision trees: coupling a local
labeling rule with an off-centered entropy

Nguyen-Khang Pham, Thanh-Nghi Do, Philippe Lenca, and Stéphane Lallich,

Abstract— Dealing with skewed class distribution and cost-
sensitive data has been recognized as one of the 10 most
challenging problems in data mining research. These problems
have been reported to hinder the performance of classifiers,
especially on the minority class. To deal with this problem in
decision tree induction we proposed an off-centered entropy
while other authors proposed an asymmetric entropy. Com-
pared to Shannon’s entropy both of them take their maximum
value for a distribution fixed by the user instead of an uniform
distribution. We here also propose to use in each leaf of the
tree a local class labeling rule instead of the classical majority
rule that mechanically favors the majority class i.e. the negative
one.

In this paper we briefly present the concepts of the three
entropies and the new class labeling rule. This allows us
to propose an adaptive learning of decision trees. We then
compare their effectiveness on 25 imbalanced data sets. All our
experiments are founded on the C4.5 decision tree algorithm,
in which only the function of entropy and class labeling rule
are modified. The results are promising and show the interest
of our proposal.

I. INTRODUCTION

Dealing with imbalanced and cost-sensitive data has re-
cently been recognized as one of the 10 most challenging
problems in data mining research [1]. In supervised learning,
the data set is said imbalanced if the class prior probabilities
are highly unequal. In the case of two-class problems (we
will only consider binary classification in this paper), the
larger class is called the majority class and the smaller
the minority class. Such imbalanced data sets are thus an
important problem from both real applications and research
points of view.

Firstly, real-life two-class problems have often minority
class prior under 0.10 (e.g. fraud detection, medical diag-
nostic or credit scoring). Secondly, in such a case the per-
formances of data mining algorithms are lowered, especially
the error rate corresponding to the minority class. The main
reason underlying is that most of data mining algorithm try to
maximize the accuracy. What is more, it is the minority class
that the practitioner is interested in i.e. the minority class
corresponds to positive cases and the cost of misclassifying
the positive examples is higher than the cost of misclassifying
the negative examples.

Nguyen-Khang Pham is with IRISA, Rennes, France (email: pn-
guyenk @irisa.fr).

Thanh-Nghi Do is with Cantho University, Vietnam (email: dt-
nghi @gmail.com).

Philippe Lenca is with the Institut TELECOM, TELECOM Bretagne,
UMR 3192 LabSTICC, Brest, France (email: philippe.lenca@telecom-
bretagne.eu).

Stéphane Lallich is with the University of Lyon, ERIC Laboratory,
Lyon 2, France (email: stephane.lallich@univ-lyon2.fr).

This problem gave rise to many papers, from which one
can cite papers from two workshops associated which AAAI
and ICML conferences respectively [2] and [3] and a special
issue of SIGKDD [4]. As summarized by the review papers
of [5], [6] and [7] or by the very comprehensive papers of
[8] and [9], solutions to the class imbalance problems were
proposed both at the data and algorithmic level.

At the data level, these solutions change the class distri-
bution. They include different forms of sampling, such that
over-sampling (which increases the number of minority class
data points, [4], [10]) or under-sampling (which decreases the
number of majority class data points, [11]) on a random or
a directed way. [12] proposed two ways of class imbalance
learning that are designed to utilize the major class examples
ignored by under-sampling. For a recent and comprehensive
study of sampling one may refer to [13].

At the algorithmic level, one solution is to re-balance
the error rate by weighting each type of error with the
corresponding cost [14]. A study of the consistency of
the costs re-balancing, for misclassification costs and class
imbalance, is presented in [15]. For a comparison of cost
sensitive approach and sampling approach one can see for
example [16] and [17].

