Marion Pilté

Frédéric Silvere Bonnabel

Silvère Bonnabel

Frédéric Livernet

A novel nonlinear least squares approach to highly maneuvering target tracking

Keywords: Mono-Target tracking, Radar, Nonlinear smoothing, Nonlinear State Estimation, Probabilistic Approach

come

A novel nonlinear least squares approach to highly maneuvering target tracking

Introduction

Considerable research has been devoted to the optimal estimation problem in the field of mono-target tracking. Applications span civilian airborne and marine surveillance and military tracking of highly maneuvering missiles. Although the formal equations of the optimal filter are easy to derive and have been known for decades, its implementation in real time is still a challenge. There are essentially two sources of difficulty. First the use of models to accurately describe the target's motion which are nonlinear, and then the use of multi-hypotheses regarding the unknown possible target's behavior that results in excessive combinatorics. Particle filters (PF), see e.g., [START_REF] Doucet | Rao-blackwellised particle filtering for dynamic bayesian networks[END_REF], have been a popular attempt over the past two decades to handle those two sources of difficulty.

Based on the idea that motion of manned and unmanned vehicles consist of a succession of smooth trajectories, with potentially abrupt changes from one type of trajectory (such as straight line) to the next (such as coordinated turn), S. Godsill and co-authors have advocated over the past decade the use of nonlinear piecewise deterministic Markov models (PDMM) to model the target's behavior, see e.g., [START_REF] Godsill | Variable rate particle filters for tracking applications[END_REF][START_REF] Bunch | Dynamical models for tracking with the variable rate particle filter[END_REF][START_REF] Bunch | Particle smoothing algorithms for variable rate models[END_REF]. Between jumps, trajectories are modeled by ordinary differential equations driven by constant inputs. This kind of trajectories have long been a key model in tracking: see for example the constant velocity model in [START_REF] Bar-Shalom | Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software[END_REF], the coordinated turn model [START_REF] Morelande | Target tracking through a coordinated turn[END_REF], and our recent work [START_REF] Pilté | An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2d[END_REF]. Adapting PF techniques to the continuous-time setting of PDMM, S. Godsill and co-authors proposed the variable rate particle filter (VRPF). However, such filters are computationally demanding as many particles are needed to fully cover the space of possible jumps and parameters.

In this paper we consider PDMM that are akin to those considered in the VRPF literature. Instead of using a PF approach, we opt for a smoothing optimization-based approach. The use of such techniques for filtering and tracking have long been known, but only recent advances in computers have allowed them to be fully implementable. In robotics, and especially in the vast literature related to the problem of simultaneous localization and mapping (SLAM), optimization-based smoothing approaches, see [START_REF] Thrun | The graph slam algorithm with applications to large-scale mapping of urban structures[END_REF][START_REF] Dellaert | Square root sam: Simultaneous localization and mapping via square root information smoothing[END_REF][START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF][START_REF] Kaess | isam2: Incremental smoothing and mapping using the bayes tree[END_REF], have virtually wholly replaced the once extremely popular PF-based approach [START_REF] Montemerlo | Fastslam: A factored solution to the simultaneous localization and mapping problem[END_REF]. Those methods currently enjoy much popularity because of the successive re-linearizations they use until convergence, that mitigate the problem or linearization errors in nonlinear filtering.

In the present paper, inspiring on the one hand from the VRPD literature for target motion modeling, and on the other from recent smoothing techniques from the robotics literature, we use smoothers to track the state of a PDMM driven by unknown constant inputs, and we use a probabilistic approach for jump detection. In the stationary phase the state is very well tracked as our deterministic-based model provides smooth trajectories that are not fluctuating due to the assumption of process noise, and in turn the accuracy of the state estimates helps to rapidly detect jumps. It seems to us our approach to estimate the target's state and possibly predict the motion of the target in the future is very similar to the way the eye of a human expert would proceed. The proposed estimator is shown to favorably compare to a state of the art IMM for meaningful target motions, especially in terms of estimation of the target's velocity.

Smoothing as an estimation procedure for target tracking

Classical smoothing approach

Consider a target that one must track. Assume a discrete time model and let the target's state at time i be denoted X i ∈ R p . The state typically consists of the position and velocity (and some additional quantities) of the target. Consider a nonlinear evolution model for the target of the form (1), with noisy measurements of the form (2).

