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We have conducted a proteomic analysis of the 70 S
ribosome from the Chlamydomonas reinhardtii chloro-
plast. Twenty-seven orthologs of Escherichia coli large
subunit proteins were identified in the 50 S subunit, as
well as an ortholog of the spinach plastid-specific ribo-
somal protein-6. Several of the large subunit proteins of
C. reinhardtii have short extension or insertion se-
quences, but overall the large subunit proteins are very
similar to those of spinach chloroplast and E. coli. Two
proteins of 38 and 41 kDa, designated RAP38 and RAP41,
were identified from the 70 S ribosome that were not
found in either of the ribosomal subunits. Phylogenetic
analysis identified RAP38 and RAP41 as paralogs of
spinach CSP41, a chloroplast RNA-binding protein with
endoribonuclease activity. Overall, the chloroplast ribo-
some of C. reinhardtii is similar to those of spinach
chloroplast and E. coli, but the C. reinhardtii ribosome
has proteins associated with the 70 S complex that are
related to non-ribosomal proteins in other species. In
addition, the 30 S subunit contains unusually large or-
thologs of E. coli S2, S3, and S5 and a novel Sl-type
protein (Yamaguchi, K. et al., (2002) Plant Cell 14, 2957-
2974). These additional proteins and domains likely con-
fer functions used to regulate chloroplast translation in
C. reinhardtii.

In the chloroplast, where proteins of the photosynthetic ap-
paratus and the carbon-fixing enzymes are synthesized, gene
expression is primarily regulated during translation (1). Chlo-
roplast translation has been thought to be similar to transla-
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tion in bacterial systems, mainly because of similarities in
ribosomal RNA and the sensitivity of chloroplast ribosomes to
bacterial antibiotics. These similarities support the endosym-
biotic theory that chloroplasts originated from a photosynthetic
prokaryote, cyanobacteria (2, 3). It is now recognized that chlo-
roplast gene expression and chloroplast translation are unique
and quite different from bacterial systems (1, 4—7). The chlo-
roplast ribosome contains plastid-specific ribosomal proteins
(PSRPs)! in addition to bacterial orthologs (5-7). It has been
proposed that PSRPs may take part in the unique light-de-
pendent aspects of chloroplast translation (8). Bacterial gene
expression is strongly influenced by the rate of transcription,
and translation and transcription are often closely coupled. In
the chloroplast, transcription is often globally regulated, and
mRNA accumulation can be unrelated to the rate of translation
of a protein (reviewed in Refs. 1 and 9-13). Translation of many
chloroplast mRNAs is activated in response to light illumina-
tion, with little change in the corresponding mRNA levels (14—
19). A majority of the work on chloroplast translation has been
carried out in the unicellular green alga, Chlamydomonas re-
inhardtii (reviewed in Refs. 13, 20, and 21), because it is ame-
nable to both genetic and biochemical analysis (22, 23). Iden-
tification of all of the proteins required for chloroplast
translation in C. reinhardtii would facilitate our understanding
of the mechanisms of chloroplast translation, photosystem bio-
genesis, plastid differentiation, and ultimately plant develop-
ment and function.

Ribosomal proteins (RPs) of the small and large subunits
from the C. reinhardtii chloroplast ribosome have been char-
acterized by two-dimensional PAGE (24-26). Schmidt et al.
(26) designated these proteins S-1 to S-31 and L-1 to L-33,
according to their estimated size on two-dimensional PAGE,
and identified their sites of synthesis by in vivo pulse-labeling
in the presence of inhibitors of cytoplasm (anisomycin) and
chloroplast (lincomycin) translation. Immunological character-
ization of chloroplast RPs from C. reinhardtii was carried out
with antisera available for 15 bacterial RPs (27, 28) and
suggested that chloroplasts contained orthologs for each of
these bacterial proteins. However, to date the majority of pro-

! The abbreviations used are: PSRP, plastid-specific ribosomal pro-
tein; PRP, plastid ribosomal protein; RP, ribosomal protein; ORF, open
reading frame; LC-MS/MS, reversed-phase HPLC coupled with tandem
mass spectrometry; LC/LC-MS/MS, two-dimensional liquid chromatog-
raphy coupled with tandem mass spectrometry; pRRF, plastid ribosome
recycling factor; CRP, cytoplasmic ribosomal protein; MudPIT, multi-
dimensional protein identification technology; EST, expressed sequence
tag; RAP, ribosome-associated protein; UTR, untranslated region; NTE,
N-terminal extension.

This paper is available on line at http://www.jbc.org
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teins of the C. reinhardtii chloroplast ribosome have not been
identified.

Recently, sequence databases for the nuclear and chloroplast
genomes of Chlamydomonas have become available (29-31).2
Although similarity searches of open reading frames (ORF's)
within these databases can help us speculate on the composi-
tion of chloroplast RPs, these databases will not allow us to
identify actual RPs, especially proteins unique to this alga.
Actually, ORF's can be precisely annotated only after protein
sequencing and protein characterization. Precise identification
of all the RPs in the C. reinhardtii chloroplast ribosome based
on a precise proteomic characterization would give a much
clearer picture of how algal RPs are similar, and different, from
those of bacteria and higher plants.

In our recent study, we characterized the small subunit of
the C. reinhardtii chloroplast ribosome via a proteomic ap-
proach. By using LC-MS/MS and LC/LC-MS/MS, we identified
a novel S1 domain-containing protein (named PSRP-7) and
unusually large bacterial orthologs of S2, S3, and S5 (7). Struc-
tural predictions, based on the crystal structure of the Thermus
thermophilus 30 S subunit, suggest that the additional do-
mains of S2, S3, and S5 are located adjacent to each other on
the solvent side of the ribosome near the binding site for the S1
protein. We proposed that these additional domains interact
with the S1 protein and PSRP-7 to function in mRNA recogni-
tion and translation initiation in C. reinhardtii chloroplast.