We focus in this paper on decision tree induction, espe-
cially C4.5 [18]. In a simple way, one have thus to consider
the sampling problem, the split function, the pruning scheme
and the class labeling rule. A comparative study using C4.5
decision tree shown that under-sampling beat over-sampling
[19]. [20] propose to use a criterion of minimal cost, while
[21] explore efficient pre-pruning strategies for the cost-
sensitive decision tree algorithm to avoid overfitting. Some
algorithmic solutions consist in adjusting the probabilistic
estimates at the tree leaf or adjusting the decision thresh-
olds [22]. [23] studied the quality of probabilistic estimates,
the pruning scheme and the effect of preprocessing the
imbalanced data set concerning C4.5.

We first proposed a method to off-center whichever kind
of entropy [24]. The interest of the off-centered entropy for
decision tree is that it could take its maximal value for the
a priori distribution of the class in any considered node. We
then defined an adaptive learning strategy which replace the
usual entropy used in tree induction algorithms by an off-
centered entropy [25]. Experiments with C4.5, using majority
rule to label the leaves of the tree, led to promising results.
These previous works are clearly at the algorithmic level as
we only modified the split function used in decision tree
induction.

At the algorithmic level an another challenge concerns



the labeling rule used in each leaf, specially in case of
imbalanced data sets. Indeed the majority rule used in C4.5
is clearly not adapted and will mostly predict the majority
class. In this paper we extend our previous considerations of
using local information in each leave of the tree. We here
consider the labeling rule in each leaf and propose to use a
nearest neighbors approach. What is more one should notice
that, even if the data are not initially imbalanced, a decision
tree may process imbalanced data in any node.

The rest of the paper is organized as follows. In section II,
we first review splitting criterion based on Shannon’s en-
tropies. We recall basic considerations on Shannon’s entropy
and then briefly present our off-centered entropy and the
asymmetric entropy proposed by [26]. In section III we
present labeling strategies that could be applied in decision
trees. Then, in section IV we compare the performances
of different solutions based on the coupling of the three
entropies used in this study and three labeling rules. These
experiments are based on 25 imbalanced data sets and deliver
interesting results. Finally, Section V draws conclusions and
suggests future work.

II. FROM SHANNON’S ENTROPY
TO NON-CENTERED ENTROPIES

We first recall basic considerations on Shannon’s entropy
and then present briefly two non-centered entropies in the
boolean case and mention the results in the general case.

A. Usual measures based on Shannon’s entropy

Many induction tree algorithms on categorical variables
use predictive association measures based on the entropy of
Shannon [27]. Let us consider a class variable Y having ¢
modalities, p = (p1, ..., pq) being the vector of frequencies
of Y, and a categorial predictor X having k£ modalities. The
joint relative frequency of the couple (z;,y;) is denoted
pij,t = 1,...k;7 = 1,...q. What is more, we denote by
hY)=— Z?:l p.jlog, p ; the a priori Shannon’s entropy
of Y and by h(Y/X) = E(h(Y/X = x;)) the conditional
expectation of the entropy of Y with respect to X.

Shannon’s entropy h(p), is a real positive function of p =
(p15---,pq) to [0..1], verifying notably interesting properties
for machine learning purposes [28]:

o h(p) is invariant by permutation of the modalities of Y’;

« h(p) reaches its maximum log,(q) when the distribution
of Y is uniform (each modality of Y has a frequency
of 1/¢);

o h(p) reaches its minimum O when the distribution of Y’
is sure (centered on one modality of Y and the others
modalities being of null frequency);

e h(p) is a strictly concave function.

The behavior of Shannon’s entropy is illustrated in Fig. 1

in the boolean case.

As example of measures based on Shannon’s entropy, one
can mention:

« the entropic gain h(Y2 — h(Y/X) [29];

o the gain-ratio 2RO/ X) [30] which relates the en-

g "(X)
tropic gain of X to the entropy of X, rather than to the

a priori entropy of Y in order to discard the predictors
having many modalities.

For more measures and details one can refer to [31] and
[32].

