Comparing results of a power prediction tool with measured data from a series of 35 boats

Charles Dumortier, Jean-François Bonnet, Nicolas Régnier, Yves Ousten

To cite this version:

Charles Dumortier, Jean-François Bonnet, Nicolas Régnier, Yves Ousten. Comparing results of a power prediction tool with measured data from a series of 35 boats. Ocean Engineering, 2019, 178, pp.501-516. 10.1016/j.oceaneng.2018.12.076 . hal-02120784

HAL Id: hal-02120784

https://hal.science/hal-02120784

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

COMPARING RESULTS OF A POWER PREDICTION

TOOL WITH MEASURED DATA FROM A SERIES OF 35

BOATS

Charles DUMORTIER ${ }^{1}$, Jean-François BONNET ${ }^{2}$, Nicolas REGNIER ${ }^{2}$, Yves OUSTEN ${ }^{3}$
${ }^{1}$ CNC Couach, Rue de l'Yser, 33470 Gujan-Mestras France, French shipyard / University of Bordeaux / charles.dumortier@u-bordeaux.fr
${ }^{2}$ I2M (Institute of Mechanical and engineering) / ${ }^{3} \mathrm{IMS}$ (Laboratory of the integration of the material into the system)

I. ABSTRACT

Power prediction is one of the major steps when it comes to design a military boat. Having a fast running and reliable tool to select the appropriate couple engine/propulsion permits to explore more hull's possibilities.

This study is built on a comparison made between a predictive tool and a series of 35 hard chine planing boats, constructed to be identical. The different theories used to program the Power Prediction Tool (PPT) will be cited as reference but will not be developed.

In this article, we present the influence of the different parameters and the validity of our tool.

II. KEYWORDS

Vessel power prediction; Real boat power measurement; Ship operational performance; Manufactured boat series; Improvement of Savitsky theory.

Symbol	Units	Description
OPC	-	Efficiency of the propulsive system
OPC	-	Efficiency of both gearbox and propulsive system
$\eta_{\text {méca }}$	-	Efficiency of the gearbox
P	kW	Engine power
v	$\mathrm{m} \cdot \mathrm{s}^{-1}$	Boat speed
Rt	N	Total resistance of the boat
VCG	m	Vertical position of the center of gravity (origin at boat transom)
LCG	m	Longitudinal position of the center of gravity (origin at boat transom)
$\mathrm{P}_{\text {measured }}$	kW	Absorbed power measured during tests
$\mathrm{P}_{\text {calculated }}$	kW	Absorbed power calculated with the program
$\mathrm{P}_{\text {max }}$	kW	Nominal power of the engine (1192kW for this study)
$\rho_{\text {air }}$	$\mathrm{kg} \cdot \mathrm{m}^{-3}$	Air density
Cx^{-}	Boat's aerodynamic drag coefficient	
$\mathrm{S}_{\text {house }}$	$\mathrm{m}{ }^{2}$	Frontal surface of the wheelhouse
$\mathrm{S}_{\text {hull }}$	$\mathrm{m}{ }^{2}$	Frontal surface of the hull
$\mathrm{S}_{\text {boat }}$	$\mathrm{m}{ }^{2}$	Frontal surface of the boat
τ	\circ	Boat trim
BSS	m	Breadth of wheelhouse
HSS	m	Height of wheelhouse
DBH	m	Distance between bow and wheelhouse
$\mathrm{B}_{\text {max }}$	m	Hull width

Symbol	Units	Description
$\mathrm{D}_{\text {aero }}$	m	Boat aerodynamic drag
Cpaero	m	Distance between $\mathrm{D}_{\text {aero }}$ and CG measured normal to $\mathrm{D}_{\text {aero }}$
m	kg	Boat mass
g	m. s^{-2}	Acceleration of gravity
N	N	Hydrodynamic force normal to the bottom
c	m	Distance between N and CG, measured normal to N
ε	-	Inclination of thrust line relative to keel line
T	N	Propeller thrust
f	m	Distance between T and CG measured normal to T
Df	N	Frictional drag component along the bottom surface
a	m	Distance between Df and CG measured normal to Df
M	Nm	Total pitching moment
LOA	m	Boat length overall
F_{∇}		Volumic Froude number
L_{p}	m	Projected length of the chine
$\mathrm{P}_{\text {jet }}$	W	Jet absorbed power
Bpx	m	Maximum chine beam excluding external spray rail
D	m	Boat draft
E	\%	Difference between measured and computed power divided by maximum engine power
$\mathrm{H}_{\text {hull }}$	m	Hull height

IV. INTRODUCTION

Energy use in naval operation is a growing concern (Turan, 2015), due to high energy prices and environmental awareness. While solutions for freight transport have long been studied (Lu et al, 2015; Cichowicz et al, 2015), the case of yachting and of light military ships is far less documented. For these vessels, significant potential energy savings can be found in hull design, engine design, air conditioning and onboard equipment energy efficiency. The current paper focuses on hull design and its influence on engine power and energy consumption. Hull design requires a preliminary design phase, using a complete set of data on geometrical elements and ship weight. In this paper, a power prediction tool (PPT) has been developed for preliminary design
and tested on a series of 35 boats. Due to construction techniques, slight differences in weight, weight distribution and engine power performances can be found in the ship series ${ }^{\mathbf{1}}$. The goal of the paper is to exploit measured data (weight, speed, engine power) to develop, validate and improve the power prediction tool (PPT).