In this paper, we report the proteomic characterization of the
chloroplast ribosomal large subunit and the complete 70 S
ribosome. All of the proteins identified in the large subunit
have bacterial orthologs and higher plant homologs. Overall,
the large subunit proteins are very similar to those of Esche-
richia coli and spinach chloroplast in terms of size, isoelectric
point, and amino acid sequence. We have classified all of the
C. reinhardtii large subunit proteins in accordance with plastid
ribosomal protein (PRP) nomenclature (5-7). In addition, pro-
teomic and immunological analyses revealed that the 70 S
ribosome of C. reinhardtii chloroplast contains two additional
proteins of 38 and 41 kDa (RAP38 and RAP41), and these two
proteins are not components of either the 30 S or 50 S subunits.
Nucleotide sequencing and phylogenetic analysis revealed that
RAP38 and RAP41 are paralogs of an ancestral nucleotide
binding protein related to a bacterial epimerase/dehydratase
and to a higher plant (spinach) chloroplast RNA-binding pro-
tein CSP41. This analysis has shown that the chloroplast
translation machine of C. reinhardtii is compositionally and
structurally similar to those of higher plants and eubacteria,
but that C. reinhardtii ribosomes contain additional domains
and proteins previously unidentified in other 70 S ribosomes.

EXPERIMENTAL PROCEDURES

Nomenclature—We describe C. reinhardtii chloroplast ribosomes,
the large subunits, and the small subunits as 70 S, 50 S, and 30 S,
respectively. This is to keep the nomenclature consistent with their
higher plant and bacterial counterparts, although the sedimentation
values of ribosomes and subunits from this algal chloroplast have been
reported to be somewhat higher (32, 33). Likewise, we use the PRP
nomenclature system adapted for plant PRPs, based on sequence sim-
ilarity to bacterial RPs (5, 6). That is, chloroplast/plastid orthologs of
E. coli L1-L36 are to be designated PRP L1-L36. In accordance with
the approved Commission on Plant Gene Nomenclature designation for
plant genes, gene names are written in italics, with nuclear genes
having capital first letters, and organelle genes having lowercase first
letters (34). For example, the gene for nuclear-encoded PRP L1 is
PrpL1, whereas the gene for plastid-encoded PRP L2 is prpL2. We
propose to use the cytoplasmic ribosomal protein (CRP) nomenclature
for the plant and algal homologs of rat CRPs (35) to distinguish them

2 Internet address: genome.jgi-psf.org/chlrel/chlrel.home.html.
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from PRP and mitochondrial RP. Prefixes PRP or CRP may be omitted
when it is obvious what specified RP is being discussed.

Preparation of C. reinhardtii Chloroplast Ribosomes and Sub-
units—C. reinhardtii strain cc3395 (cw15/Arg7) was used for this study.
The chloroplast ribosomes and subunits were prepared as described in
our previous report (7), which is a modified procedure of nitrogen bomb
extraction (36) and successive sucrose gradient centrifugation (37).
Details on centrifugal conditions are described in the figure legends.
RPs were extracted from purified ribosomes or subunits by an acetic
acid extraction method as described (6).

Proteomic Analyses—SDS-PAGE was performed as described by Lae-
mmli (38), using 1.5-mm-thick, 12% acrylamide gel. The molecular
weight markers used were the BENCHMARK™ prestained protein
ladder (Life Technologies, Inc.). For LC-MS/MS analysis, 10 pmol of
total protein from the 50 S subunit (TP50) and 70 S ribosome (TP70)
were separated by SDS-PAGE and then stained with Coomassie bril-
liant blue R-250 as described (7). The gels were sectioned into pieces as
shown in Fig. 1E, and each gel piece was further fragmented into 1-mm?
pieces and transferred into one well of a 96-well plate. The plates were
transferred to a Massprep digestion robot (Micromass, Beverley, MA)
for destaining (39), reduction/alkylation (iodoacetamide), and in-gel
digestion with trypsin or endoproteinase Lys-C (40). After digestion,
tryptic peptides were extracted from the gel pieces on the Massprep
robot. The extracted peptides were then subjected to LC-MS/MS
equipped with a microbore HPLC system (Surveyor, ThermoFinnigan,
San Jose, CA), a Surveyor autosampler, and a ThermoFinnigan LCQ-
Deca ion trap mass spectrometer (ThermoFinnigan) as described pre-
viously (7). Spectra were scanned over the range 400—-1400 mass units.
Automated peak recognition, dynamic exclusion, and product ion scan-
ning of the top two most intense ions were performed using the Xcalibur
software as described previously (41).

Direct analysis of total large subunit proteins was performed using
~10 pg of TP50. The TP50 was reduced and alkylated by iodoacetamide
and then digested with Endoproteinase Lys-C (Boehringer Mannheim)
and Porozyme Trypsin Beads (Perseptive Biosystems) as described in
our previous report (7). The tryptic peptide mixture was analyzed by
multidimensional protein identification technology (MudPIT) as de-
scribed previously (42—44).

MS/MS data obtained were analyzed using SEQUEST, a computer
program that allows the correlation of experimental data with theoret-
ical spectra generated from known protein sequences (45, 46). In this
work, the general criteria for a preliminary positive peptide identifica-
tion for a doubly-charged peptide were a correlation factor >2.5, a §
cross-correlation factor >0.1 (indicating a significant difference be-
tween the best match reported and the next best match), a minimum of
one tryptic peptide terminus, and a high preliminary scoring. For triply-
charged peptides, the correlation factor threshold was set at 3.5. All
matched peptides were confirmed by visual examination of the spectra.
All spectra were searched against a FASTA-format database generated
from Chlamydomonas ESTs and ORFs in the C. reinhardtii plastid
genome (SWISS-PROT) (29).

Western Blot Analysis—Samples were run in SDS-PAGE under re-
ducing conditions and transferred to nitrocellulose. Membranes were
blocked in TBST (10 mm Tris-HCI, pH 8.0, 0.9% NaCl, and 0.1% Tween
20) containing 5% skim milk and 0.03% NaN, and then incubated
overnight in the same solution containing primary antibodies. Anti-
Chlamydomonas reinhardtii RAP38 polyclonal antibodies were raised
in rabbits (The Scripps Research Institute, Protein and Nucleic Acid
Core Facility) and used at 1:2000 dilutions. Anti-spinach chloroplast RP
S1 and L2 polyclonal antisera were provided by Dr. Subramanian and
used at 1:2000 dilutions. Western blots were developed using nitroblue
tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate (Sigma).

