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A constructive version of Warfield’s
Theorem

Cyrille Chenavier ∗

∗ Inria Lille - Nord Europe, Villeneuve d’Ascq, France (e-mail:
cyrille.chenavier@inria.fr).

Abstract: Within the algebraic analysis approach to linear system theory, a multidimensional
linear system can be studied by means of its associated finitely presented left module. Deep
connections exist between module isomorphisms and equivalent matrices. In the present paper,
we introduce a constructive proof of a result due to Warfield which controls the size of equivalent
matrices involved in the study of isomorphic modules. We illustrate our constructive proof with
an example coming from differential equations with constant coefficients.
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1. INTRODUCTION

A linear multidimensional system, such as a linear system
of differential equations or partial derivative equations,
maybe described by a matrix of functional operators.
Indeed, a system of q equations with p unknown functions
η1, · · · , ηp over a ring of operators D is written

kerF (R.) := {η ∈ Fp | Rη = 0} , (1)

where R ∈ Dq×p and F is the functional space where we
are looking for the solutions. The system (1) can be studied
by mean of algebraic tools, using the finitely presented left
module M := D1×p/(D1×qR) with p generators submitted
to the q relations specified by the lines of R. Indeed, from
the properties of free and quotient modules, the abelian
group kerF (R.) is isomorphic to homD(M,F), that is
the abelian group of left D-linear maps from M to F ,
see Malgrange (1963). Hence, systemic properties of (1)
can be studied by mean of modules properties, which
can be computed using effective homological algebra and
Groebner bases theory, see Chyzak et al. (2005).

The abelian group homD(M,F) only depend on M and
F , in particular it does not depend on the matrix R. That
means that two matrices R and R′ defining isomorphic
modules M ' M ′ have the same algebraic properties. A
particular example for the isomorphism M ' M ′ is the
case where R and R′ are equivalent, that is R = Y R′X−1

for invertible matrices X and Y . A result due to Fitting
(1936) asserts a weak converse implication: if R and R′

define isomorphic modules, then they can be enlarged by 0
and identity blocs leading to equivalent matrices L and L′.
An effective version of this result was obtained in Cluzeau
and Quadrat (2011).

The purpose of the present paper is to introduce an
effective version of a result of Warfield (1978), which
asserts that the number of 0 and the size of identity
blocs in L and L′ maybe reduced, while keeping equivalent
matrices. This result is based on an algebraic invariant
of D, called the stable rank, see McConnell and Robson
(2001)

The paper is organised as follows. In Section 2, we recall
the notions of isomorphic left D-modules and equivalent
matrices, as well as the effective version of Fitting’s result
and the statement of Warfield’s result. In Section 3, we
present the constructive version of Warfield’s result for
removing 0 and identity blocs. In Section 4, we illustrate
this constructive version with a differential equation with
constant coefficients. Section 5 contains proofs of formulas
used in Section 3.

2. ISOMORPHISMS AND EQUIVALENT MATRICES

In this section, we recall the characterization of morphisms
between finitely presented left D-modules, as well as
results of Fitting and Warfield which rely isomorphic left
D-modules to matrix conjugation.

2.1 Effective version of Fitting’s Theorem

Consider two left D-modules M and M ′ with finite pre-
sentations:

D1×q D1×p M 0,

D1×q′ D1×p′ M ′ 0,

.R π

.R′ π′

namely, exact sequences (see Rotman (2009)), where
R ∈ Dq×p, (.R)(µ) = µR, for every µ ∈ D1×q and π is
the natural projection on M = D1×p/(D1×qR) (similarly
for R′ and π′).

From Rotman (2009), there exists f ∈ homD(M,M ′) if

and only if there exist matrices P ∈ Dp×p′ and Q ∈ Dq×q′

such that RP = QR′ and

∀λ ∈ D1×p, f(π(λ)) = π′(λπ).