X i = f i (X i-1) + w i , (1)
y i = h(X i) + v i (2)
The goal of any filter, such as extended Kalman filter (EKF) or interacting multiple models (IMM) filter, is to compute the distribution p(X n | y 0:n) of present state X n conditionally on past and present measurements y 0:n := {y 1 , . . . , y n }.

In contrast, a smoother (sometimes referred to as Kalman smoothing) computes the distribution p(X 0:n | y 0:n) of entire past trajectory X 0:n := {X 0 , . . . , X n }, conditionally on past measurements y 0:n := {y 1 , . . . , y n }. Both a filter and a smoother allow us to find the best estimate of the state, that is, the most likely state X n in the light of the information y 0:n we have collected so far, which is referred to as the maximum a posteriori (MAP) estimate. The MAP estimate of the entire past trajectory X 0:n is thus defined as argmax X 0 ,...,X n P(X 0:n |y 0:n), i.e.,

X * 0:n = argmin X 0:n -log P(X 0:n |y 0:n) (3)
Besides, under standard assumptions of independence of noises (w i , v i) i∈N we get

P(X 0:n |y 0:n) = P(X 0) n ∏ i=1 P(X i |X i-1) n ∏ k=1 P(y k |X k).
In this equation P(X 0) is a prior knowledge that we have on the initial state. Under the assumption of Gaussian noises w i N (0, Q i) and v i N (0, N i) to represent respectively model and measurements uncertainties, and Gaussian prior X 0 ∼ N (X0 , P 0) we have from (1) that P(

X i |X i-1) = C exp || f i (X i-1) -X i || 2 Q i and from (2), we have P(y k |X k) = C exp ||h(X t k) -y k || 2
N k . Thus we end up with the following nonlinear least squares problem

X * 0:n = argmin X 0:n ||X 0 -X0 || 2 P 0 + n ∑ i=1 || f i (X i-1) -X i || 2 Q i + n ∑ k=1 ||h(X k) -y k || 2 N k (4)
where the norm is the Mahalanobis distance defined by ||e|| Σ = e T Σ -1 e for Σ a covariance matrix. If the dynamical model f i and measurement function h are nonlinear, and a linearization point is not available, one must resort to non-linear optimisation methods such as Gauss-Newton or Levenberg-Marquardt algorithm. The algorithm is based on successive linear approximations to [START_REF] Bunch | Particle smoothing algorithms for variable rate models[END_REF], that iteratively improve the estimate X 0:n . Indeed, at each iteration, by denoting X0:n = { X0 , • • • , Xn } the current estimate, the problem may be linearized around X0:n as follows. We let:

F i = ∂ f i (X) ∂ X Xi-1 , H k = ∂ h(X) ∂ X Xk
Letting a i = Xif i (Xi-1), c k = y kh(Xk), and p 0 = X0 -X0 , the optimisation problem can be approximated as

δ X * = argmin δ X ||p 0 || 2 P 0 + n ∑ i=1 ||F i δ X i-1 -δ X i -a i || 2 Q i + n ∑ k=1 ||H k δ X k -c k || 2 N k (5)
yielding at each iteration a linear least squares problem to solve. Noting that we can re-write norms as follows

||e|| 2 Σ = e T Σ -1 e = (Σ -T /2 e) T (Σ -T /2 e) = ||Σ -T /2 e|| 2 ,
stacking the matrices F i , H k in a large matrix A and the vectors p 0 , a i , c k in a large vector b, (5) may be re-written as

δ X * = argmin δ X ||Aδ X -b|| 2 (6)
The solution of this linear least squares problem is then notoriously obtained by equating the gradient of ||Aδ X -b|| 2 to 0, which yields