The particularity of these coefficients is that Shannon’s
entropy of a distribution reaches its maximum when this
distribution is uniform. That is to say that the reference
value corresponds to the uniform distribution of classes. This
characteristic could be a major problem especially in case of
highly imbalanced classes, or when the classification costs
differ largely. It would seem more logical to evaluate h(Y")
and h(Y/X = x;) used in the above measures on a scale for
which the reference value is centered on the independence
situation i.e. on the a priori distribution of classes.

B. Off-centered entropy

The construction principle of an off-centered entropy is
sketched out in the case of a class variable Y made of ¢ = 2
modalities in [33] and [34]. The frequencies distribution of
Y for the values 0 and 1 is noted (1 — p, p).

This off-centered entropy associated with (1 — p,p) and
noted 79(p) is maximal when p = 6, 0 being fixed by the
user and not necessarily equal to 0.5 (in the case of a uniform
distribution). It is constructed with a simple transformation
of the (1 — p,p) distribution into a (1 — , ) distribution
such that 7 increases from 0 to 1/2 when p increases from
0 to 6, and 7 increases from 1/2 to 1 when p increases from
0 to 1. By looking for a linear expression of 7 as m = pT_b
on both intervals 0 < p < 6 and # < p < 1, we obtain:

e =B ifo<p<l

The off-centered entropy 7p(p) is then defined as the
entropy of (1 — m,7):

16(p) = —mlogy ™ — (1 — ) logy(1 — )

Note that the thus transformed frequency depends of 6 and
should be noted as 7g. We simply use 7 for clarity reasons.

With respect to the distribution (1 — p,p), clearly ng(p)
is not an entropy strictly speaking. Its properties must be
studied considering the fact that 74 (p) is the entropy of the
transformed distribution (1 — 7, ), i.e. ng(p) = h(w) and
thus possesses such characteristics. Obviously invariance by
permutation of modalities of Y is not more true and 7y(p)
is maximal for p = 6 i.e. for 7 = 0.5. Proofs are given in
detail in [35]. The behavior of this entropy is illustrated in
Fig. 1 for 6 = 0.2.

Following a similar way as in the boolean case we ex-
tended the definition of the off-centered entropy to the case of
a variable Y having ¢ > 2 modalities and proposed a general
decentring framework that can be applied to any measure of
predictive association based on a gain of uncertainty [35],
[24]. This allows to define a set of off-centered generalized
entropies.



C. Asymmetric entropy

Directly related to the construction of a predictive associa-
tion measure, especially in the context of decision trees, [26]
proposed an asymmetric entropy for a boolean class variable.
This measure is asymmetric in the sense that one may choose
the distribution for which it will reach its maximum. They
preserve the strict concavity property but alter the maximality
one in order to let the entropy reach its maximal value for a
distribution chosen by the user (i.e. maximal for p = 6, where
0 is fixed by the user). This implies revoking the invariance
by permutation of modalities. They thus proposed:

p(1—p)
(1 —20)p+ 02

It can be noticed that for § = 0.5, this asymmetric entropy
corresponds to the quadratic entropy of Gini. The behavior of
this entropy is illustrated in Fig. 1 for § = 0.2. The authors

extended also this approach in particular to the situation
where the class variable has ¢ > 2 modalities [36].
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Fig. 1. Off-centered, asymmetric and Shannon’s entropies

III. THE CLASS LABELING RULE

The majority decision rule is by far the most commonly
used labeling rule in tree induction. This can be explained
by two reasons. Firstly, the majority rule exploits at best the
intelligibility of decision trees. In particular, it is opposable;
in the case of scoring, you can explain to a customer for
which reason his credit demand is refused. Secondly, it is
known that the majority rule is optimal in case of balanced
classes and symmetrical costs of misclassification.

Despite its popularity, the majority rule is particularly
ill-suited to the case of imbalanced or cost-sensitive data.
Indeed, consider the example of a cancer whose a priori
probability is 0.02 for the individuals of a population. If in a
leaf, the likelihood of cancer increases to 0.32, it means that
the risk of cancer is multiplied by 16 for individuals of the
leaf. Nevertheless, the application of majority rule remains
insensitive to such a change. For each case of the leaf, the
majority rule still predicts the absence of cancer.