Hence, the following diagram is exact and commutative:



D1×q D1×p M 0

D1×q′ D1×p′ M ′ 0

.R

.Q

π

.P f

.R′ π′

We let n := q+ p′+ p+ q′ and m := p+ p′. The two n×m
matrices

L :=

R 0
0 idp′
0 0
0 0

 and L′ :=

 0 0
0 0
idp 0
0 R′

 , (2)

induce finite presentations: M ' D1×m/(D1×nL) and
M ′ ' D1×m/(D1×nL′). In Cluzeau and Quadrat (2011),
an effective version of a result due to Fitting (1936)
is given. If f is an isomorphism, then L and L′ are
equivalent: there exist 6 matrices R2 ∈ Dr×q, R′2 ∈ Dr′×q′ ,

Z2 ∈ Dp×q, Z2 ∈ Dq×r, Z ′2 ∈ Dq′×r′ , Z ∈ Dp×q and

Z ′ ∈ Dp′×q′ and two invertible matrices of size m and n

XF :=

(
idp P
−P ′ idp′ − P ′P

)

YF :=

 idq 0 R Q
0 idp′ −P ′ Z′

−Z P 0 PZ′ − ZQ
−Q′ −R′ 0 Z′2R

′
2

 ,

(3)

with inverses

X−F :=

(
idp − PP ′ −P

P ′ idp′

)

Y −F :=

 Z2R2 0 −R −Q
P ′Z − Z′Q′ 0 P ′ −Z′

Z −P idp 0
Q′ R′ 0 idq′

 ,

(4)

such that

L′ = Y −F LXF . (5)

In other words, the following diagram is exact commuta-
tive

D1×n D1×m M 0

D1×n D1×m M ′ 0

.L

.YW

π⊕0

.XW f

.L′

.Y −
W

0⊕π′
.X−

W f−

2.2 Warfield’s Theorem

A result due to Warfield (1978) asserts that that the size
of 0 an id blocs in (2) can be reduced, whereas the new
matrices are still equivalent. This result is based on the
notion of stable rank. The definition of the latter requires
to introduce various notions that we present now.

A column vector u := (u1 · · ·uk)T ∈ Dk×1 is called
unimodular if there exists a line v ∈ D1×k such that

vu = 1. Moreover, u is said to be stable if there exist
d1, · · · , dk−1 ∈ D such that (u1 + d1uk · · ·uk−1 + dk−1uk)
is unimodular. An integer r is said to be in the stable rank
of D if whenever k > r, every column u ∈ Dk×1 is stable.
The stable rank sr(D) of D is the smallest integer in the
stable rank of D.

Assume that the two matrices (2) are equivalent, then
Warfield’s Theorem asserts that if there exist two integers
r and s such that

s ≤ min(p+ q′, q + p′),

sr(D) ≤ max(p+ q′ − s, q + p′ − s),
r ≤ min(p, p′),

sr(D) ≤ max(p− r, p′ − r),

(6)

then the following (n − r − s) × (m − r) matrices are
equivalent

L :=

(
R 0
0 idp′−r
0 0

)
and L′ :=

(
0 0

idp−r 0
0 R′

)
, (7)

and induce finite presentations of M and M ′, respectively.

In the next section, we introduce a procedure which
computes invertible matrices XW and YW such that

L′ = Y −WLXW .

3. EFFECTIVE WARFIELD’S THEOREM

Throughout this Section, we fix some notations. LetM and
M ′ be two left D-modules, isomorphic with f : M

∼→M ′,
finitely presented by matrices R ∈ Dq×p and R′ ∈ Dq′×p′ ,
respectively, and let L, L′, XF , YF , X−F and Y −f be the

matrices defined in (2) (3) and (4). Let n := q+ p′+ p+ q′

and m := p+p′. Given a nonzero integer k, we let k := k−
1. For 1 ≤ i ≤ k, the i-th vector of the canonical basis of
D1×k is written eki .

3.1 Reduction of the zero bloc

In this section, we present the procedure for removing one
0 in L and L′. Inductive applications of this procedure
enables us to remove many 0. Without lost of generalities,
we may suppose that q + p′ ≤ p+ q′, and we assume that
sr(D) ≤ p+ q′, so that the hypotheses of (6) are fulfilled
for s = 1. Our purpose is to show that the following n×m
matrices are equivalent:

L̃ :=

(
R 0
0 idp′
0 0

)
and L̃′ :=

(
0 0
idp 0
0 R′

)
.

Proposition 1. There exist c, u ∈ D1×p and d, v ∈ D1×q′

such that

(0 c d)

(
idq+p′ 0 0 0

0 idp 0 uT

0 0 id
q′

vT

)
YF (enq+p′)

T = 1. (8)

Proof. Getting terms of the p′-th column and p′-th line
in the relation idp′ = P ′P + Z ′R′, we get the following:



p∑
k=1

P ′p′kPkp′ +

q′∑
k=1

Z′p′kR
′
kp′ = 1.