δ X * = (A T A) -1 A T b. (7)
A is a large but sparse matrix, and linear algebra methods can be used to compute efficiently this solution: as explained in e.g., [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF], the Cholesky decomposition or the QR matrix factorization allow us to efficiently compute (A T A) -1 . The obtained solution δ X * of (7) depends on a particular realization of random noises w i , v i , and varies due to fluctuations in the data y i which are stacked in vector b. Its variability over a large number of noise realizations is encoded in the covariance matrix Cov(δ X * that can be shown to be equal to (A T A) -1 . As already mentioned, the goal of a filter is to return the state that maximizes the posterior distribution P(X n |y 0:n), whereas a smoother returns the argmax of P(X 0:n |y 0:n). As time passes, n grows boundlessly and re-estimating the entire trajectory at each n may become intractable. Typically, the matrix A that appears in (6) at each iteration is of dimension O(n 2), yielding a O(n 3) complexity to evaluate [START_REF] Pilté | An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2d[END_REF]. As a result there have been various attempts to compute incrementally the MAP estimate for the smoothing problem. Notably, in robotics, the well-studied problem of SLAM has a structure that lends itself to such incremental methods, as proved in [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF].

Another popular solution is to use a fixed-lag smoother, which aims to approximate P(X n-k:n |y 0:n) for some fixed lag k ∈ N. Such smoothers are obtained by marginalizing the old states X 0:n-k-1 out, see e.g. [START_REF] Dong-Si | Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis[END_REF], see also [START_REF] Sibley | Sliding window filter with application to planetary landing[END_REF].

Restriction to a deterministic evolution model over a sliding window as a tuning strategy

Actual motion of objects such as aircrafts and marine vehicles typically consist of a succession of distinct maneuvers commanded by an operator. As a result, the trajectories of those objects look like a succession of smooth trajectories that are well described by continuous time ordinary differential equations (ODE). In Section 3.1, we will take into account the possibility of abrupt changes in the trajectory, but for now let us consider only the phase in between maneuvers where the trajectory is governed by deterministic equations. Prosaically, this means that the covariance matrix Q i of process noise w i in (1) is null. Thus (4) becomes: minimize

X 0:n ||X 0 -X0 || 2 P 0 + n ∑ k=1 ||h(X k) -y k || 2 N k subject to X i = f i (X i-1), i = 1, . . . , n. (8)
Of course, such a model is too rigid in practice, as there are always fluctuations in the target behavior with respect to a model specified in advance. A boat or a plane may deviate slightly from its planned trajectory due to perturbations, or to slight motion adaptations from the pilot. This is why in the target tracking literature, the covariance Q i of noise w i is always positive, and serves as a tuning parameter.

Let us temporarily assume we are dealing with problem (8), though. To simplify the exposure, assume f i , h i are linear and let F i , H i denote the corresponding matrices. This means

X k = F k • • • F 1 X 0 , and thus h(X k) = H k F k • • • F 1 X 0 . As a result, solving problem (8) is equivalent to minimizing ||X 0 -X0 || 2 P 0 + ∑ n k=1 ||H k F k • • • F 1 X 0 -y k || 2 N k with respect to X 0 . Let H0 = Id, H1 = H 1 F 1 , • • • Hk = H k F k • • • F 1 .
We see by applying the results of Section 2.1 that Cov(X * 0) = (∑ n i=0

HT

i Hi) -1 , and as X * n is obtained deterministically from X * 0 it has similar covariance. As a result, when there is 3 no process noise, the confidence about the current state X * n obtained by solving problem (8) grows as 1/n where n is the number of measurements. However, as the model cannot be completely accurate due to unpredictability of the target's behavior, new observations need to constantly impact the estimate for accurate tracking and it is not sensible to assume the confidence in the estimate to tend to 0 as 1/n.

On the other hand, if process noise is considered, the covariance of X * n obtained by solving problem (4) is lower bounded by some matrix C * that depends on the magnitude of the Q i 's. Matrix C * is known as the Cramér-Rao bound. As a result, we see there are two different routes for the practitioner to tune its estimator. Either, one can attempt to solve (4) and tune process noise Q i , leading to an asymptotic confidence C * about the estimate. Or we can consider the estimation problem with no process noise Q i = 0, leading to [START_REF] Thrun | The graph slam algorithm with applications to large-scale mapping of urban structures[END_REF] , but only on a sliding window of size k, that is, minimize

X n-k:n n ∑ j=n- k ||h(X j) -y j || 2 N j subject to X i = f i (X i-1), i = n -k + 1, . . . , n. (9)
Of course those two routes are not strictly equivalent mathematically, but they may be viewed as alternative ways to tune the estimator. The second route that consists in solving (9) at each time step n is the one we advocate in the present paper. In this case, the depth of the window k is the tuning parameter which appears as an alternative to process noise Q i : one should bear in mind the resulting uncertainty about the current state X n is of magnitude 1/ k, and this should be tuned in accordance with the fit between evolution model X i = f i (X i-1) and actual motion of the target (in the extreme case where motion of the target is exactly modeled by this deterministic approach, one may set k = n, on the other hand if the fit of the model to actual motion is approximative k should be kept at a moderate value).