Among the different labeling rules, we distinguish between
the global rules, the individualized rules and the aggregated
rules. The global rules will assign the same class to all
individual to be classified which belong to the same leaf. An

individualized rule uses further information to select the class
to be attributed to each individual of the considered leaf. An
aggregated rule will consider a combination of rules issued
from multiple classifiers. An individual rule is well suited
to imbalanced data, but the intelligibility of the rules is lost,
even if the intelligibility of the tree is preserved. In the case
of aggregated rules, both the tree and the rules intelligibility
are lost.

When using a global rule one choose the same class for all
individuals from the same leaf on the basis of a rule which
may be different from the majority rule. [37] have proposed
two different labeling rules. The first one uses an implication
index where the chosen class is the one which maximizes the
index of the rule if the leaf is F' then the class is C;”. The
second one is the contribution to the entropy: the chosen
modality is the one for which the contribution to the entropy
of the leaf is the lowest among the modalities for which there
are more cases than expected by chance. The main feature
of this type of rule is to favor the minority class accuracy in
the trade off between minority class and majority class.

Beyond the majority rule (denoted by MR in the tables),
another rule is known, the proportional random rule, which
is naturally associated with the normalized gain of quadratic
entropy [38]. The principle of this rule is to attribute the class
at random, while respecting the distribution of the class in
the considered leaf. This kind of rule is known for providing
as good results as those offered by the majority rule, but it
has the advantage of being less affected than the majority
rule in case of imbalanced data.

To settle the class labeling problem, we propose an indi-
vidualized rule (denoted by k-NN-rule). The class assigned
to an individual is the majority class among its k-nearest
neighbors in the corresponding leaf. The nearest neighbors
are based on the variables that have not yet been used to
construct the leaf. If the topology induced by these variables
adds some information about the class, the proposed rule is a
kind of proportional rule which chooses the class better than
chance. Otherwise, the proposed rule is confused with the
rule of proportional allocation at random. We here introduce
a specific bias in favor of rare class. As pointed out by
[39] if a general bias is good for common cases, it is not
appropriate for rare cases and may even cause rare cases
to be totally ignored. These problems were also previously
discussed by [40].

A final way to fight against the crushing effect of the
majority rule is to generate a large diversity of situations by
using a set of trees and to aggregate their results, i.e decision
tree bagging [41].

IV. EXPERIMENTS

We have empirically studied behaviors of decision tree
algorithms using our proposed off-centered entropy [24] to
classify imbalanced data sets. We are also interested in the
comparison of performances with state-of-the-art entropies
including Shannon’s entropy [27] and asymmetric entropy
[26]. Due to the evaluation we have added the off-centered



and asymmetric entropies to the publicly available decision
tree algorithm, C4.5 [30].

The experimental setup used the twenty five data sets
described in Table I including seventeen first ones from
the UCI repository [42], six next ones from the Statlog
repository [43], an another one from the DELVE repository
(http://www.cs.toronto.edu/~delve/) and a last one from [44].
In order to evaluate performances for classification tasks of
imbalanced data sets, we pre-processed multi-class (more
than two classes) data sets as two-class problems. The
columns 5 and 6 in table I show how we convert multi-
class to minority and majority classes, for example with the
OpticDigits data set, the digit ”0” is mapped to the minority
class (Class min: 10%) and the remaining data are considered
as the majority class (Class maj: 90%).

We will denote by (***) significant result at 1/1000 level,
(**) at 1/100, (*) at 5/100 and (°) when results are not
significant.