From sr(D) ≤ p+ q′, we deduce that there exist

c1, · · · , cp, d1, · · · , dq′ , u1, · · · , up, v1, · · · , vq′ ∈ D such

that

p∑
k=1

ck
(
Pkp′ + ukR

′
q′p′

)
+

q′∑
k=1

dk
(
R′kp′ + vkR

′
q′p′

)
= 1. (9)

Letting c := (c1, · · · , cp), d :=
(
−d1, · · · , −dq′

)
,

u := (−u1, · · · , −up) and v :=
(
v1, · · · , vq′

)
, the hand

side of (9) is the left hand side of (8), which proves
Proposition 1.

With the notations of Proposition 1, we introduce the lines
˜̀∈ D1×n and ` ∈ D1×n defined as follows:

˜̀ := (0 c d) and ` := (0 c d 0) ,

as well as the matrices U ∈ Dn×n, F ∈ Dn×n defined as
follows:

U :=

idq+p′ 0 0 0

0 idp 0 uT

0 0 id
q′

vT

0 0 0 1

 and F :=
(
idn 0

)
UYF .

From Relation (8) and

F =

(
idq+p′ 0 0 0

0 idp 0 uT

0 0 id
q′

vT

)
YF ,

we get:

1 = ˜̀F (enq+p′)
T = `UYF (enq+p′)

T . (10)

We consider the matrices pr, pr′ ∈ Dn×n

pr :=

(
idn − F (enq+p′ )

T ˜̀

˜̀

)
,

pr′ :=
(
idn − (enq+p′ )

T `UYF
)(id

q+p′
0

0 0
0 idp+q′

)
,

and ι, ι′ ∈ Dn×n

ι :=
(
idn − F (enq+p′ )

T ˜̀ F (enq+p′ )
T
)
, ι′ :=

(
id
q+p′

0 0

0 0 idp+q′

)
.

Proposition 2. We have the following relations:

(1) ιpr = idn,
(2) ι′pr′ = idn,

(3) ker(.pr) = D`,
(4) ker(.pr′) = D`UYF .

Proof.

(1) From (10), we have
(
F (enq+p′)

T ˜̀
)2

= F (enq+p′)
T ˜̀,

from which we deduce ιpr = idn by computing the
matrix product.

(2) We have ι′(enq+p′)
T = 0, from which we deduce

ι′pr′ = idn by computing the matrix product.
(3) Considering the isomorphism D1×n ' D1×n⊕ D, we

have pr = pr1pr2, where pr1 ∈ Dn×n and pr2 ∈ Dn×n

are defined as follows:

pr1 :=

(
idn − F (enq+p′ )

T ˜̀ 0

0 1

)
and pr2 :=

(
idn
˜̀

)
.

From (10), im(.pr1) is included in ker(.F (enq+p′)
T )⊕D

and the restriction of .pr2 to the latter is injective: for
(u, x) ∈

(
ker(.F (enq+p′)

T )⊕D
)
∩ ker(.pr2), we have

u + x˜̀ = 0, which gives x = 0 and u = 0 by
(10). Hence, we have ker(.pr) = ker(.pr1), that is

ker
(

idn − .F (enq+p′)
T ˜̀
)
⊕ 0. We conclude by show-

ing ker
(

idn − .F (enq+p′)
T ˜̀
)

= D ˜̀: the right to left

inclusion is due to (10), and the other one is due

to the relation x =
(
xF (enq+p′)

T
)

˜̀, for every x in

ker
(

idn − .F (enq+p′)
T ˜̀
)

.

(4) From (10), we have D`UYF ⊆ ker(.pr′). The converse
inclusion is due to the relation x = xq+p′`UYF , for

every x ∈ ker(.pr′). Indeed, the first q + p′ and the
last p+q′ columns of x and xq+p′`UYF are equal since
x ∈ ker(.pr′) implies

x

(
id
q+p′

0

0 0
0 idp+q′

)
= xq+p′`UYF

(
id
q+p′

0

0 0
0 idp+q′

)
.

Moreover, the q + p′-th columns of xq+p′`UYF is

computed by right multiplication by (enq+p′)
T and is

equal to xq+p′ from (10).

Theorem 3. With the previous notations, we let

XW := XF , YW := ιUYFpr′,

X−W := XF , Y −W := ι′Y −F U
−pr.