DNA Sequencing—Nucleotide sequencing was carried out with cap-
illary electrophoresis technology using an ABI 3700 DNA analyzer
(Nucleic Acid Core Facility, The Scripps Research Institute). The reac-
tions were performed using thermal cycle sequencing conditions with
fluorescently labeled terminators.

Computational Analyses—EST contig (assembled EST) was obtained
from ChlamyDatabase using a WU-BLAST search.® BLAST (Na-
tional Center for Biotechnology Information) was used for general se-
quence searches. Homology comparison was done using BLAST 2
SEQUENCES (National Center for Biotechnology Information). Multi-
ple sequence alignments were performed using CLUSTAL X (47) and
refined manually for representation. Isoelectric points and sequence

3 Internet address: www.biology.duke.edu/chlamy_genome/blast/blast,_
form.html.
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Fic. 1. Isolation of C. reinhardtii chloroplast ribosomes and subunits and SDS-PAGE profiles of their total proteins. A, sucrose
gradient of the S-40 fraction from the total extract of C. reinhardtii cells in T, K, M, ,D; buffer (25 mm Tris-HCl, pH 8.0, 25 mm KCl, 10 mm MgCl,,
and 5 mum dithiothreitol). Peaks corresponding to 30 S, 40 S, 50 S, and 60 S ribosomal subunits (sub), chloroplast ribosomes (70S), and cytoplasmic
ribosomes (80S) are indicated by arrowheads. Underlined 70 S fractions were pooled and subjected to a second sucrose gradient purification. B,
second sucrose gradient of 70 S ribosomes in T,;K, M, D, buffer. Some of the 70 S ribosomes are dissociated in the 30 S and 50 S subunits (sub).
The underlined subunit fractions were pooled and subjected to a third sucrose gradient to obtain 30 S and 50 S subunits. The underlined 70 S
fractions were collected for TP70 preparation. C, separation of chloroplast 30 S and 50 S subunits in dissociation buffer (T,;K,,,M;D5). The
underlined fractions were collected for TP30 and TP50 preparations, respectively. D, SDS-PAGE analysis of proteins in fractions a to g in the
second sucrose gradient of 70 S ribosomes from B. Two proteins indicated by arrowheads are seen in fraction e corresponding to the 70 S ribosomal
fraction. PRPs S1, PSRP-3, and CRPs L1, L2, and L4 are indicated as landmarks. E, total proteins extracted from 10 pmol of each chloroplast small
subunit (TP30), large subunit (TP50), and ribosome (TP70) were resolved on a SDS-PAGE gel. Proteins were stained with Coomassie Brilliant Blue
R-250. Two bands of 41 kDa (section 7) and 38 kDa (section 8), present in TP70 but absent in TP30 and TP50, are indicated by the arrows. The
TP50 and TP70 lanes were sectioned into 15 and 25 pieces, respectively, for in-gel digestion, as indicated by the dotted lines.

masses were calculated by the ProtParam in the ExPasy proteomic
tools.* Prediction of cleavage sites for chloroplast transit peptides were
obtained using the ChloroP program (48). Phylogenetic analysis was
performed by a neighbor-joining method using PAUP* version 4.0 Beta,
and the reliability of the created tree was estimated by bootstrapping
(49).

RESULTS

Isolation of the C. reinhardtii Chloroplast Ribosomes and
Subunits—Chloroplast ribosomes were purified from the post-
mitochondrial S-40 fraction of total cell extracts by successive
sucrose gradient centrifugation, according to the method of
Chua et al. (37), to obtain biologically active ribosomes. The
chloroplast 70 S ribosomes were first separated from the cyto-
plasmic 80 S ribosomes in a 10—40% sucrose gradient (Fig. 14)
and then purified on a second sucrose gradient (Fig. 1B). About
half of the 70 S ribosomes loaded were dissociated into sub-
units, because of the fragile nature of the 70 S ribosome of the
C. reinhardtii chloroplast (37, 50, 51). Purified 70 S ribosomes
were collected and dissociated into 30 S and 50 S subunits in a
10-30% sucrose gradient containing dissociation buffer (Fig.
1C). The purity of the 70 S ribosomes, and 30 S and 50 S
subunits, was assessed by the RP pattern observed on SDS-
PAGE (Fig. 1, D and E) and by rRNA analysis on agarose gels
(data not shown).

In-gel Digestion and Liquid Chromatography-Tandem Mass
Spectrometry—Total proteins (TP30, TP50, and TP70) ex-
tracted from the 30 S subunits, 50 S subunits, and 70 S ribo-
somes, respectively, were resolved by SDS-PAGE and sectioned

4 Internet address: www.expasy.ch/tools/protparam.html.

into gel pieces (Fig. 1E). Proteins in each section were digested
with trypsin or Lys-C, and the generated peptide fragments
were subjected to LC-MS/MS analyses (see “Materials and
Methods” for details), as done previously for the 30 S subunit
proteins (7).

An example of the LC-MS/MS analysis of the peptides de-
rived from the chloroplast 70 S ribosome is shown in Fig. 2,
demonstrating identification of the L1 protein. In the first step
of LC-MS, the trypsin fragments from section 13 of the TP70
gel yielded the mass chromatogram shown in Fig. 2A. A peptide
eluting at 26.21 min yielded the MS spectrum shown in Fig. 2B.
In the following step of MS/MS, the abundant precursor ion of
m/z 737.64 generated collision-induced dissociation spectra
shown in Fig. 2C. Subsequent SEQUEST analysis of the colli-
son-induced dissociation spectrum identified the peptide se-
quence to be DAGADVVGGDDLIEK, the precursor ion mass
(M + H)" to be 1474.56 (i.e. m/z 737.64 is doubly charged ion),
and the sequence belonged to an EST (AV620102), as listed in
Table I. A BLAST search indicated AV620102 to be a homolog
of chloroplast and bacterial RP L1. An EST contig (ACE num-
ber 20011023.1212.1) in the ChlamyEST database was identi-
fied by WU-BLAST search probing with AV620102 and con-
firmed as encoding a full-length chloroplast precursor protein
homologous to the bacterial L1 protein. In the same way, other
proteins from the TP70 and TP50 fractions were identified by
LC-MS/MS analyses. As a complementary analysis, we also
applied MudPIT for 50 S protein identification by the same
procedure that we used for 30 S protein identification (7).
MudPIT identifies protein components directly from an enzy-
matic digest of the entire large protein complex (here, it is
TP50), using LC/LC-MS/MS without resolving proteins by poly-
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acrylamide gel electrophoresis (42—44). Table I summarizes all
of the peptides identified by LC-MS/MS of TP50 and TP70 and
LC/LC-MS/MS of TP50. Table I also shows their precursor ion
masses, accession numbers of the identified ESTs or chloro-
plast ORFs, the protein identified and peptide origin, the SDS-
PAGE gel section numbers, and the enzyme used or MudPIT.