TABLE 1

DATA BASES
n°  Base Nb. cases Nb. dim  Class min Class maj Validation
1 Opticdigits 5620 64 10%(0) 90%(rest) trn-tst
2 Tictactoe 958 9 35%(1) 65%(2) 10-fold
3 Wine 178 13 27%(3) 73%(rest) loo
4 Adult 48842 14 24%(1) 76%(2) trn-tst
5 20-newsgrp 20000 500 5%(1) 95%(rest) 3-fold
6 Breast 569 30 35%(M) 65%(B) 10-fold
7 Letters 20000 16 4%(A) 96%(rest) 3-fold
8 Yeast 1484 8 31%(CYT) 69%(rest) 10-fold
9 Connect-4 67557 42 10%(draw) 90%(rest) 3-fold
10 Glass 214 9 33%(1) 67%(rest) loo
11 Spambase 4601 57 40%(spam) 60%(rest) 10-fold
12 Ecoli 336 7 15%(pp) 85%(rest) 10-fold
13 Abalone 4177 8 9%(15-29) 91%(rest) 10-fold
14 Pendigits 10992 16 10%(9) 90%(rest) trn-tst
15 Car 1728 6 8%(g, vg) 92%(rest) 10-fold
16 Bupa 345 6 429%(1) 58%(2) 10-fold
17 Page blocks 5473 10 10%(rest) 90%(text) 10-fold
18 Pima 768 8 35%(1) 65%(2) 10-fold
19 German 1000 20 30%(1) 70%(2) 10-fold
20 Shuttle 58000 9 20%(rest) 80%(1) trn-tst
21 Segment 2310 19 14%(1) 86%(rest)  10-fold
22 Satimage 6435 36 24%(1) 90%(rest) trn-tst
23 Vehicle 846 18 24%(van) 76%(rest) 10-fold
24 Splice 3190 60 25%(EI) 75%(rest) 10-fold
25 ALL-AML 72 7129 35% (AML)  65%(ALL) loo

A. Comparison of the three entropies two by two, using
majority rule

For this first comparison published in [25], the majority
rule is applied. The results of the different entropies are
compared in terms of the length of the produced tree, of error
rate on the minority class and the majority class, as well as
the global error rate (tables II, III, IV). The main result of
the carried out experiments is that our strategy of adaptive
learning, using the non-centered entropies, particularly the
off-centered entropy, outperform the Shannon entropy. These
both entropies significantly improve Amin, the minority
class accuracy, without penalizing Amaj, the majority class
accuracy and TS, the tree size.

Indeed, facing the Shannon entropy (SE), the off-centered
entropy (OCE) improves Amin 23 times out of 25, with 1
defeat and 1 tie, which corresponds to a p-value of 0.000.
The corresponding average gain is 1.98 points of percent

TABLE 11
OCE VS. SE WITHOUT BAGGING

TS Acc Amin Amaj
avg. -7.28 0.76 1.98 0.58
std. dev. 26.55 1.91 2.13 2.32
Student ratio | -1.37 2.00 4.65 1.26
p-value 0.1831 0.0574 0.0001 0.2215
OCE 6 21 23 12
= 4 1 1 5
SE 15 3 1 8
p-value 0.0784  0.0003  0.0000 0.5034
TABLE III
AE VS. SE WITHOUT BAGGING
TS Acc Amin  Amaj

avg. 0.44 0.34 1.44 0.29

std. dev. 31.81 0.89 1.87 1.84

Student ratio | 0.07 1.92 3.85 0.79

p-value 0.945 0.067 0.001 0.436

AE 12 18 20 10

= 2 1 1 6

SE 11 6 4 9

p-value 1.000  0.023 0.002 1.000

(***). Amaj is not significantly improved (0.58), but the
global accuracy Acc is improved 21 times out of 25, against
3 decrease and 1 tie (***), while the average corresponding
gain is equal to 0.76. Moreover, the trees provided by the off-
centered entropy are often of a more reduced size, without
this reduction being significant.