The following diagram is exact and commutative:

D1×n D1×m M 0

D1×n D1×m M ′ 0

.L̃

.YW

π⊕0

.XW f

.L̃′

.Y −
W

0⊕π′
.X−

W f−

In particular, we have

L̃′ = Y −W L̃XW .

Proof. We only have to show that the diagram is com-
mutative.

First, we show that YW and Y −W are inverse to each other.
From Proposition 2, the lines of the following diagram are
exact



D D1×n D1×n 0

D D1×n D1×n 0

.`

idD

pr

.UYF .YW

.`UYF pr′

.Y −
F
U− .Y −

W
(11)

Moreover, it is also commutative. Indeed, prYW is equal
to prιUYFpr′ and from 1 of Proposition 2, we have
im(.prι − idn) ⊆ ker(.pr). By commutativity of the left
rectangle and by exactness of the lines of (11), we have
(prι − idn)UYFpr′ = 0, so that prYW = UYFpr′. In
the same manner, we show that Y −F U

−pr = pr′Y −W .
By commutativity and exactness of (11) and from the
equations UYFY

−
F U

− = Y −F U
−UYF = idn, we get

YWY
−
W = Y −WYW = idn.

Moreover, YW L̃
′ = L̃XF and Y −W L̃ = L̃′X−F follow from

the following commutative diagram:

D1×n D1×n D1×n D1×n D1×n

D1×m D1×m D1×m D1×m D1×m

L̃

ι

L

U

pr

L

YF

U−
L′

pr′

Y−
F L̃′

ι′

idm
idm XF idm

X−
F

Indeed by computing the matrix products and from (5),
we have the following relations, proven in Section 5.1:

ιL = L̃, UL = L, YFL
′ = LXF , pr′L̃′ = L′,

ι′L′ = L̃′, Y −F L = L′X−F , U−L = L, prL̃ = L.
(12)

3.2 Reduction of the identity bloc

In this section, we present the procedure for removing on
1 in L and L′, many 1 are removing by induction. Without
lost of generality, we assume that p ≤ p′ and sr(D) ≤ p′,
hence (6) is fulfilled for r = 1. Our purpose is to show that
the following n×m matrices are equivalent:

L̃ :=

(
R 0
0 id

p′

0 0

)
and L̃′ :=

(
0 0
idp 0
0 R′

)
.

Proposition 4. We let k := q+p′+p and l := p+q′. There

exist c ∈ D and lines d, u ∈ D1×p′ such that(
cenkY

−
F

(
idq 0 0
0 0 0
0 0 idl

)
+
(
0 d 0

))(idq 0 0 0

0 id
p′

uT 0

0 0 0 idl

)
YF (e

n
k )
T = 1,

(13)
and(

cemp X
−
F

(
idp 0
0 0

)
+
(
0 d
))(idp 0 0

0 id
p′

uT

)
XF (e

m
p )T = 1. (14)

Proof. We have(
1− PP ′pp

)
+

p′∑
i=1

PpiP
′
ip = 1.

By projecting this equality on the finitely presented left
module N := D/D

(
1− PP ′pp

)
, the latter is spanned by

[P ′1p]N , · · · , [P ′p′p]N . From McConnell and Robson (2001),

sr(D) is in the stable range of N , so that there exists

u :=
(
u1, · · · , up′

)
∈ D1×p′ such that N is spanned by

[P ′1p′ + u1P
′
p′p]N. Hence, c ∈ D and d1, · · · , dp′ ∈ D

1×p′

exist such that

c
(
1− PP ′pp

)
+

p′∑
k=1

dk
(
P ′kp + ukP

′
p′p

)
= 1. (15)

Letting d :=
(
−d1, · · · , −dp′

)
∈ D1×p′ and from the

relation idp = ZR + PP ′, the left hand sides of (13) and
(14) are both equal to the left hand side of (15), which
proves Proposition 4.

With the notations of Proposition 4, we introduce the lines
˜̀
r ∈ D1×n, `r ∈ D1×n, ˜̀

g ∈ D1×m and `g ∈ D1×m defined
as follows:

˜̀
r := cenkY

−
F

(
idq 0 0
0 0 0
0 0 idl

)
+
(
0 d 0

)
, `r := ˜̀

r

(
id
q+p′

0 0

0 0 idl

)
,

˜̀
g := cemp X

−
F

(
idp 0
0 0

)
+
(
0 d
)
, `g :=

(
˜̀
g 0
)
.

as well as the matrices Ur ∈ Dn×n, Ug ∈ Dm×m,

Fr ∈ Dn×n and Fg ∈ Dm×m defined as follows:

Ur :=

idq 0 0 0

0 id
p′

uT 0

0 0 1 0
0 0 0 idl

, Fr :=

(
id
q+p′

0 0

0 0 idl

)
UrYF ,

Ug :=

(
idp 0 0

0 id
p′

uT

0 0 1

)
, Fg :=

(
idm 0

)
UgXF .