The Large Subunit Proteins—From the chloroplast 50 S sub-
unit, 28 proteins were identified including orthologs of bacte-
rial L1, L2, L3, 14, L5, L6, L9, L10, L11, L12, L13, L14, L15,
L16, L17, 118, L19, L.20, .21, L.22, 1.23, L.24, 1.27, 1.28, L31,
L32, and L35 and a homolog of spinach PSRP-6. An overview of
the characteristics of the C. reinhardtii 50 S subunit proteins is
shown in Table II comparing the C. reinhardtii 50 S PRPs with
50 S RPs from Arabidopsis chloroplast, Synechocystis sp. PCC
6803, and E. coli. The accession numbers and gene allocations
for C. reinhardtii 50 S PRPs and percent similarity of 50 S RPs
found in C. reinhardtii chloroplast, Arabidopsis chloroplast,
Synechocystis, and E. coli are shown. The mature protein sizes
and isoelectric points (pI) were predicted after removal of the
predicted transit peptide or the N-formyl methionine and are
summarized in Table III. Apart from proteomic analyses, we
independently searched for homologs of the spinach 50 S PRPs
and E. coli 50 S RPs from the Chlamydomonas databases and
identified 31 potential 50 S PRP genes, suggesting the poten-
tial occurrence of L33, L34, and L36 proteins that were not
identified by our proteomic analysis (see Tables II and III).
These small and highly basic proteins likely escaped mass

spectrometric detection (rm/z 400-1400) because of digestion by
trypsin or Lys-C generating peptides too small to be unequiv-
ocally sequenced using this method. No homologs of bacterial
L29, 125, L30, and spinach PSRP-5 were identified in our
proteomic analysis or from computation analysis of the com-
plete chloroplast genome sequence and the currently available
EST databases. This may be attributable to either incomplete
EST databases or to the absence of these genes and proteins in
this alga. .25 and L30 are likely absent from the chloroplast
ribosome as discussed previously (6).

The Small Subunit Proteins—We previously identified 21
proteins from the small subunit of the C. reinhardtii chloro-
plast ribosome (7). In this study, we identified the same corre-
sponding proteins from the 70 S ribosome (data not shown),
and SEQUEST reanalysis of MudPIT data of TP30 using the
complete chloroplast genome sequence identified one addi-
tional protein, S8 (Table I). Thus, we have identified 22 small
subunit proteins: orthologs of E. coli S1, S2, S3, S4, S5, S6, S7,
S8, S9, S10, S12, S13, S14, S15, S16, S17, S18, S19, S20, and
S21; a homolog of spinach PSRP-3; and a novel S1 domain-
containing protein (PSRP-7).

Proteins Unique to the 70 S Ribosome: Identification of 38-
and 41-kDa Ribosome-associating Proteins—In spinach, a plas-
tid ribosome recycling factor (pRRF) was identified in the chlo-
roplast 70 S ribosome in stoichiometric amounts with other
proteins of the 30 S and 50 S subunits. The pRRF was not
present in either of the isolated 30 S or 50 S subunits (6).
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TaBLE II
Percent similarities of Chlamydomonas 50S PRPs with homologs found in Arabidopsis, Synechocystis, and E. coli

Highest % similarity value is indicated by bold.

Protein® C. reinhardtii Arabidopsis Synechocystis E. coli
rorem Acc. no.? Gene allocation Acc. no. Gene allocation % similarity % similarity % similarity
50 S PRP
L1 20011023.1212.1 Nucleus At3g63490 Nucleus 70 63 63
L2 AF396929 (rpl2)° Plastid NP_051123 Plastid 71 77 70
L3 20011023.5271.1 Nucleus At2g43030 Nucleus 71 70 63
L4 20011023.4457.1 Nucleus At1g07320 Nucleus 64 64 54
L5 AF396929 (rpl5)° Plastid At4g01310 Nucleus 66 73 70
L6 20011023.5316.1 Nucleus At1g05190 Nucleus 69 66 62
L9 20011023.3892.1 Nucleus At3g44890 Nucleus 56 62 52
L10 20021010.7676.2 Nucleus At5g13510 Nucleus 52 50 44
L11 20011023.6183.1 Nucleus At1g32990 Nucleus 76 82 73
L12 20011023.1714.1 Nucleus At3g27830 Nucleus 58 69 59
L13 20011023.1311.1 Nucleus At1g78630 Nucleus 77 70 66
L14 AF396929 (rpli4) Plastid NP_051094 Plastid 86 87 75
L15 20011023.1916.1 Nucleus At3g25920 Nucleus 66 60 53
L16 AF396929 (rpl16)° Plastid NP_051095 Plastid 85 87 73
L17 20011023.6156.1 Nucleus At3g54210 Nucleus 74 74 57
L18 20011023.1722.1 Nucleus At1g48350 Nucleus 66 74 62
L19 20011023.3532.2 Nucleus At4g17560 Nucleus 60 68 57
L20 AF396929 (rpl20)° Plastid NP_051082 Plastid 71 82 75
L21 20011023.3009.1 Nucleus At1g35680 Nucleus 48 67 58
L22 20011023.2183.1 Nucleus NP_051097 Plastid 71 75 61
L23 AF396929 (rpl23)° Plastid NP_051122 Plastid 58 65 54
L24 20011023.3290.3 Nucleus At5g54600 Nucleus 61 74 56
L27 20011023.6913.1 Nucleus At5g40950 Nucleus 61 75 69
L28 20011023.1369.1 Nucleus At2g33450 Nucleus 65 75 57
(L29) At5g65220 Nucleus
L31 20011023.6817.1 Nucleus At1g75350 Nucleus 62 69 55
L32 20011023.267.1 Nucleus NP_051107 Plastid 76 62 39
(L33) 20011023.6737.1 Nucleus NP_051080 Plastid 64 64 60
(L34) 20011023.570.1 Nucleus At1g29070 Nucleus 61 86 80
L35 20011023.3217.1 Nucleus At2g24090 Nucleus 47 56 47
(L36) AF396929 (rpl36)° Plastid NP_051092 Plastid 93 91 81
(PSRP-5) At3g56910 Nucleus
PSRP-6 2001 1023.3600.1 Nucleus At5g17870 Nucleus 50 ND? ND<
70 S-specific proteins

RAP38 AY177617 Nucleus At1g09340° Nucleus 84 67 ND<
RAP41 AY177616 Nucleus At3g63140° Nucleus 62 ND? ND¢

“ Unidentified PRPs in this proteomic study were searched using Arabidopsis PRPs as probes and are indicated between parentheses.
® Accession numbers of EST contigs were obtained from the ChlamyEST database.