In the literature devoted to systems identification [START_REF] Ljung | System identification: theory for the user[END_REF], the use of recursive least squares is pivotal. For real-time implementation, where one must track a parameter that varies (slowly) over time, it is common to use a "forgetting factor" that gives less weight to old observations. Our approach may be related to this practice, by setting a forgetting factor as 1 for the k latest observations and 0 for the preceding ones.

Smoothing applied to deterministic systems with random jumps

Considered systems and simplifying assumptions

As already explained, actual motions of objects such as aircrafts and marine vehicles typically consist of a succession of distinct maneuvers commanded by an operator. As a result, the trajectories of objects are in fact smooth and well described by continuous time ordinary differential equations (ODE) driven by constant inputs between changepoints. This was advocated in particular by S. Godsill with various co-authors who proposed the variable rate particle filter [START_REF] Godsill | Variable rate particle filters for tracking applications[END_REF][START_REF] Bunch | Dynamical models for tracking with the variable rate particle filter[END_REF][START_REF] Bunch | Particle smoothing algorithms for variable rate models[END_REF], a sequential Monte-Carlo (SMC) method, well suited to piecewise deterministic models. Following [START_REF] Godsill | Variable rate particle filters for tracking applications[END_REF], we consider the following piecewise deterministic Markov model:

d dt x t = f (x t , u K(t)) (10)
where x t ∈ R p is the continuous time target's state, K(t) ∈ N is a stochastic point process that counts the number of random jumps up to time t, and u 0 , u 1 , • • • is a sequence of random inputs that drive the ODE [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF]. Moreover, at discrete time instants t 0 ,t 1 , • • • , we get (range and bearing) measurements of the form:

y n = h(x t n) + v n . (11
)
The goal is to estimate the most likely state value, that is argmax p(x t | y 0:n) for t n ≤ t < t n+1 . To simplify the estimation task, we will assume jumps can only occur at pre-specified discrete times. This may look like a harmful approximation, but we will see in Section 4 it is actually easy to modify the least squares problem to mitigate its impact on the estimation. Furthermore, to keep the notation simple we will assume jump times coincide with observation times t 1 ,t 2 , • • • . We let r k be the random variable indicating jump at time k (r k = 1 if there is a jump). K(t) is the number of jumps between times 0 and t. We also let Kn to be the number of jumps between 0 and t n . We obviously have K(t n) = Kn . Note that, Kn is a function of r 0:n . Finally, we let θ n = (r 0:n , u 0: Kn , x 0) be the parameters we seek to estimate. To recover x t we only need to integrate [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF] based on the knowledge of θ n for t < t n+1 .

Corresponding smoothing problem

For the problem described at the preceding paragraph, our goal is to find the most likely state x t at present time. As just explained, for t n ≤ t < t n+1 this amounts to finding the parameter θ n . First, note that we have log p(y

0:n | θ n) = log p(y 0:n | r 0:n , u 0: Kn , x 0) = - n ∑ k=1 ||y k -h(x t k)|| 2 N k +Cste (12)
where N k is the covariance matrix of the Gaussian measurement noise v k , and the x t k are obtained by integrating [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF].