The purpose of the PPT is to:

> -be trustable
> -be easy to use and rapid to calculate.
> -study the general picture of the boat
> -be used to reduce CFD computation time

Indeed with the same computing power, calculating the boat drag with the PPT is more than ten thousand time faster than using a CFD code. Where few seconds are required to compute more than fifty speed steps with the PPT, a CFD code needs several hours to compute the drag for only one speed step. This advantage makes the PPT an efficient tool for the preliminary design work (variation of the general parameters of the hull). Additionally it can be used to reduce the CFD computation time. Using PPT outputs' such as trim and boat draft as CFD inputs’ helps to position the boat close to his equilibrium position.

However the PPT is not intended to replace a CFD software. It can be seen as a preliminary tool used to give quick answers and orientations on hull geometry. Then the CFD tool can be used to optimize the hull shape.

On the one hand, it is true that setting up the simulation can be very complex, time consuming and running the code requires an important calculation power and/or an important amount of time to give some results (Tezdogan et al, 2015; Caponnetto). But on the other hand a CFD code is extremely powerful to study all the geometrical details of the hull such as rudder blade tips, keel shape, water inlets, air inlets ...

The PPT is mainly based on Savitsky theory. Some modifications have been done to improve its precision at low speed and the aerodynamic drag is treated unconventionally. These modifications have been validated with data extracted from real boats and from towing tank tests.

Before comparing the PPT results with real boat measurements, its constitutive steps are detailed.

[^0]
V. PPT DESCRIPTION

The PPT is programmed on Excel and coded in VBA (Visual Basic for Applications) in order to easily build a user friendly interface.

To best describes the program, Figure 1 presents a screenshot of all inputs of the tool. Parameters in the hull section are used to implement the Savitsky's equations (Savitsky, 1964) to calculated the boat's hydrodynamic drag. Regarding the restriction of the procedure, Daniel Savitsky himself says: "the foregoing procedures are carried out for the entire speed range of interest (with the restriction that $C v \geq 1,0$)". Cv is called the speed coefficient and is equal to $\frac{v}{\sqrt{g B}}$ with B the beam of the planning surface. Other limitation have been given by (Ekman et al, 2016) at page 8 section "Limitations and assumptions" ${ }^{2}$.

For the studied boat of this paper the Cv is higher than 1 for speed over than 12 knots.
Savitsky's equations can be implemented thanks to (Savitsky, 1964) and also by using the work of Svahn (Svahn, 2009) but the original paper of Savitsky should be read. The only trick for this computational method to be fully automatic, is to make a loop to calculate the trim. To make it, it is necessary to calculate what Svahn names the "pitching moment", equation 35 in (Savitsky, 1964) and 2.29 in (Svahn, 2009):

$$
M_{t o t}=m g\left[\frac{c}{\cos \tau}(1-\sin \tau \sin (\tau+\varepsilon))-f \cdot \sin \tau\right]+D_{f}(a-f)
$$

If this pitching moment is negative then all the Savitsky procedure should be started again from the beginning with an higher value of the trim and if it is positive the guessed value of the trim should be smaller.

Once the hydrodynamic drag is known, it is multiplied by an empirical correction factor developed by (Blount, Fox, 1976) called Mfactor:

$$
\text { Mfactor }=0.98+2\left(\frac{L C G}{B p x}\right)^{1.45} e^{-2(\mathrm{~F} \nabla-0.85)}-3\left(\frac{L C G}{B p x}\right) e^{-3(\mathrm{FV}-0.85)}
$$

It intends to correct the under prediction of the hump speed drag.
In addition to the drag prediction, what Angeli names "Critical trim" in (Angeli, 1973) is calculated by two approaches:

[^1]equation 14 in (Angelic, 1973):
$$
\tau_{c}^{4 / 3}=\frac{\left(106+85 \frac{B_{r}}{B_{x}}\right)\left(1+0.2 \frac{\beta_{B_{2}}-\beta_{10}}{\beta_{6}}\right)\left(\frac{Y}{x}\right)^{0.75}}{F_{\nabla}^{2} Y^{2} f}
$$
\rightarrow equation developed by Lewandowski in the discussion section in (Celano, 1998):
$$
\tau_{\text {crit }}=-1.87+12.54 \sqrt{\frac{\mathrm{C}_{\mathrm{L}}}{2}}+80.87 \frac{\mathrm{C}_{\mathrm{L}}}{2}+0.193 \beta-0.0017 \beta^{2}-0.3125 \beta \sqrt{\frac{\mathrm{C}_{\mathrm{L}}}{2}}
$$

This parameter indicates the upper trim limits. A trim higher or equal to the Critical trim value presents a high risk of porpoising. Two equations are used to compute it in order to be conservative. At each speed step, the lower value resulting of the two equations is considered as the "Critical trim".