Explicitly, we have:

˜̀
r =
(
cZp. d celp

)
`r =

(
cZp. d 0 celp

)
,

˜̀
g =

(
c
(
idp − PP ′

)
p.

d
)

`g =

(
c
(
idp − PP ′

)
p.

d 0
)
,

where the index p. denotes the p-th line of the considered

matrix.

As we did for Relation (10), we obtain the following
relations:

1 = ˜̀
rFr(e

n
k )
T = `rUrYF (e

n
k )
T , (16)

and

1 = ˜̀
gFg(e

m
p )T = `gUgXF (e

m
p )T . (17)

Let us consider prr, pr′r ∈ Dn×n, prg, pr′g ∈ Dm×m,

ιr, ι
′
r ∈ Dn×n and ιg, ι

′
g ∈ Dm×m defined as follows:



prr :=

(
id
q+p′

0

0 0
0 idl

)(
idn − Fr

(
enk

)T ˜̀
r

)
+ (enk )

T ˜̀
r,

pr′r :=
(
idn − (enk )

T `rUrYF
)(id

k
0

0 0
0 idq′

)
,

ιr :=

(
idn − Fr

(
enk

)T ˜̀
r

)(
id
q+p′

0 0

0 0 idl

)
+ Fr

(
enk

)T
enq+p′ ,

ι′r :=

(
id
k

0 0

0 0 idq′

)
,

prg :=

(
idm − Fg(emp )T ˜̀

g

˜̀
g

)
,

pr′g :=
(
idm − (emp )T `gUgXF

)(idp 0
0 0
0 idp′

)
,

ιg :=
(
idm − Fg(emp )T ˜̀

g Fg(e
m
p )T

)
,

ι′g :=

(
idp 0 0
0 0 idp′

)
.

By adapting the arguments of the proof of Proposition 2,
we get the following.

Proposition 5. We have the following relations

(1) ιrprr = idn,
(2) ιr

′prr
′ = idn,

(3) ιgprg = idm,
(4) ιg

′prg
′ = idm,

(5) ker(.prr) = D`r,
(6) ker(.prr

′) = D`rUrYF ,
(7) ker(.prg) = D`g,
(8) ker(.prg

′) = D`gUgXF .

Theorem 6. With the previous notations, we let

YW := ιrUrYFpr′r, XW := ιgUgXFpr′g,

Y −W := ι′rY
−
F U

−
r prr, X−W := ι′gUgX

−
F prg.

The following diagram is exact and commutative:

D1×n D1×m M 0

D1×n D1×m M ′ 0

.L̃

.YW

π⊕0

.XW f

.L̃′

.Y −
W

0⊕π′
.X−

W f−

In particular, we have

L̃′ = Y −W L̃XW .

Proof. We only have to show that the diagram is com-
mutative.

We show that YW and Y −W (respectively, XW and X−W ) are
inverse to each over in the same manner that we did in the
proof of Theorem 3.

Moreover, YW L̃
′ = L̃XW and Y −W L̃ = L̃′X−W follow from

the following commutative diagram:

D1×n D1×n D1×n D1×n D1×n

D1×m D1×m D1×m D1×m D1×m

L̃

ιr

L

Ur

prr
L

YF

U−r
L′

pr′r

Y−
F L̃′

ι′r

ιg Ug

prg

XF

U−g

pr′g

X−
F

ι′g

Indeed by computing the matrix products and from (5),
we have the following relations, proven in Section 5.2:

ιrL = L̃ιg , UrL = LUg , YFL
′ = LXF , prrL̃ = Lprg ,

ι′rL
′ = L̃′ι′g , Y −F L = L′X−F , U−r L = LU−g , pr′rL̃

′ = L′pr′g .
(18)

4. EXAMPLE

In this Section, we illustrate Theorem 3.