Trying to estimate θ n by maximizing the likelihood (12) is not suitable. Indeed, the optimal solution will jump at all times to stick to at most to the observations. Obviously, we need a prior on the average time between successive maneuvers. Letting 0 < p < 1 be the probability of a jump at each time t i , we have the following prior p(Kn = j) = p({r 0:n contains j ones and nj zeros}) = P(bin(n, p

) = j) = n j p j (1 -p) n-j (13)
Let us assume as prior on the initial state x 0 ∼ N (x0 , P 0). Estimating the most likely state for the piecewise deterministic model of Section 3.1 boils down to the following optimization problem:

θ * n = (r 0:n , u 0: Kn , x 0) * = argmin r 0:n ,u 0: Kn ,x 0 -log p(r 0:n , u 0: Kn , x 0 | y 0:n) = argmin r 0:n ,u 0: Kn ,x 0 [-log p(y 0:n | r 0:n , u 0: Kn , x 0) -log p(u 0: Kn | r 0:n) -log p(r 0:n) -log p(x 0)] = argmin r 0:n ,u 0: Kn ,x 0 n ∑ k=1 ||y k -h(x t k)|| 2 N k -log[n Kn p Kn (1 -p) n-Kn] -||x 0 -x0 || 2 P 0 (14
)
with the x t k obtained by integrating [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF] with parameters r 0:n , u 0: Kn ,x 0 . The justification for removing log p(u 0: Kn | r 0:n) from the optimization problem is that we assume a flat prior on the parameters u 0 , u 1 , • • • , as we assume at each jump may correspond to a complete shift. Of course alternative priors might be considered depending on the application.

Proposed algorithm

The optimization problem (14) is not tractable, owing to the combinatorics in the jump times. Unfortunately, this remains true even if the optimization is restricted to a sliding window along the lines of Section 2.2. Over a window of size k, there are 2 k possibilities for the discrete variable r n-k:n , each leading to a continuous optimization problem with respect to u Kn-k : Kn . To efficiently approximate the optimization problem, we propose the following tractable strategy.

Setting a horizon. We first choose a size k for a sliding window for the reasons explained in Section 2.2, corresponding to the forgetting horizon of the smoother in the absence of jumps: even if there are no jumps this allows the state to deviate over time from deterministic model [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF] while continuing to be efficiently tracked.

Continuity assumption of x t at jumps. In our model described at Section 3.1 we made the simplifying assumptions that jumps only occurred at discrete time instants t 0 ,t 1 , • • • while they actually can occur at any time. We also said there was a way around the harmfulness of this approximation. Indeed, the "true" considered model [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF] implies continuity in x t , since ẋt is bounded. If a jump actually occurs between t n-1 and t n , for instance at time (t n-1 + t n)/2, assuming it has occurred at time t n and the trajectory is continuous may result in degraded accuracy, see Fig. 1 for a graphical illustration. However, by relaxing the continuity assumption and assuming small jumps in the state x t may also occur at jumping times, may compensate for the assumption that jumps may only occur at pre-specified instants.

Assuming a jump has occurred at time strictly between t l-1 and t l , and given that no other jump has occurred until current time n, to find the most likely state x t n we relax the continuity assumption and solve the optimization problem argmin u,x t l

[||x t l -xt l || 2 P jump + n ∑ j=l ||y j -h(x t j)|| 2 N j], (15)
where xt l is the value obtained at instant index l by integrating (10) until time t l based on the former value of u (i.e. value obtained by continuity), and where P jump is a covariance matrix that must be tuned as representative of the typical squared distance x t may achieve between successive observations. Figure 1: Trajectory with velocity u jumping strictly between the observations at times t n-1 and t n . Under the assumption that jump may only occur at t n and the trajectory x t is continuous we obtain the dotted line which is a poor trajectory estimate. However if we assume u jumps at time t n but we relax the assumption that the trajectory x t must be continuous and allow it to jump -see (15) -we obtain a much better estimate (dashed line).

Jump detection. Assume n denotes current time step, and the last jump occurred at time l > n -k. This means r l:n contains one 1 followed by zeros. Using [START_REF] Montemerlo | Fastslam: A factored solution to the simultaneous localization and mapping problem[END_REF] we may solve the problem

argmin u,x t l -log p(u, x t l | y l:n , r l:n) = argmin u,x t l [||x t l -xt l || 2 P jump + n ∑ k=l ||y k -h(x t k)|| 2 N k] (16)
where the x t k are obtained by integrating ẋt = f (x t , u) with initial condition x t l , and xt l corresponds to the estimate obtained by continuity with the model before jump. As explained in Section 2.1, it is classically possible to assess a covariance matrix P to the couple (u, x t l). As in the absence of jumps x t n = φ (u, x t l) is a deterministic function of the parameters (u, x t l), with φ the flow of (10) , covariance matrix of x t n is P n = Dφ PDφ T where Dφ denotes the differential of φ at the optimal values (u * , x * t l). This allows us to compute the associated Mahalanobis distance