In parallel of the hydrodynamic drag calculation, the aerodynamic drag need to be calculated. It is done by using the inputs in the aero section of Figure 1. This calculation needs be done just before evaluating the boat pitching moment. Indeed, the aerodynamic drag force modify the boat equilibrium. The original Savitsky equation 35 has been modified to take the aerodynamical effects into account.

The general equation to calculate the aerodynamic drag ($D_{\text {aero }}$) of a solid is :

$$
D_{\text {aero }}=\frac{1}{2} \rho_{\text {air }} S C_{x} v^{2} \text { where } S \text { is the frontal surface of the solid. (See Appendix } 1 \text { of (Savitsky, D., }
$$

DeLorme, M., Data, R., 2007)):

What is specific to boats is that the frontal surface depends on the speed. In fact, when the boat accelerates, the water dynamic lift increases and the boat trim and draught change. If it is considered as having a rectangular parallelepipedic hull, a rectangular parallelepipedic wheelhouse and a bridge parallel to the keel^{3}, the frontal surface of the boat $S_{\text {boat }}$ is :

$$
\begin{gathered}
S_{\text {boat }}=S_{\text {hull }}+\text { S house } \\
\text { With : } \quad S_{\text {house }}=\text { Sss }(\text { Ls }- \text { DBH Tan }(\tau)) \\
S_{\text {hull }}=B_{\max }(\text { LOA Tan }(\tau)+\text { H hull }-\mathrm{D}) \\
\text { So } \quad D_{\text {aero }}=\frac{1}{2} \rho_{\text {air }} S_{\text {boat }} C_{x} v^{2}
\end{gathered}
$$

[^2] To inject this force in the equation of the pitching moment, $\mathrm{Cp}_{\text {aero }}$ need to be determined. As the expression of $\mathrm{D}_{\text {aero }}$ shows it, the aerodynamic drag is proportional to the frontal surface of the boat. The aerodynamic drag can be divided into the "wheelhouse aerodynamic drag" and the "hull aerodynamic drag". $\mathrm{Cp}_{\text {aero }}$ is equal to VCG less the vertical coordinate of the barycenter of both hull and house aerodynamic center of pressure.
$$
\mathrm{Cp}_{\text {aero }}=\mathrm{VCG}-\frac{0.5 \text { Shouse (Hss }- \text { DBH Tan }(\tau))+0.5 \text { Scoque }(\mathrm{Zh}+\text { DBH Tan }(\tau))}{\text { Shouse }+ \text { Scoque }}
$$

Hull	Length of Waterline	LwL	13,92	m
	Beam (at waterline)	B	3,50	m
	VCG	VCG	1,31	m
	Displacement	Δ	24276	kg
	Deadrise @ Transom	$\beta_{\text {T }}$	19,00	-
	Deadrise @ Amidships	β_{x}	23,00	-
	Angle of Thrust Line	ε	0,00	-
		f	0,63	m
	LCG		5,35	m

aero	Length Overall	LOA	15,38	m
	Maximum Beam	$\mathrm{B}_{\max }$	3,60	m
	Moulded Depth of Hull	Z	2,15	m
	Height of House	H_{ss}	1,84	m
	Breadth of House	B_{ss}	2,31	m
	distance between bow and house	DBH	4,20	m
	aero drag coefficient	Cx	0,80	

Site.	water	temperature	Tw	18,00	${ }^{\circ} \mathrm{C}$
		Sal	35,00	$\mathrm{g.L-1}$	
	air	temperature	Ta	20,00	${ }^{\circ} \mathrm{C}$
	global		g SI	9,81	$\mathrm{~m} / \mathrm{s}^{2}$

speed	V (studied speed)
	[kn]
	5
	6
	7
	8
	9
	10
	11
	12

Once $C p_{\text {aero }}$ is known, the equation 35 of Savitsky (Savitsky, 1964) can be modified to become :

$$
M=\operatorname{mg}\left[\frac{c}{\operatorname{Cos}(\tau)}(1-\operatorname{Sin}(\tau) \operatorname{Sin}((\tau+\varepsilon))-f \operatorname{Sin}(\tau)]+\operatorname{Df}(a-f)+\right.\text { Dair Cpaero }
$$

Data in step section are used to compute "Savitsky's Method used behind the Step" developed by Svahn in (Svahn, 2009). For this paper the number of step will remain 0 as the studied boat is a classical hard chine monohull boat.