4.1 Two presentations of one ODE

We consider a linear differential equation with constant
coefficients:

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1ẏ(t) + a0y(t) = 0, (19)

where ai ∈ R. Letting

x1 := y, x2 := ẋ1 = ẏ, · · · , xn := ẋn−1 = y(n−1),

(19) rewrites as follows:

ẋ1(t)
...

ẋn(t)

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 · · · · · · 0 1
−a1 −a2 · · · · · · −an−1


x1(t)

...
xn(t)

 . (20)

Hence, the system (19)–(20) is described by two matrices
over the ring D := R[∂] of differential polynomials with
constant coefficients: Ry = 0 and R′x = 0, R ∈ D1×1 = D
and R′ ∈ Dn×n defined as follows

R := ∂n + an−1∂
n−1 + · · ·+ a1∂ + a0

R′ :=


∂ −1 0 · · · · · · 0
0 ∂ −1 0 · · · 0
...

...
...

...
...

...
0 · · · · · · 0 ∂ −1
a0 a1 · · · · · · an−1 ∂ + an


Hence, letting p = q = 1 and p′ = q′ = n, we associate
with this system the two modules M := D/(DR) and
M ′ := D1×n/(D1×nR′), isomorphic as follows

D1×p D1×p M 0

D1×q′ D1×p′ M ′ 0

.R

.Q

π

.P f

.R′

.Q′

π′

.P ′ f−



where P,Q ∈ D1×n and P ′, Q′ ∈ Dn×1 are:

P :=
(
1 0 · · · 0 0

)
Q :=

(
∂n−1 +

n−1∑
i=1

ai∂
(i−1) ∂n−2 +

n−2∑
i=2

ai∂
(i−1) · · · ∂ + an−1 1

)

P ′ :=


1
∂
...

∂n−1

 Q′ :=


0
..
.
0
1


Let L and L′ be the matrices of (2).

4.2 Reduction of L and L′

For simplicity, we assume that n = 3. We have

Z =
(
0
)

and Z′ =

(
0 0 0
−1 0 0
−∂ −1 0

)

and the matrices Z2, R2, Z
′
2 and R′2 are the zero matrices.

The expressions of XF , X
−
F ∈ D4×4 and YF , Y

−
F ∈ D8×8

come from (3) and (4).

We have sr(D) = 2, see McConnell and Robson (2001).
From (6), we may remove two lines of 0 in L and L′. We
give the details for removing the first zero lines of L and L′.
With the notations of Proposition 1, we may choose

c = u = 0 ∈ D, v =
(
0 0
)
∈ D1×2 and d =

(
0 1
)
∈ D1×2.

We get U = id8 and

pr =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 −1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1


, ι =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1

,

π′ =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 ∂ 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, ι′ =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

.

From this, we get the matrices YW and Y −W in (21). We
remove the second zero lines with the matrices YW and
Y −W of (22), where we use the following notations:

P (a, ∂) := − (∂3 + a2∂
2 + (a1 − 1)∂ + a0)

Q(a, ∂) := ∂2 + (a2 − 1)∂ + a1 − 1

R(a, ∂) := ∂5 + (2a2 − 1)∂4 + (a22 + 2a1 − a2 − 1)∂3

+ ((2a2 − 1)a1 + a0 − a2 + 1)∂2

+ (a1(a1 − 1) + a0(a2 − 1))∂ + a0(a1 − 1)

5. PROOFS OF FORMULAS (12) AND (18)

5.1 Proof of Formulas (12)

We have to show the following relations

ιL = L̃, (23)

UL = L, (24)

YFL
′ = LXF , (25)

pr′L̃′ = L′, (26)

ι′L′ = L̃′, (27)

Y −F L = L′X−F , (28)

U−L = L, (29)

prL̃ = L. (30)

The two relations (25) and (28) come from Cluzeau and
Quadrat (2011), (24) and (27) are proven by direct compu-
tations, (23) and (29) are proven by direct computations
using respectively the following two relations:

`L = 0 and U− =

idq+p′ 0 0 0

0 idp 0 −uT

0 0 id
q′
−vT

0 0 0 1

 .

In order to prove (26), we first show pr′ι′L′ = L′: from 2
and 4 of Proposition 2, im(pr′ι′ − idn) is included D`UYF
and using (24), (25) and `L = 0, `UYFL

′ and `LUXF

are both equal to 0, which proves the desired relation.
Moreover, from (27), we get pr′ι′L′ = pr′L̃′ which, with
pr′ι′L′ = L′, gives (26). We show (30) in the same manner
using (23).