The asymmetric entropy gives results slightly less signifi-
cant when compared to Shannon entropy. It improves Amin
20 times out of 25 (***), with an average gain close to 1.44
(***). However, the improvement of Amaj is only of 0.29,
which is not significant. Furthermore, Amaj is improved only
10 times out of 25, with 6 ties. As a result, the small increase
of Acc (0.34) is not entirely significant (p-value = 0.067),
corresponding to 18 wins out of 25 and 1 tie (¥). There is
no significant difference for the size of the tree. If the two
non centered entropies OCE and AE are compared, one can
observe a slight but not significant superiority of OCE for
each criterion, in particular a gain of 0.54 for Amin, and
0.42 for Acc.

TABLE IV
OCE VS. AE WITHOUT BAGGING
TS Acc Amin Amaj
avg. -1.72 0.42 0.54 0.29
std. dev. 21.91 1.56 2.18 1.92
Student ratio | -1.76 1.34 1.25 0.76
p-value 0.0908 0.1917 0.2243  0.4551
OCE 9 14 13 12
= 6 5 3 4
AE 10 6 9 9
p-value 1.0000  0.1153 0.5235 0.6636

B. Comparison of the different entropies two by two using
majority decision rule and bagged decision trees

In the second run of experimentations, bagged decision
trees are performed, using each of the three entropies,



TABLE V
OCE VS. SE WITH BAGGING

Acc Amin Amaj
avg. 0.75 1.47 0.65
std. dev. 1.22 1.58 2.93
Student ratio | 3.11 4.66 1.11
p-value 0.0048 0.0001 0.2786
OCE 23 21 17
= 2 2 2
SE 0 2 6
p-value 0.0000  0.0001  0.0347

TABLE VI

AE VS. SE WITH BAGGING

Acc Amin Amaj
avg. 0.39 0.51 0.50
std. dev. 0.79 1.59 1.58
Student ratio | 2.45 1.61 1.59
p-value 0.0218 0.1214  0.1249
AE 16 14 13
= 4 3 4
SE 5 8 8
p-value 0.027 0.286 0.383

associated with the majority rule. The corresponding results
are synthesized in tables V, VI and VIL

In comparison with SE, improvements due to OCE are very
highly significant, both for the frequency of improvement
in the accuracy and the gain precision. Accuracy has been
increased 21 times against 2 (***) on the minority class, 17
times (*) against 6 on the majority class and 23 times (**%*)
against 0 globally. The average gain is 0.65 for Amaj (),
1.47 for Amin (***), and 0.75 for Acc (**).

The superiority of AE against SE is slightly modified.
For Amin, the average gain of AE compared to SE is no
more significant with bagging, only 0.51 instead of 1.44
without bagging. On the other hand, the average gain for
Amaj is slightly increased (0.50 instead of 0.29) while the
gain for Acc (0.44 instead 0.39) becomes significant (*). The
superiority of OCE against AE becomes significant for both
Amin and Acc. Compared with AE, OCE improves Amin 16
times against 5 (*), with an average gain of 0.96 (**). By
the same way, OCE improves Acc 17 times against 3 (**),
with an average gain of 0.37 (¥).

TABLE VII
OCE VS. AE WITH BAGGING

Acc Amin Amaj
avg. 0.37 0.96 0.15
std. dev. 0.72 1.47 1.68
Student ratio | 2.55 3.26 0.44
p-value 0.0174  0.0033  0.6625
OCE 17 16 11
= 5 4 6
AE 3 5 8
p-value 0.0026  0.0266  0.6476

C. Comparison of the k-NN-rule with the majority rule, for
each entropy

For each entropy, we examine whether the k-NN-rule (k =
3 in our experiments) gives better results than the majority

TABLE VIII
K-NN-RULE VS. MR FOR SE

SE Acc Amin  Amaj
avg. -0,10 1,66 -0,48
std. dev. 1,08 2,83 1,74
Student ratio -0,46 2,94 -1,38
p-value 0,648 0,007 0,180
result lost gain lost
k-NN-rule wins 14 19 9
= 1 0 2
MR wins 10 6 14
p-value (sign test) 0,541 0,015 0,405
result gain gain lost
TABLE IX