Data in site section are used to compute water viscosity and density, air density and to give a classical engine de-rating.

The engine + propulsion section permits:
-to select a propulsion type (classical propeller, surface propeller, hydrojet ...) to calculate its OPC.
-to select an engine to compute the fuel consumption
-to take into account the mechanical losses.

The engine consumption calculation will not be detailed in this paper because the focus is made only on power prediction. The hydrojet OPC calculation will be detailed as the studied boat is equipped with two of them and as it directly influences the power prediction.

To calculate the OPC of a given jet, the thrust prediction curve, Figure 3, must be given by the manufacturer. Each black curve on this graph gives the jet thrust versus boat speed, for a given power. The green doted curve represents the limit of the cavitation zone.

To use it automatically in a computer procedure the OPC coefficients need to be determined for each speed step:

$$
\mathrm{OPC}=\frac{T * v}{P j e t}
$$

This relation transforms the thrust versus speed, for a given power, curves into the OPC versus speed, for a given power, curves. Then comparing the required thrust with all that are shown on the different curves allows to select the best value between all the possible (a graph as the one on Figure $\mathbf{3}$ will give ten possible values of OPC for each speed step). The more iso-power curve available the more precise this method will be.

The fuel capacity permits to calculate the boat operating range and endurance.
The last item of this section, mechanical losses, allows to compute $\mathrm{OPC}{ }^{\prime}=\mathrm{OPC} * \eta_{\text {méca }}{ }^{4}$ which eventually leads to the calculation of the real required power for a given speed :

$$
P \text { calculated }=\frac{\mathrm{v} * \mathrm{Rt}}{\mathrm{OPC}^{\prime}}
$$

Figure 2 : boat outlines with its main inputs and acting forces

[^3]

Figure 3 : Typical thrust prediction of a jet manufacturer
The optimization section is used to simulate 11 cases in which the boat weight or the center of gravity slightly differs. This add-on helps to target the best compromise zone in terms of weight and center of gravity's longitudinal position during the early stages of a preliminary-study.

The speed section permits to enter speeds of interest. The more speeds the longer the total calculation will be.

This rapid overlook of the PPT helps to understand how calculations are made. The next section will present the boat's data used to make the comparison.

VI. BOAT AND USEFUL DATA

The boat used to compare the PPT with real measurements is the Plascoa 1650, Figure 4. It is produced in series at CNC Couach. More than 50 have been produced. These military vessels are built on a planing hull to intercept other boats at speeds over 55 knots. The line plan is confidential so it will not be presented in this paper. However data required for simulation are available on Figure 5, Figure 6 and in appendix 1 : PPT inputs variation range.

A sample of 35 ships have been chosen to be compared with the PPT prediction. They have been tested in real conditions in the Arcachon Bay, over a period of 11 month. This long time range permits to cover a panel of different weather conditions.

Figure 4 : rendering of the 1650 Plascoa

The required data had been classified as being of two types:
-General data, which are constant from boat to boat, (Figure 5).
-Specific data, which are boat dependent, (Figure 6).
VCG is considered as being constant because it can only vary from few centimeters, which has a very small impact on power performances, and it is very difficult to measure ${ }^{5}$.

Site data (air temperature, water temperature and salinity) had been approximated with average values.
For each of the 35 studied boats sea trials reports have been made. They are used to validate the performance of the propulsion line in real conditions.

Data are collected every 200 engine rpm. Those which are of interest for this study are the absorbed engine power and the corresponding boat speed.

All the 35 boats are equipped with interceptors which are used to reduce drag at low speed. The impact of this system will not be studied in this paper because for the considered tests the interceptors were not deployed. If one is interested in implementing interceptors in a prediction code (Ekman et al, 2016) present two methods of doing so.

[^4]

Figure 5 : General data of the Plascoa 1650

Hull

Length of Waterline	L_{WL}	13,92	m
Beam (at waterline)	B	3,50	m
Displacement	Δ	24276	kg
Longitudinal position of the center of gravity (origin at boat transom)		5,35	m

Figure 6 : Example of specific data of the Plascoa 1650

VII. MFACTOR IMPACTS ANALYSIS

As it is explained in the PPT description, the tool first calculates the boat drag with the Savitsky procedure and then corrects this drag with the Mfactor coefficient of (Blount, Fox, 1976).