¢ Gene in the chloroplast genome (29).
< Homologs are not detected in database searches.
¢ Probably non-ribosomal protein.

Therefore, the protein composition of the 70 S ribosome is not
necessarily equal to the sum of the 30 S proteins and the 50 S
proteins. For this reason, we also analyzed proteins in the C.
reinhardtii 70 S subunit. We had previously identified two
proteins in the TP70 pattern resolved by SDS-PAGE that were
not seen in the TP30 or TP50 patterns (7). Here we confirmed
that the 38- and 41-kDa proteins cosedimented with the plastid
70 S ribosomes but not with the plastid 30 S or 50 S subunits
nor with cytoplasmic 80 S ribosomes (Fig. 1D). Because the 38-
and 41-kDa proteins were associated with the 70 S ribosome,
we have designated these proteins RAP38 and RAP41 (Ribo-
some Associated Protein of 38 kDa and 41 kDa). As shown in
Fig. 3, Western blot analysis of proteins from whole cells and
from isolated 30 S, 50 S, and 70 S ribosomes revealed that
RAP38 is associated with purified 70 S subunits but not with
either of the purified dissociated subunits (30 S or 50 S). An-
ti-S1 and anti-L2 antibodies were used as controls to show that
the ribosomal preparations contained the RP expected for each
fraction. The SDS-PAGE profile of TP70 (Fig. 1, D and E) also
shows that the RAP38 and RAP41 are present in similar
amounts as other RPs (e.g. PRP S1 or PSRP-3), judged by the
intensity of the Coomassie staining of these proteins. Thus,
RAP38 and RAP41 appear to be present in stoichiometric
amounts on the ribosome.

No homolog of spinach pRRF was identified from the C. rein-

hardtii 70 S ribosome. However, pRRF is likely present as a
non-RP in C. reinhardtii, because the corresponding EST can
be identified by computational search of the C. reinhardtii EST
database. Homologs of 19 CRPs S6, S8, S17, S25, L3, L7, L11,
L13a, 117, L1a, L23a, 124, 1.26, 1L.27, L.27a, L.32, .36, PO, and
P1 were also identified from our TP70 fractions by the sensitive
LC-MS/MS analysis. Some of these proteins were also identi-
fied in the TP30 (7) and TP50 fractions (this study). These
proteins are contaminations of cytoplasmic 80 S ribosomes and
their subunits because all 19 proteins were identified in puri-
fied 80 S ribosomes.® None of these 19 CRPs show putative
chloroplast targeting sequences.

RAP38 and RAP41 Are Homologs of a Cyanobacterial Ances-
tor Related to Bacterial Epimerase/Dehydratase—As summa-
rized in Table I, five tryptic peptides of RAP38 and a Lys-C
peptide of RAP41 were identified from section 8 and section 7 of
the TP70 gel. The peptides belonged to ESTs AV620219 and
AV621571 encoding RAP38 and to EST AV635725 encoding
RAP41. We obtained the longest EST clone for each protein
(AV620219 for RAP38; AV635725 for RAP41) from the Kazusa
DNA Research Institute and sequenced the entire EST. The
sequence data of RAP38 and RAP41 were submitted to the

5 K. Yamaguchi, P. A. Haynes, and S. P. Mayfield, unpublished data.
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TasLE III
Characteristics of C. reinhardtii 50 S PRPs and 70 S-specific RAPs
Predicted chain length and Isoelectric point Molecular mass (kDa)
Protein Precursor or Transit peptide’ Mature Y Sequence SDS-PAGE®
pro-protein® or Met removal® protein P mass section/band
50 S PRP

L1 297 36 261 94 28.5 26-29
L2 278 Met (—) 277 11.1 30.8 26-29
L3 259 23 236 10.0 254 23-24
L4 243 22! 221 9.8 23.2 21-22
L5 206 Met (—) 205 9.9 23.1 17-19
L6 207 10 197 9.8 21.0 17-19
L9 204 21 183 9.6 20.2 14-16
L10 >230 29 >201 9.5 >22.2 21-23
L11 176 36 140 9.8 14.7 11-13
L12 162 32 130 4.9 13.4 11-13
L13 225 30 195 9.9 21.3 19-21
L14 122 Met (+) 122 10.3 13.4 10-11
L15 246 25 221 10.2 23.3 22-23
L16 136 Met (+) 136 11.5 15.5 ND#
L17 173 49 124 10.5 14.2 11-13
L18 145 26 119 9.7 12.9 10-11
L19 153 31 122 11.2 13.2 11-13
L20 112 Met (—) 111 11.8 13.4 ND#
L21 179 51 128 9.7 14.2 ND#
L22 175 43 132 9.6 14.5 11-13
L23 95 Met (+) 95 10.0 11.2 ND#
L24 170 33 137 10.0 14.9 11-13
L27 161 29 132 10.4 14.1 13-14
L28 195 33 162 9.8 18.4 16-17
L31 136 31 105 9.2 11.6 <10
L32 98 36 62 9.7 6.9 10-11
L33 86 11 75 10.2 8.6 NI*

L34/ 124 64 60 11.9 6.5 NI

L35 114 42! 72 10.5 7.9 <10
L36" 37 Met (+) 37 10.8 4.3 NI*

PSRP-6 66 13 53 10.3 5.9 <10

70 S-specific proteins

RAP38 401 41 360 9.2 40.2 38
RAP41 439 35 404 9.3 44.3 41

“ Cytosolic precursor and plastid pro-protein sequences deduced from nucleic acid sequences.