K-NN-RULE VS. MR FOR OCE
OCE Acc Amin  Amaj
avg. -0,25 1,05 -0,52
std. dev. 0,73 3,81 1,71
Student ratio -1,74 1,38 -1,54
p-value 0,094 0,181 0,137
result lost gain lost
k-NN-rule wins 12 18 8
= 0 0 2
MR wins 13 7 15
p-value (sign test) 1,000 0,043 0,210
result lost gain lost

rule (tables VIII, IX and X). Generally speaking, whatever
the entropy, the use of local rule significantly increases the
value of Amin, but slightly reduces the values of Amaj
and Acc. More specifically, in the case of Shannon entropy,
the average gain on Amin due to k-NN-rule is 1.7 (**)
corresponding to 19 wins against 6 defeats (*). The drops
in Amaj (0.5) and Acc (0.1) are not significant. Regarding
OCE, the average gain on Amin (1.1) was not significant,
but the k-NN-rule prevailed 18 times out of 25, which was
significant (*). For AE, the average gain on Amin (1.1) was
not entirely significant, but drops in Amaj (0.8) and Acc (0.3)
owed to the k-NN-rule are significant.

TABLE X

K-NN-RULE VS. MR FOR AE
AE Acc Amin  Amaj
avg. -0,32 1,10 -0,78
std. dev. 0,70 3,18 1,52
Student ratio -2,26 1,74 -2,56
p-value 0,033 0,095 0,017
result lost gain lost
k-NN-rule wins 12 16 7
= 0 2 2
MR wins 13 7 16
p-value (sign test) 1,000 0,093 0,093
result lost gain lost

D. Comparison of the different entropies two by two, when
using local rule

In this new series of experiments, we compare two by
two the results obtained with the three entropies, when using
the k-NN-rule (tables XI, XII and XIII). The best outcome



TABLE XI
OCE VS. SE WITH K-NN-RULE

OCE- SE Acc Amin  Amaj
avg. 0,61 1,37 0,54
std. dev. 0,93 2,37 1,84
Student ratio 3,25 2,88 1,46
p-value 0,003 0,008 0,158
result gain gain gain
OCE wins 21 18 13
= 3 5 7
SE wins 1 2 5
p-value (sign test) 0,000 0,000 0,096
result gain gain gain
TABLE XII

AE VS. SE WITH K-NN-RULE
AE- SE Acc Amin  Amaj
avg. 0.13 0.88 -0.01
std. dev. 1,03 2,33 1,29
Student ratio 0,61 1,88 -0,04
p-value 0,549 0,072 0,972
result gain gain lost
AE wins 15 16 11
= 4 5 5
SE wins 6 4 9
p-value (sign test) 0,078 0,012 0,824
result gain gain gain

TABLE XIII

OCE VS. AE WITH K-NN-RULE
OCE- AE Acc Amin  Amaj
avg. 0,48 0,49 0,55
std. dev. 1,53 1,95 1,84
Student ratio 1,57 1,26 1,48
p-value 0,129 0,219 0,151
result gain gain gain
OCE wins 13 14 12
= 4 3 7
AE wins 8 8 6
p-value (sign test) 0,383 0,286 0,238
result gain gain gain

is clearly that achieved by OCE. In fact, OCE significantly
surpasses SE, increasing on average of 1.4 point for Amin
(**), 0.5 for Amaj (°) and 0.6 for Acc (¥*). The sign test
confirms the significance of this superiority, since OCE is
defeated by SE only 2 times out of 25 for Amin (**%*), and 1
time out of 25 for Acc (***). The comparison of OCE with
AE shows that empirically OCE has better results than AE, but
improvements are too small to be significant. AE also prevails
on SE, though giving less significant results than OCE. The
sole significant result concerns Amin. AE gets the better of
SE 16 times out of 25 (**), but the average improvement on
Amin (0.9) is not significant. The changes in Amaj and Acc
are very small.