With Mfactor $=0.98+2\left(\frac{L C G}{B p x}\right)^{1.45} e^{-2(\mathrm{~F} \nabla-0.85)}-3\left(\frac{L C G}{B p x}\right) e^{-3(\mathrm{~F} \nabla-0.85)}$

According to the authors, this coefficient can be used while:

$$
\begin{aligned}
& \mathrm{F}_{\nabla} \geq 1,0 \\
& \frac{L C G}{L p} \leq 0,46
\end{aligned}
$$

For the 1650 Plascoa $L p=14.7 \mathrm{~m}$
And on the 35 studied boat $\mathrm{LCG} \leq 5,45 \mathrm{~m}$
So $\frac{L C G}{L p} \leq 0,371 \leq 0,46$

For this boat $\mathrm{F}_{\nabla} \geq 1$ when the speed is over 11 knots.

To further enhance the precision of the PPT, a better understanding of how this Mfactor impacts the calculation is required. So numerical tests have been conducted with and without this coefficient.

VII.1. Calculation without Mfactor

The first study was to overlap the absorbed power versus boat speed for both theoretical data (blue curve) and experimental data (red curve), see Figure 7.

In order to refine the study, the difference between theoretical and real points have been computed. In order for it to be representative it has been divided by the maximal engine power (here 1192 kW).

So

$$
E=\frac{\text { Pmeasured }- \text { Pcomputed }}{\text { Pmax }}
$$

If this difference is positive, the PPT underestimate the required power, if negative then it overestimate the required power.

The 361 points have been reported on Figure 8.
Extreme values (rounded in blue on Figure 8) belong to three different boats and represent 6 values over 361 (1.66\%). Additionally, these three boats are the first three to have been studied. So it can be considered as being not representative of the series.

According to Figure 7 and Figure 8 it is noticeable that the PPT is oversizing the required engine power for speeds under 9 knots and to a slightly lesser extent in the interval [14;24] knots. The local average of the differences is respectively -5.12% and -1.92% while the overall average is -0.35%.

However the PPT is underestimating the required power for speed over 58 knots, the average excluding the first three boats is 3.63%.

In order to better understand the differences' repartition an histogram is shown on Figure 9. It allows to sort values within an interval of $[-20 \% ; 20 \%]$ with a step of 2%. Violet corresponds to the number of values while blue gives the percentage of the number of values regarding the total number of values.

According to this histogram all the differences are included in the interval [-11.83\%;24.87\%].
Values are mostly negatives and dispersed in the interval [-8\%;6\%].
Indeed:

213

VII.2. Calculation with Mfactor

This study follows the same presentation as the previous one.
According to Figure 10, the oversizing between 14 and 24 knots is more pronounced than if the Mfactor is not used. Additionally the required engine power is underestimated for speeds under 8 knots and values are even negatives for speeds under 7 knots. This observation confirms the model's limits given by the authors.

As in previous parts, graphic of Figure $\mathbf{1 1}$ permits to be more precise:
All the differences are included in the interval $[-13.89 \% ; 30.86]$.
The average of the differences for speeds under 9 knots is 7.32% and for the interval [14;24] knots it is -5.72%.
The average for speed over 58 knots excluding the first three boats is 5.59%.
The overall average difference is 3.14%.
Comparing to Savitsky's theory alone, the histogram on Figure 12 reveals that a higher number of values are over 18% of difference. This is due to the fact that in addition to the first three boats values, values for speeds under 8 knots increase this statistic.

The histogram also highlights that values are more dispersed compared with Savitsky theory alone. Indeed :

- $31,3 \%$ of the total values are negatives.
- $28,25 \%$ are included in $[-2 \% ; 2 \%]$.
- $46,54 \%$ are included in $[-4 ; 4 \%]$.
- $82,55 \%$ are included in $[-10 ; 10 \%]$.

Figure 11 : Power difference versus boat speed

Figure 12 : Differences' repartition tool's optimisation

VIII. TOOL'S OPTIMISATION

Taking into account observations that have been made in the VII Mfactor impacts analysis part, the PPT had been modified to minimize differences between measurements and predictions.

The purpose of these modifications is to minimize changes made on Savitsky's theory and to keep a physical meaning. In this new version, the Mfactor had been suppressed. The average of -1.92% between 14 and 24 knots is considered acceptable because smaller than 2% in absolute value.

VIII.1. CORRECTION FOR LOW SPEED

The paragraph VII. 1 Calculation without Mfactor highlights a lack of precision of the Savitsky procedure for speed below $\mathrm{Cv}=0.9$. In order to reduce it a new correction has been employed. To keep it very simple, a model under the form $\mathrm{Rtv}=\mathrm{kx} \mathrm{V}^{\mathrm{b}}$ with k constant is studied.

When the Cv is below 0.9 the considered boat is in displacement mode. During this phase the drag versus speed of the boat seems to follow a polynomial curve (VII. 1 Calculation without Mfactor, (Sunny Verma., Shiju John, 2010), (Olivieri et al, 2001)). The Figure 13 below illustrates this observation. The Rt curve gives the experimental drag measured for the Insean 2340 (Olivieri et al, 2001) and the Rt modif curve is plotted according to the relation: drag measured at Vmax the maximum speed reached during the test $\left(3.371 \mathrm{~m} . \mathrm{s}^{-1}\right)$.