® Predicted by ChloroP program (48).
¢ Predicted by penultimate amino acid residues (66).
< From predicted mature protein sequence.

¢ Estimated from major peptides found in the TP50/70-gel section (see Fig. 1E and Table I).

fUnidentified proteins by LC-MS/MS analyses.

£ ND, not determined due to MudPIT identification.

% NI, not identified on this proteomic analysis.

 Predicted by mass spectrometric results (see supplemental figure).
7 N-terminal sequence reported (60).

GenBank database under accession numbers AY177617 (gene
name: Rap38) and AY177616 (gene name: Rap41), respectively.
RAP38 and RAP41 ¢cDNAs encoded polypeptides of 401 and 439
amino acids, respectively. Chloroplast transit peptides of
RAP38 and RAP41 were estimated to be 41 and 35 amino acids
using the ChloroP program (48); thus, the mature protein chain
lengths are 360 and 404 amino acids, respectively. Molecular
masses of the mature RAP38 and RAP41 calculated from the
sequences are 40.2 and 44.3 kDa, which are in reasonable
agreement with molecular mass estimated by SDS-PAGE (Ta-
ble III). Pairwise comparison of RAP38 and RAP41 showed 35%
identity and 52% similarity to one another, indicating that
these are related proteins. A BLAST search revealed that
RAP38 and RAP41 have significant sequence similarity with a
higher plant homolog of spinach, CSP41, a chloroplast RNA-
binding protein/endoribonuclease (52), and hypothetical pro-
teins of cyanobacteria (see Table II for percent sequence simi-
larities). RAP38 and RAP41 also showed a distant but still
significant sequence similarity with several sugar-nucleotide
epimerases/dehydratases of archaea, eubacteria, and eukarya.

To examine phylogenetic and evolutional relationships be-
tween RAP proteins and their homologs, we performed an anal-
ysis using a neighbor-joining method, and the reliability of the

created tree was estimated by bootstrapping (Fig. 4). The dis-
tance tree was constructed by rooting protein members of epi-
merase/dehydratase family as the outgroup, because proteins
belonging to this enzyme family are well conserved between
eubacteria and eukaryotes, including one of the earliest lineage
in Methanosarcia (an archaebacterium). The tree shows three
distinct clades: 1) RAP41 homologs, 2) RAP38 homologs, and 3)
the epimerase/dehydratase family. No RAP homologs are identi-
fiable in the complete genome sequences of E. coli or Methano-
sarcia. In contrast, a hypothetical protein encoded by a single
gene (NP_440784) can be identified as a RAP38 homolog in the
complete genome sequence of the cyanobacterium, Synechocystis
sp. PCC6803. Similarly, another cyanobacterium, Nostoc sp. PCC
7120, has a RAP38-related gene (NP_488871). The Arabidopsis
genome contains both a RAP38 homolog (At1g09340) and a
RAP41 homolog (At3g63140). RAP41 and its homolog were iden-
tified only in algae and plants and were not found in photosyn-
thetic bacteria. Thus, phylogenetic analysis suggests that RAP38
and RAP41 are paralogs of a cyanobacterial ancestor diverged
from bacterial epimerase/dehydratase, and that RAP41 is closely
related to spinach CSP41. This phylogenetic analysis is consist-
ent with a previously reported analysis that was predicted by a
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Fic. 3. RAP38 is present in purified
70 S subunits. Ribosomes were purified
on sucrose gradients as described. Sam-
ples were collected and analyzed by SDS-
PAGE (A) and Western blot (2 ug/lane)
with anti-RAP38 (upper panel), anti-S1
(middle panel), and anti-L2 (lower panel)
polyclonal antisera (B). T'SP, total soluble
proteins from C. reinhardtii. TP30, TP50,

and T'P70, total proteins from the 30 S, 50 .
S, and 70 S subunits, respectively. autd
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conserved motif analysis, ancient divergence from a common
ancestor of epimerases/dehydratase and an mRNA-binding pro-
tein with ribonuclease activity (53). Fig. 5 shows the amino acid
sequence alignment of RAP38, RAP41, and their homologs, along
with the motif structures as determined in the three-dimensional
analysis of epimerases and dehydrogenases (53). The N-terminal
BA-aB-BB region of the sugar-nucleotide epimerase/dehydratase
involved in binding the adenine of NAD (54) is significantly
conserved with RAPs and their homologs.

Unexpected PRP Gene Allocation and Evolution in C. rein-
hardtii—In algae and plants, the PRP genes are partially dis-
tributed in the plastid genome and partially in the nuclear ge-
nome. In higher plants, the PRP genes are distributed between
the two genomes, with approximately one-third of ~60 PRP
genes found in the chloroplast and the remaining two-thirds in
the nucleus (5, 6, 55). The transfer of PRP genes to the nuclear
genome from the plastid genome occurred during plant/alga evo-
lution. Unexpectedly, our proteomic analyses of the C. rein-

RAP38 homologue

Dehydratase

(kDa) TSP TP30 TP50 TP70

38- —— E

RAP38

491 by p= =~ | s1

-- 27— -l =2
e
;

RAP41homologue

Fic. 4. Distance tree of C. rein-
hardtii RAPs and their homologs. The
phylogram was rooted with proteins be-
longing to the epimerase/dehydratase
family. The tree was constructed by the
neighbor-joining method. Numbers be-
tween internal nodes indicate bootstrap
values as percentages of 1000 replica-
tions. See “Experimental Procedures” for
details on the analysis. Tomato CMBP,
chloroplast mRNA-binding protein (64);
Spinach CSP41, chloroplast stem-loop
RNA-binding protein/endoribonuclease
(52); accession numbers are indicated for
other proteins.