∆ = (y k -h(x * t n)) T (Dh T P n Dh) -1 (y k -h(x * t n)) (17)
where Dh denotes the differential of h at x * t n . We may then apply the χ 2 -test to determine if there is a jump, i.e. as soon as ∆ goes above a certain value corresponding to a, say 95% quantile of χ 2 , a potential jump is suspected.

Proposed strategy. We approximate the solution to the true optimization problem (14) by first restricting it to a sliding window of horizon k. Then, we assume jumps are scarce (that is, jump probability p is small) and we let T n ∈ N denote the time index at which the last jump before current (observation) time t n occurred. At each jump time T n , the window is re-initialized, since u jumps to an unknown arbitrary value. As a result, at time t n , current optimal parameter u * Kn is obtained as a solution to problem [START_REF] Blom | The interacting multiple model algorithm for systems with markovian switching coefficients[END_REF] with l = max(n -k, T n). Assume according to the χ 2 test a possible jump is detected at time index n, as (17) goes above some predefined quantile q. As this does not mean a jump has necessarily occurred, we initialize a second smoother based on jump at time n. The first smoother assuming "no jump" has occurred at n solves:

argmin u,x t l ||x t l -xt l || 2 P jump + n+k ∑ j=l ||y j -h(x t j)|| 2 N j ,
where the x t j 's are obtained by integrating ẋt = f (x t , u). Recalling (14) the associated posterior log likelihood writes:

L no jump (n + k) = log p(y l:n+k | u * , x * t l) + (n + k -l) log(1 -p) + log p(x * t l) (18)
On the other hand, the candidate "jumping" smoother which assumes one jump occurred at time index n solves:

argmin u,x tn ||x t n -xt n || 2 P jump + n+k ∑ j=n ||y j -h(x t j)|| 2 N j , (19)
where x t j are again obtained by integrating ẋt = f (x t , u). The associated posterior log likelihood writes:

L jump (n + k) = log p(y n:n+k | u * , x * t n) + log kp(1 -p) k-1 + log p(x * t n). (20
)
We clearly see the benefit of having a prior on jumps: as the size of window for the jumping smoother is smaller, the residual of the least squares will be smaller, as it is easier to find a u * that fits better a lesser number of data.

But its likelihood will be penalized as soon as kp < 1p, and in our strategy p must be assumed small. Thus the binomial term acts as a regularization term that will favor the non jumping smoother, and prevent the estimation from constantly jumping, which may end up in meaningless estimates. As p is assumed very small, the likelihood of two or more jumps is considered as negligible. After a possible jump detection at n, we let k increase until either L jump (n + k) > L no jump (n + k) and then jump at n is validated, leading to T n = T n+k = n, or until k = k in which case both smoothers coincide and the jumping smoother is suppressed. This strategy is illustrated by Figure 2. Note that there must be a minimum time elapsed after the candidate jump at n for comparing the smoothers. We will denote it by index k. Indeed, the problem (19) might be solved with 0 residual as long as dim(u) > kdim(y). Jump penalization may not suffice to have L jump (n + k) > L jump (n + k) and the jumping smoother is artificially favored.

Algorithm. The pseudo code is displayed in Algorithm 1. During the phases were the jumping and the non-jumping smoothers are running in parallel, the user can choose whether to output the estimation of one or the other smoother.