Figure 13 : comparison between a polynomial curve and the real drag of the Insean 2340 Model. $\operatorname{Rtv}=\frac{\operatorname{Rtmax}}{\mathrm{Vmax}^{\wedge} 3.5} \times \mathrm{V}^{3.5}$ with Rtv the drag calculated at the speed V , Rtmax the maximum measured

2

After reading the paper from (Sunny Verma., Shiju John, 2010) it comes that the 1650 Plascoa is not the only planning boat where the drag predicted by Savitsky procedure is equal to the measured drag for Cv approximatively equal to 0.9 (~ 10.25 knots for the 1650 Plascoa). According to this observation, two values of this curve are known. The boat drag at 0 knot is obviously equal to 0 and at $\mathrm{Cv}=0.9$ it is almost equal to the drag calculated with the Savitsky procedure.

Let $\mathrm{Rt}_{0.9}$, Rtv and $\mathrm{V}_{0.9}$ respectively the drag computed at $\mathrm{Cv}=0.9$ with Savitsky's theory, the drag computed at the speed V and $\mathrm{V}_{0.9}$ the speed at $\mathrm{Cv}=0.9$.

As the drag at $\mathrm{Cv}=0.9$ is known, $\mathrm{k}=\frac{\mathrm{Rt0} 0.9}{\mathrm{~V} 0.9^{\wedge} b}$. The real difficulty is to determine b . As the authors did not know all the different coefficients from the 4 boats studied by (Sunny Verma., Shiju John, 2010) the curves they produced have been reused to conduct an empirical study to find the best b possible. The results are presented below. For each of the four boats, 3 different b have been tested.

On each graph are plotted:
-The measured drag: $\mathrm{R}(\mathrm{N})$
-The calculated drag by the correction formula $\mathrm{Rtv}=\frac{\mathrm{Rt} 0.9}{\mathrm{~V} 0.9^{\wedge} b} \times \mathrm{V}^{\mathrm{b}}: \operatorname{Rmodif}(\mathrm{N})$
-The calculated drag with the Savitsky procedure : Rsavit (N)

For each tested b are calculated:
corrected difference (\%)

The Figure 18 is summing up the maximum, the minimum and the average of these two calculation for all the tested b.

		vessel 1			vessel 2			vessel 3			vessel 5		
		$\mathrm{b}=2$	b $=3$	$\mathrm{b}=4$	$\mathrm{b}=3$	$\mathrm{b}=4$	$\mathrm{b}=5$	$\mathrm{b}=3$	b $=4$	$b=5$	$\mathrm{b}=2$	$\mathrm{b}=3$	$\mathrm{b}=4$
difference	Minimum	-64.7\%	-7.7\%	-5.2\%	-13.1\%	-8.3\%	-6.5\%	106.7\%	-65.5\%	-32.5\%	-58.1\%	-9.6\%	9.5\%
	Maximum	-5.2\%	14.8\%	53.5\%	-4.3\%	4.7\%	18.2\%	5.4\%	11.3\%	33.7\%	16.2\%	22.6\%	38.1\%
	Average	-26.5\%	5.4\%	26.6\%	-9.0\%	-0.6\%	6.9\%	-57.1\%	-23.3\%	1.7\%	-16.7\%	7.7\%	25.7\%
corrected difference	Minimum	-13\%	-6.1\%	-5.2\%	-8.3\%	-2.6\%	-1.7\%	-25.7\%	-15.8\%	-7.8\%	-15.6\%	-3.1\%	6.1\%
	Maximum	-5.2\%	6.1\%	16.9\%	2.4\%	4.8\%	10.9\%	5.3\%	8.7\%	14.5\%	13.1\%	18.2\%	23\%
	Average	-10.5\%	1.2\%	9.6\%	-4.5\%	1.4\%	6.7\%	-12.9\%	-4.7\%	1.7\%	-3.3\%	5.9\%	12.9\%

Figure 18 : table summing up the differences

According to all these curves a general trend is highlighted. Increasing b causes the Rmodif curve to bend and be on a longer range under the real drag curve R, so the real drag is more under predicted. For all the four boats, the value of b which minimize the difference, between the two curves R and Rmodif, without too much under prediction is always between 2 and 4 .

$$
\text { Indeed : } \quad \text {-for vessel number } 1,2<b<3
$$

> -for vessel number 3, b~4
-for vessel number 5, $2<b<3$

To conclude this study on the empirical formula $\mathrm{Rtv}=\frac{\mathrm{Rt0.9}}{\mathrm{~V} 0.9^{\wedge} b} \times \mathrm{V}^{\mathrm{b}}$, on a first approach taking $\mathrm{b}=3$ is a good compromise. The risk of under prediction is low and the drag prediction precision is noticeably increased compared with the classical Savitsky procedure.