Epimerase

hardtii chloroplast ribosome revealed that the number of trans-
ferred PRP genes in the nucleus of this alga is greater than that
in higher plants. We reported previously that the C. reinhardtii
PRP genes for S15 and S16 are nuclear genes, whereas these
genes are plastid genes in higher plants (7). Likewise, C. rein-
hardtii PRP genes for 122, 1.32, and L33 are allocated in the
nucleus, whereas these genes are maintained in plastids in
Arabidopsis and other higher plants (Table II). In C. reinhardtii,
the prpL21 gene is not present in plastid genomes, whereas our
proteomic analysis identified a nuclear PrpL21 gene (Tables I
and II). In higher plants, the prpL21 gene has been lost from
plastid genomes after the divergence from bryophytes, and a
nuclear gene of mitochondrial origin has replaced the chloroplast
gene (56). This is not the case for the PrpL21 nuclear gene of
C. reinhardtii, in which phylogenetic analysis suggests that the
gene originated from an ancestral plastid gene sharing signifi-
cant homology with rpL21 of cyanobacteria and other algal plas-
tid genomes (data not shown).
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AL-AC1g09340 b e b ke e T e b MAKMMMLOOHQPSE LLT SDFNGAKL SILOVQYKRKVHQP
AL-AL3g63140 1 memassEns MAALSSSSLFFSSKTTSPISNLLIPP-8LHRFSLPS8888FS5------- L 588 SSLLTFSL&TSRRLSPQKF-—
Le-CMEP 1 IGLERPPGQVSMATLASSSSLIHSSSS8--FNSSSTP-8ISPVSRISLKFPSSS------- L SSLEISPYFVAFSLN- SREVEPKSY EIS
So-CSP4l o iainae ARAALSTNSLISSSSLORSFINANNPSQTLPPFSLPSSCFE8SNSSFFSPLI PLH| 'RAVSPLIFENSSNVWSSGF S
Cr-RAP41l T it e i e e i e e e e e i e MO B EARVAGEA HRAVCGTAGERT, ji-

Sy-NP_440784
No-NP_ 488871
Cr-RAP38
At-Atlg03340
At-At3ge3140
Le-CMBP
So-C8P41
Cr-RAP41

Sy-NP_440784
No-NP 488871
Cr-RAP38
At-Atlg03340
At-At3g63140
Le-CMEP
So-C8P4l
Cr-RAP41

Sy-NP_440784 149
No-NP_488871 150
Cr-RAP38 221
At-Atlg09340 215
At-At3ge3140 241

Le-CMEP 253
So-CSP4l 251
Cr-RAP41 150

Sy-NP 440784 238
No-NP_488871 239
Cr-RAP38 308
ACL-AC1g09340 302
At-At3ge3140 3238

Le- CMBP 340
S0-C8P41 338
Cr-RAP41 276
Cr-RAP38 394 APSRASWR-----woosoadaooioliiosiiiasionis

Cr-RAP41

PKS8SN3SV

365 SASFSRLNSSGPKAEELPRSRSSFSPREDLKIKRTVLPANWEDSLDEDE PAKPAAGRSATTGRSGESVPKDWRSSL

Fic. 5. Amino acid sequence alignment of RAP38 and RAP41 precursors with related proteins from higher plants and photosyn-
thetic bacteria. The arrow indicates the chemically determined cleavage site of the chloroplast transit peptide of spinach CSP41 (52). The
catalytic domain of spinach CSP41 (amino acids 1-191 of mature protein), by analyzing C-terminal deletions (59), is underlined. Asterisks indicate
two histidine residues, which may take part in the catalytic site. Identical residues are boxed in black, and similar residues are boxed in gray. Cr,
Chlamydomonas reinhardtii; At, Arabidopsis thaliana; Sy, Synechocystis sp. PCC 6803; So, Spinacia oleracea (spinach); No, Nostoc sp. PCC 7120;

Le, Lycopersicon esculentum (tomato).
DISCUSSION

We previously characterized the C. reinhardtii 30 S ribosomal
subunit via a proteomic analysis and identified 21 proteins: 19 E.
coli orthologs, a spinach PSRP-3 homolog, and a novel protein,
PSRP-7, that contains two S1 domains (7). We identified un-
usually large orthologs of bacterial S2 (57 kDa), S3 (76 kDa), and
S5 (84 kDa) that are significantly larger than their counterparts
in higher plants and bacteria. PSRP-7 is also an unusually large
RP. The total mass of C. reinhardtii 30 S proteins was estimated
to be ~600 kDa, which is 1.7-fold and 1.4-fold greater than those
of E. coli 30 S (350 kDa) and spinach 30 S (430 kDa) proteins. To
fully understand the chloroplast translation machinery, we have
now characterized the components of the 50 S subunit and the 70
S ribosome of the C. reinhardtii chloroplast. From the 50 S

subunit, 28 proteins were identified: 27 E. coli orthologs and a
homolog of spinach PSRP-6. As shown in Fig. 6, the molecular
masses of C. reinhardtii 50 S PRPs range from 4.3 kDa (LL36) to
30.8 kDa (1.2), and most of the 50 S PRPs are similar in size and
sequence to their counterparts in spinach and E. coli (Table III
and supplemental figure). The C. reinhardtii PRP 128 is twice as
large as its spinach and E. coli counterparts because of the
presence of a C-terminal extension. Other large subunit RPs
show short insertion sequences or extension at their N-/C-termini
(see supplemental figure), but these short extensions do not
affect the net mass of the large subunit. The total mass of the
C. reinhardtii 50 S PRPs is estimated to be ~490 kDa, which
is similar to those of E. coli 50 S (440 kDa) and spinach 50 S (530
kDa) subunits.
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Fic. 6. Comparison of the molecular masses of 50 S RPs. Mo-
lecular masses of C. reinhardtii 50 S PRPs (black columns) were com-
pared with those of spinach 50 S PRPs (gray columns) and E. coli 50 S
RPs (white columns). Molecular masses shown in this histogram are
mature spinach 50 S PRPs (6), mature E. coli 50 S RPs (65), and
predicted mature C. reinhardtii 50 S PRPs from Table III.