E. Comparison of OCE and AE using k-NN-rule with SE
using the majority rule

The last type of experiments compares the results obtained
when using usual strategy (SE + MR) with those issued
from the proposed adaptive learning strategy (OCE or AE)
associated with k-NN-rule. Figure 2 illustrates the gain of
accuracy on Amin for each data base when using AE or
OCE with k-NN-rule instead of SE with MR. From results
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Fig. 2. Gain of OCE/k-NN-rule and AE/k-NN-rule against SE/MR

TABLE XIV
NON-CENTERED ENTROPIES WITH K-NN-RULE VS. SE WITH MR
AE/k-NN-rule vs. SEFMR  OCE/k-NN-rule vs. SE'MR

Acc Amin  Amaj Acc Amin  Amaj
avg. gain 0,03 2,54 -0,49 0,51 3,03 0,06
std. dev. 1,01 3,46 2,25 1,74 4,05 ,08
Student ratio 0,13 3,67 -1,09 1,45 3,74 0,09
p-value 0,900 0,001 0,288 0,159 0,001 0,926
result gain gain lost gain gain gain
AE/OCE (k-NN-rule) wins 17 21 9 19 23 10
= 0 0 2 0 0 2
SE (MR) wins 8 4 14 6 2 13
p-value (sign test) 0,108 0,001 0,405 0,015 0,000 0,678
result gain gain gain gain gain gain

presented in Table XIV it is clear that the proposed adaptive
learning strategy associated with the k-NN-rule outperforms
very significantly the usual strategy. The most conclusive
results are obtained with OCE. Indeed, using OCE and the
k-NN-rule, the average gain in Amin is equal to 3,0 percent
points (¥**), corresponding to 23 wins and 2 defeats (***),
while maintaining Amaj, which gives an average improve-
ment of 0.5 for Acc, corresponding to 19 wins against 6
defeats (**). Using AE in association with the k-NN-rule,
also improves the results of the usual strategy. In average,
the increase on Amin worth 2.5 (¥**), corresponding to 21
wins against 4 defeats (**%*), but the overall accuracy is not
improved, as there is a loss of about 0.5 on Amaj.

V. CONCLUSION

Standard decision trees like C4.5 perform poorly on imbal-
anced data sets. To settle this problem, solutions can be pro-
posed at different levels: resampling methods, split function,
pruning-scheme, labeling rule. Previously, we defined an off
centered entropy named OCE, which takes its maximum value
for the a priori distribution of the class in the considered
node. Others authors have proposed an asymmetrical entropy
AE which has the same property. In this paper we suggest
and test two propositions at the labeling level. The first one
consists in using bagged decision trees while the second one
lies in the individualization of the labeling rule inside each
leaf. The class assigned to an individual is the majority class
among the k nearest neighbors of the considered individual
inside the leaf (k-NN-rule).

We then present several experiments regarding the differ-
ent strategies that we could apply. The experiments show that



in case of bagging, our off-centered entropy OCE outperforms
very significantly Shannon entropy SE (Amin, Amaj and Acc
are all the three very significantly increased (respectively 1.5,
0.7 and 0.8 points of percent). The comparison of our strategy
(OCE + k-NN-rule) with the usual strategy (SE + majority
rule) is in favor of (OCE + k-NN-rule). The experiments show
that the average gain is 3.0 for Amin and 0.5 for Acc. Using
AE in place of OCE leads to similar result but slightly less
significant.

Overall, these results show the relevance of the adaptive
learning strategy that we propose to deal with imbalanced
data sets when performing decision trees.

In the future, we intend to experiment other labeling rules.
Furthermore, we want associate to our strategy a pruning
procedure well suited to imbalanced data sets. In addition
the use of measures which synthesize both the minority and
majority class performance like the area under the ROC curve
or the F-measure should be considered.
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