VIII.2. CX MODIFICATION

To correct the differences observed for speeds over 58 knots only the Cx was increased. After few iterations 1.1 is the value which gives the best correlation with tests. As a reminder the Cx value for a plane plate is equal to 1 and for a car it is often between 0.3 and 0.4 .

Such a high value for the 1650 Plascoa can be explained by two factors:

- The boat shape is not aerodynamic enough.
- Mast, antennas, radars ... are not taking into account to compute the frontal surface of the ship. So it artificially increases the vessel Cx.

VIII.3. Results

According to Figure 19 and Figure 20 the power sizing for low speed is much more precise. The average of the differences for speed under 9 knots is 0.24% while it was -5.12% with Savitsky theory alone.

The oversizing in the interval $[14 ; 24]$ knots is increased because of the Cx increase, the local average being -2.12% while it was -1.92% with a Cx of 0.8 .

The average for speeds over 58 knots excluding the first three boats is -0.31% while it was 3.63% with a Cx of 0.8 .

All the differences are included in [-13.63\%; 22.3\%]. The overall average is 0.203%.

The histogram Figure 21 shows a values' distribution more centered around zero than with previous tests:

- $44,60 \%$ of the values are negatives.
- $48,2 \%$ are included in [-2\%; 2\%].
- $72,58 \%$ are included in $[-4 \% ; 4 \%]$.
- $95,84 \%$ are included in $[-10 \% ; 10 \%]$.

Figure 19 : Overlapping of theoretical and experimental curves

332

Figure 20 : Power difference versus boat speed

IX. DISCUSSION

As demonstrated in the previous sections Savitsky's theory seems to be imprecise for $\mathrm{F}_{\nabla}<0.9(\sim 10.25$ knots for the 1650 Plascoa). The improvements made in the current work leads to override this problem for the studied boat.

Another prediction has been made using the current PPT to estimate the top speed of a Couach's 12 m boat called the WASP. The top speed found by calculation was 53 knots and the real top speed is 55 knots. The same study cannot be done for now because the boat is powered with outboard engines which are not equipped to measure the engine load / absorbed power.

This tool will be very useful in the next thesis work. It will permit to characterize the impact of an increased boat's mass and to study the influence the longitudinal position of the center of gravity.

For example, an inventory had been made on all the 35 boats light ship weight (see Figure 22).
According to this inventory the average light ship weight is 21493 kg , the maximum light ship weight is 22058 kg and the minimum light ship weight is 20848 kg .

Figure 22 : inventory of light ship weight

The heavier boat is the number 24 . It is 565 kg over the average light ship weight of the 35 boats. This added weight represents an increase of 2.63% from the average light ship.

These values have to be put into perspective because boats weight are measured by hydrostatic weighing. For this particular series of boat the total measure procedure can generate a maximum error of 400 kg . If this measurement inaccuracy is masked, the boat is made of GRP (glass reinforced plastic) through the vacuum infusion method. This technique ensures an efficient industrial process but for technical reason the boat is not made of one piece and needs to be assembled. The assembling (stratification, gluing ...) process is highly operator dependent and represent 600 kg . Couach engineers have measured a 20% variably for this process which could lead to a changeability of 120 kg from boat to boat. More generally the Couach engineers have measured a 5\% variably for all the composite work. As it represents about 6 tons of the boat it could lead to a changeability of 300 kg from boat to boat. Subcontractors too can generate weight error as they have their on weight tolerance.

On the Figure 23, the absorbed power by engine, for the boat number 24 have been plotted, both with its real weight (blue curve) and with 565 kg less (red curve) to match with the boats average light ship weight. Then the two powers have been subtracted and divided by the maximum engine power (green curve). This green curve highlights the required overpower generated by the mass increased. On this 1% more power.

X. CONCLUSION

This study leads to validate the PPT, improved and calibrated with the input of measured data. Its precision is quite surprising ${ }^{6}$ given the fact that it requires only few and easy to get parameters. The tool is fast executing and easy to use. The code execution requires about 30 seconds to compute boat drag, required power, engine speed, fuel consumption, boat range and endurance for 58 input speeds while on the same computer it takes about 24 h to compute the boat drag for only 1 input speed using a CFD code.

Some improvements could still be made for speed between 14 and 24 knots. They would modify locally the Savitsky's theory as (Blount, Fox, 1976) did. And a CFD calculation or a wind tunnel test could validate the boat Cx value of 1.1.

This tool will be very useful in the conception process at CNC, as well as for applied research purpose. It will be used to characterize the impact of an increased boat's mass and to study the influence the longitudinal position of the center of gravity.