Algorithm 1 Smoothing algorithm with jumps

Input: Initial prior (x0 , P 0); Observations y 1 , y 2 , • • • , 1: Set P jump = P 0 , T 0 = 0, n = 0 2: Solve (u * , x * t l) = argmin u,x t l [||x t l -xt l || 2 P jump + ∑ n j=l ||y j -h(x t j)|| 2
N j] with l = max(0, n -k) and where xt l is either x0 or obtained by continuity through model [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF] if l > 0. 3: while ∆ 2 < q with ∆ defined by (17) and q the user specified quantile for the χ 2 -test do

4: Set T n = T n-1 5: n = n + 1 6:
if ∆ 2 > q, a candidate jump is detected at time index n then 7:

for j = n : n + k do 8:
Compute estimations for a smoother with jump and with no jump if for some j we have L jump (j) > L no jump (j) then 11:

Set T j = n and select the jumping smoother by selecting

(u * , x * t l) = argmin u,x tn [||x t n -xt n || 2 P jump +∑ n j=n ||y j - h(x t j)|| 2 N j]
where xt n is obtained by continuity through model [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF] with previous optimal u * 12:

end if

13:

Set n = j 14:

end if 15: end while Output: x t is obtained for t l ≤ t < t n+1 with l = min(T n , n -k) by integrating [START_REF] Kaess | isam: Incremental smoothing and mapping[END_REF] with parameters (u * , x * t l).

Application to a simple 2D target model

A simple and meaningful deterministic model for a target in 2D consists of a succession of straight lines and arcs of a circle (at constant speed). In other words, this is a piecewise constant speed and curvature assumption. This also coincides with the Frenet-Serret model we introduced in [START_REF] Pilté | An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2d[END_REF], with noise turned off. The model is as follows:

d dt θ t = ω t , d dt x t = u t cos θ t sin θ t , d dt ω t = 0, d dt u t = 0 (21)
where x t ∈ R 2 is the position of the target, θ t ∈ S 1 denotes the orientation of the velocity vector, u t its norm, and ω t := d dt θ t is related to the curvature of the trajectory. The observations are supposed to be of the form y n = x t n + v n with v n a Gaussian noise. Here again, we assume the parameters u t , ω t to be piecewise constant, and we assume jumping times coincide with observation times.

Solving the smoothing problem without jumps

Let us first consider the problem without jumps, to explain how the corresponding optimization problem is solved. It is convenient to discretize the problem as exact discretization is possible. Consider indeed the discrete-time state (22). The state can be expressed as (23), and

y k = h(X k) + v k where h(X k) = x t k . X k = θ t k x t k ω t k u t k T (22) x n = x 0 + u 0 ∆t n-1 ∑ k=0 cos(θ 0 + kω 0 ∆t) sin(ω 0 ∆t) ω 0 -sin(θ 0 + kω 0 ∆t) 1-cos(ω 0 ∆t) ω 0 sin(θ 0 + kω 0 ∆t) sin(ω 0 ∆t) ω 0 + cos(θ 0 + kω 0 ∆t) 1-cos(ω 0 ∆t) ω 0 (23) The corresponding least squares problem is ||X 0 -X0 || 2 P 0 +∑ N k=0 ||y k -h(X k)|| 2 N
, and is amenable to a problem involving only X 0 through exact discretization (23). Then, we can solve the problem through successive linear approximations as explained in Section 2.1. Calculations are elementary but all the developments take much space. Due to space limitations they are not reproduced herein.

Accounting for jumps

For the 2D Frenet-Serret target model, with Cartesian observations, Algorithm 1 may be directly applied. In the present application, the piecewise constant (jumping) parameters are ω and u, the angular velocity and the norm of the velocity. An example is provided in Figure 3. The trajectory presented has been created with a 2D Frenet-Serret target model, with random jumps for the angular velocity ω and the norm of the velocity u. The first jump, when the ruen occurs is shown on figure 4. The algorithm applied for the estimation is Algorithm 1, with the non-linear Frenet-Serret model (21).

Comparison with state of the art IMM

In this section, we compare our smoothing Algorithm 1 with the IMM algorithm. The IMM was introduced in [START_REF] Blom | The interacting multiple model algorithm for systems with markovian switching coefficients[END_REF] for systems with Markovian switching. Owing to its computational efficiency, its versatility, and its accuracy in terms of tracking performances, it has become prevalent in the field, where it is considered as the (industrial) state of the art filter for mono-target tracking. Moreover, good performances on the type of problems we consider in Section 3.1 may be anticipated, as the IMM filter is inherently based upon randomly switching models.