Previous studies have examined immunological similarity of
the chloroplast RPs of C. reinhardtii with RPs of spinach chlo-
roplasts, the cyanobacterium Anabaena, and E. coli (27, 28).
Using 15 selected antisera against C. reinhardtii S-7, S-11,
S-19, S-20, S-21, L-1, L-6, L-13, L-17, L-18, L-21, L-26, L-27,
L-29, and L-30 (see Ref. 26 for nomenclature), 9 cross-reacting
E. coli proteins were identified: S1 (anti-S-7 and -S-11), S3
(anti-S-7), L2 (anti-L-1), L5 (anti-L-13), L9 (anti-L-30), L12
(anti-L-26, -L-29, and -L-30), L16 (anti-L-17), L23 (anti-L-29),
and L27 (anti-L-18). Among them, L.-18 has been identified as
the homolog of E. coli L27 by N-terminal protein sequencing
(57). In general, the greatest immunological similarity is found
between Anabaena and Chlamydomonas, and the similarity is
greatest for chloroplast-synthesized proteins of the large ri-
bosomal subunit. As shown in Table II, a majority of the
C. reinhardtii chloroplast RPs have greater sequence similarity
with cyanobacterium (Synechocystis) than with higher plants

Chloroplast Ribosome Proteomics

(Arabidopsis) or eubacterium (E. coli). Table II also shows that
plastid-encoded proteins are more conserved between different
organisms than nuclear-encoded proteins. Our results (this
study and Ref. 7) have confirmed previous observations on
the conservation of proteins within 70 S ribosomes and have
expanded on these studies to include a complete molecular
description of the entire set of RPs from C. reinhardtii
chloroplasts.

Four of the C. reinhardtii PRPs are more than twice as large
as the spinach and E. coli counterparts because of either N-
terminal extensions (NTEs), insertion sequences, or C-terminal
extensions (C-terminal extension): S2 (NTE), S3 (insertion se-
quence), PSRP-3 (NTE), and L28 (C-terminal extension). Re-
cently, sensitive profile search techniques, such as PSI-BLAST,
have identified a novel conserved domain, TRAM, predicted to
be an RNA-binding domain common to tRNA uracil methyla-
tion and adenine thiolation enzymes (58). A TRAM domain is
also identifiable from eukaryotic translation initiation fac-
tor-2p in Thermoplasma. Two TRAM domains are found at the
N terminus of PRP S2 (ORF570) in C. reinhardtii. Accordingly,
we speculate that the NTEs, C-terminal extensions, and inser-
tion sequence domains in C. reinhardtii PRPs S2, S3, PSRP-3,
and L.28 may take part in regulation of translation, perhaps by
directly binding chloroplast mRNAs with TRAM domains or
other uncharacterized RNA-binding domains.

Two nuclear-encoded proteins have been identified from the
70 S ribosome that were not found in either of the subunits.
These two ribosome-associated proteins were designated
RAP38 and RAP41. Western blot analysis of total proteins and
proteins from isolated ribosomal subunits using RAP38 anti-
sera revealed that RAP38 is associated with 70 S ribosomes
only and not with the individual subunits. These data give rise
to at least two different hypothesizes: that RAP38 and RAP41
have a role in nontranslating 70 S ribosomes, or that RAP38
and RAP41 participate in translation but associate with the 70
S ribosome after the subunits have initiated translation. The
role of these proteins is being studied using genetic knock-outs
and in in vitro and in vivo experiments. In the proteomic
characterization of the spinach 70 S chloroplast ribosome (6),
RAP38- and RAP41-like proteins were not identified, although
a pRRF was identified as a 70 S-specific protein. Identification
of RAP38 and RAP41 from the 70 S subunit is entirely unex-
pected, because these two proteins share sequence similarity
with spinach CSP41, a chloroplast RNA-binding protein with
endoribonuclease activity. How does the C. reinhardtii chloro-
plast ribosome contain RAP38 and RAP41, whereas the spin-
ach chloroplast ribosome does not? In C. reinhardtii, RAP38
and RAP41 have C-terminal extensions of 16 and 83 amino
acids, respectively, compared with spinach CSP41. These ad-
ditional domains may allow RAP38 and RAP41 to bind the
C. reinhardtii 70 S ribosome with high affinity. Several addi-
tional domains in the 30 S and 50 S proteins unique to the
C. reinhardtii (e.g. NTE of S2, C-terminal extension of L28)
may also interact with the RAP proteins to allow binding to the
ribosome.

The Arabidopsis genome contains both RAP38 and RAP41
homologs, whereas the cyanobacterial lineage has only a
RAP38-like protein. Phylogenetic analysis suggests that
RAP38 and RAP41 are paralogs of a cyanobacterial protein, but
this protein has not yet been biochemically characterized. Se-
quence and motif homologies between CSP41, RAP38, and
RAP41 suggest that similar RNA-binding and nuclease activi-
ties can be expected for these proteins as well. Histidine resi-
dues are known to be important for catalytic function in ribo-
nucleases, and three histidine residues (His-34, His-130, and
His-140) found in the catalytic domain (amino acid 1-191 re-
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gion; Ref. 59) of CSP41 are conserved between CSP41 homologs
and RAP proteins, whereas these histidines are not conserved
in epimerases/dehydratases. In spinach, CSP41, CSP29, and
CSP55 are thought to form a stem-loop RNA-protein complex
that is required for processing of the petD mRNA at the 3’ end
(reviewed in Ref. 11). Similarly, 5 UTR processing of some
chloroplast mRNAs is necessary for translation in algae and
higher plants. We have shown previously that processing of the
C. reinhardtii psbA mRNA 5" UTR depends upon factors me-
diating ribosome association (60), whereas failure to process
the C. reinhardtii petD mRNA 5’ UTR is also associated with
the loss of translation (61, 62). In barley chloroplast, rbcL
mRNA with an unprocessed 5 UTR is not associated with
polyribosomes (63). We propose that RAP38 and RAP41 are
functional counterparts of CSP41 and may be involved in
mRNA processing, directly or indirectly with other factors
and/or RPs.

The proteomic, bioinformatics, and biochemical analyses pre-
sented here have shown that the chloroplast translation ma-
chine of C. reinhardtii is compositionally and structurally
similar to those of higher plants and eubacteria, but that
C. reinhardtii ribosomes contain additional domains and pro-
teins previously unidentified in other 70 S ribosomes. Many of
these additional domains reside on the 30 S subunit of the
ribosome, the subunit responsible for mRNA discrimination
during translation initiation. The part of the ribosome respon-
sible for peptidyl bond formation between amino acids, the 50 S
subunit, is more conserved. These results are not unexpected,
because peptide bond formation would be expected to be a
conserved enzymatic function, whereas mRNA discrimination
would be anticipated to be organism dependent. Defining spe-
cific roles for individual proteins and domains in chloroplast
translational regulation should now be greatly facilitated by
having the complete set of RPs defined.
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