[^5]
XI. REFERENCES

1. Angeli, J.C., April 1973. Evaluation of the Trim of a Planing Boat at Inception of Porpoising. The Society Of Naval Architects And Marine Engineers. Paper presented at the Spring meeting, lake Buena Vista, Florida.
2. Blount, D.L., Fox, D.L., January 1976. Small-Craft Power Prediction. Marine Technology, Vol. 13, No. 1, pp. 14-45.
3. Caponnetto, M. Practical CFD simulations for planing hulls. Rolla Research.
4. Celano, T., 1998. The Prediction of Porpoising Inception for Modern Planing Craft. SNAME Transactions, Vol. 106, pp. 269-292.
5. Cichowicz, J., Theotokatos, G., Vassalos, D., 2015. Dynamic energy modelling for ship life-cycle performance assessment. Ocean Engineering110 49-61.
6. Ekman, F., Naudo Ribas, C., Rydelius, F., May 2016. Model for Predicting Resistance and Running Attitude of High-Speed Craft Equipped with Interceptors.
7. Lu, R., Turan, O., Boulougouris, E., Banks, C., Incecik, A., 2015. A semi-empirical ship operational performance prediction model for voyage optimization towards energy efficient shipping. Ocean Engineering 110 18-28.
8. Olivieri, A., Pistani, F., Avanzini, A., Stern, F., Penna R., September 2001. Towing Tank Experiments Of Resistance, Sinkage And Trim, Boundary Layer, Wake, And Free Surface Flow Around A Naval Combatant Insean 2340 Model. IIHR Technical Report No. 421.
9. Savitsky, D., October 1964. Hydrodynamic Design of Planing Hulls. Marine Technology.
10. Savitsky, D., DeLorme, M., Datla, R., January 2007. Inclusion of Whisker Spray Drag in Performance Prediction Method for High-Speed Planing Hulls.
11. Sunny Verma., Shiju John, December 2010. Development of Correction Factors for improving Planing Hull Performance Prediction. Conference Paper.
12. Svahn, D., June 2009. Performance Prediction of Hulls with Transverse Steps. Marina System Centre for Naval Architecture.
13. Tezdogan, T., Demirel, Y.K., Kellett, P., Khorasanchi, M., Incecik, A., Turan, O., 2015. Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming. Ocean Engineering 97 186-206.
14. Turan, O., 2015. Energy efficient ship design and operations. Editorial Ocean Engineering 110.

416 In this appendix the inputs variation range is presented with the four graph below. As a reminder the 417 specific data are length on waterline, beam at waterline, displacement and LCG.

419
420

Figure 24 : variation of the length of waterline for the 35 boats

Figure 25 : variation of the displacement for the 35 boats

Figure 26 : variation of the beam at waterline for the 35 boats
427

Figure 27 : variation of the LCG for the 35 boats

XIII. APPENDIX 2: SAVITSKY PROCEDURE LIMITATIONS AND

ASSUMPTIONS GIVEN BY EKMAN ET AL, 2016

The following paragraph is directly extract from (Ekman et al, 2016) and gives limitations of the Savitsky procedure.
"The center of pressure is difficult to calculate, and two main assumptions need to be made. First of all, the center of pressure of the dynamic component is said to be at 75 percent of the main wetted length forward of the transom, and the buoyant force center of pressure at 33 percent also from the transom. Another limitation of the Savitsky method is that equation (2.6) is only applicable for $0.60 \leq C v \leq 13.0,2^{\circ}$ $\leq \tau \leq 15^{\circ}$ and $\lambda \leq 4$. These limitations comes from lambda being

$$
\lambda \leq \frac{\boldsymbol{L} w}{\boldsymbol{b}}
$$

where the wetted length, Lw, is unlimited. This implies that the trim must be limited to a minimum of 2。 for lambda not to increase exponentially."

[^0]: ${ }^{1}$ See appendix 1 : PPT inputs variation range

[^1]: ${ }^{2}$ See appendix 2: Savitsky procedure limitations and assumptions given by Ekman et al, 2016

[^2]: 3 If the bridge forms an angle τ_{1} with the keel, the angle τ in the $S_{\text {house }}$ calculation must be replace by $\tau_{1}+\tau$. τ_{1} is positive when in opposite direction of vector \mathbf{g}.

[^3]: ${ }^{4}$ For the rest of the study $\eta_{\text {méca }}$ will be equal to 95%

[^4]: $\mathbf{5}$ Reference : Bureau Veritas : Rules for the classification and the certification of Yachts ; Part B : Hull and Stability ; Chapter 3 Stability; Appendix 1 : Inclining Experiment and weighing test.

[^5]: ${ }^{6}$ All the 35 boats have been tested over a period of 11 month inside the Arcachon bay.