5.2 Proof of Formulas (18)

We have to show the following relations

ιrL = L̃ιg , (31)

UrL = LUg , (32)

YFL
′ = LXF , (33)

pr′rL̃
′ = L′pr′g , (34)

ι′rL
′ = L̃′ι′g , (35)

Y −F L = L′X−F , (36)

U−r L = LU−g , (37)

prrL̃ = Lprg . (38)

The two relations (33) and (36) come from Cluzeau and
Quadrat (2011), (32) and (35) are proven by direct com-
putations, (37) is proven by a direct computation using
the inverse formulas for Ug and Ur which are analog to
the inverse of U given in Section 5.1.

Let us show (31). For that, we decompose ιr and ιg in 3
parts, as follows:

ι1r :=

(
id
q+p′

0 0

0 0 idl

)
, ι1g :=

(
idm 0

)
,

ι2r := Fr(enk )
T ˜̀
r

(
id
q+p′

0 0

0 0 idl

)
, ι2g := Fg(emp )T `g ,

ι3r := Fr(enk )
T en
q+p′ , ι3g := Fg(emp )T em

p+p′ ,



YW =


1 0 0 ∂3 + a2∂

2 + a1∂ + a0 ∂2 + a2∂ + a1 ∂ + a2 1
0 1 0 −1 0 0 0
0 0 1 −∂ −1 0 0

−1 −a0 (−∂2 + (1− a2)∂ − a1) −∂2 −∂ −1 0
0 1 0 0 0 0 0
0 −∂ 1 0 0 0 0

−1 −a0 −(∂2 + a2∂ + a1) 0 0 0 0

 ,

Y −W =


0 0 0 0 −(∂3 + a2∂

2 + a1∂ + a0) −(∂2 + a2∂ + a1) −1
0 0 0 0 1 0 0
0 0 0 0 ∂ 1 0
0 −1 0 0 1 0 0
0 ∂ −1 0 0 1 0
0 0 ∂ −1 0 0 1
1 a0 a1 ∂ + a2 0 0 −∂ − a2 + 1

 .

(21)

YW =


1 0 ∂3 + a2∂

2 + a1∂ + a0 (∂2 + a2∂ + a1) ∂ + a2 1
0 1 −1 0 0 0
−1 P (a, ∂) −∂ −1 0 0

Q(a, ∂) R(a, ∂) −∂2 −∂ −1 0
0 1 0 0 0 0

−1 −(∂3 + a2∂
2 + a1∂ + a0) 0 0 0 0

 ,

Y −W =


0 0 0 0 −(∂3 + a2∂

2 + a1∂ + a0) −1
0 0 0 0 1 0
0 −1 0 0 1 0
0 ∂ −1 0 0 1

0 0 ∂ −1 0 −(∂2 + a2∂ + a1 − 1)

1 a0 a1 ∂ + a2 0 (∂ + a2 − 1)(∂2 + a2∂ + a1 − 1)

 .

(22)

so that we have ιr = ι1r − ι2r + ι3r and ιg = ι1g − ι2g + ι3g. By

computing the matrix products, we show that ι1rL = L̃ι1g,

that the first m columns of ι2rL and L̃ι2g are both equal to
0 and their m-th column are both equal to R.p

−
(
P ′ip + uiP

′
p′p

)
1≤i≤p′

0
0

 .

Finally, by computing the matrix products, we show that
ι3rL and L̃ι3g are respectively equal to R.p(

idp′ ip′ − P
′Pip′

)
1≤i≤p′

0
0

(c (ZR)p. d 0
)

and

 R.p(
idp′ ip′ − P

′Pip′
)
1≤i≤p′

0
0

(c (idp − PP ′)p. d 0
)

so that they are equal from the relation idp = PP ′+ZR,
which proves (31).

Let us show (34). By using Relation (35), and 1 of

Proposition 5, we have pr′rι
′
rL
′pr′g = pr′rL̃

′. We proceed as
in the proof of (26): we only show that im(pr′rι

′
r− idn)L′ is

included in ker
(
pr′g
)
. We have im(pr′rι

′
r−idn) ⊆ D`rUrYF ,

`rUrYFL
′ = `rLUgXF and `rL = `g, so that `rUrYFL

′ is
equal ro `gUgXF , and it belongs to ker(pr′g). With the
same arguments, we show (34).
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