Results

We compare an IMM with three models (constant velocity, constant turn and constant acceleration) with our smoothing Algorithm 1. The smoothing algorithm is tuned as follow: the sliding window horizon is taken to be the entire trajectories, and we tune the number of observations we need to wait after a candidate jump to accept or reject as k = 5. The jump probability is tuned very low: the average jump probability by unit step p is tuned such that the average number of jumps over the whole trajectory is 0.02, whereas the actual number of jumps in the trajectory is around 2 . The transition probability matrix for the IMM is Figure 4: Zoom on the first jump, between a straight line and a turn. The estimation of the velocity adapts smoothly to this turn.

Monte-Carlo simulations results

We provide RMSE values computed for a set of 100 randomly generated trajectories with random jumps in heading θ , norm of velocity u, and angular velocity ω. Results are displayed in table 1. Smoothing "real-time" is an implementation of Algorithm 1, whereas smoothing "smoothed" returns the trajectory estimated by the smoother at the end of the experiment. The difference is that if a candidate jump at time n is actually validated at time n + k, the real-time smoother estimates the state with the "no-jump" smoother between n and n + k (while expecting the jump to be validated) whereas the smoothed one provides the estimates of the jumping smoother during transition. As a result our smoothed estimates may be viewed as nearly optimal.

For the comparison to be fair, we must compare the real-time smoother to the IMM. We see our smoothing based estimator outperforms the IMM in terms of velocity estimation (norm and orientation of velocity vector). However, for the position precision, we observe that the estimations provided in real time of the smoothing algorithm are a less precise than the ones of the IMM. Indeed, the IMM has a quite large process noise, so the position tends to stick more to the observations, whereas the smoothing position estimation can deviate a little. The IMM is tuned so that the convergence after the jumps is fairly fast. This implies high process noise, so it introduces less accuracy (for the velocity especially) during constant motions. Moreover, the transition probabilities of the IMM have also to be tuned. Note that, velocity estimation may be considered as more important that position, since modern radars measure very accurately the position. However, velocity is not measured and an accurate estimate may be pivotal for e.g., beam repointing during active tracking.

Parameter

Smothing

Results for a challenging trajectory

We also run the filters on a trajectory generated as follows: first, a constant velocity linear motion, then an abrupt 90 degrees turn that occurs between two observations, followed by another straight line motion, and a slow turn, containing several observations. Results are displayed in Figure 5. There again, we see our smoothing approach is better suited to this type of trajectories than an IMM, especially after a jump in the trajectory. The error values averaged over the entire trajectory are collected in Table 2. Note that, this kind of challenging trajectory is used by the French Department of Defense (DGA) as a key trajectory to benchmark tracking algorithms.

Parameter

Smothing: smoothed Smoothing: real time IMM

Discussion about IMM

During model changes, the sampling of the observations (that might be over one second, for rotating antenna radars) is a source of erroneous estimates. Indeed, during these transition phases, there exist an infinite number of likely solutions, when the exact time of the transition is not known. During these transition phases, recursive Kalman filters estimate a unique solution, which has a high probability to be erroneous. To overcome this problem, and avoid the divergence of the Kalman filters during transitions, multiple models filters (IMM) are commonly used. A wellknown caveat to practitioners of IMM is that, at least one of the models must be tuned with a high process noise 5a), for the smoothing algorithm, with the results output in real time (fig. 5b), and for the smoothing algorithm with the final result (fig. 5b). The results are more precise for the smoothing algorithm, even when considering the real time output, and not the final smoothed estimation. The smoothing algorithm is able to manage the jumps, and to be accurate during straight lines, whereas the IMM algorithm, while managing the jumps has troubles during straight lines, because of the high process noise.

(and usually a constant acceleration model), to ensure at least one of the filters in the IMM never diverges. Engineers sometimes compare it to a "garbage collector" model, which saves the day when none of the other models is properly fitting the measurements. The problem is that this model generates uncertainty on the estimate and usually delays the convergence of the filter after a transition during phases with constant kinematic model.

The jumping smoother with the Frenet-Serret model allows to optimize these transition phases. The conception of the algorithm is designed to be optimal during constant input phases, and to handle jumps gracefully. We see indeed the smoothing algorithm with jumps works very well in the presence of very abrupt jumps.

Discussion about tuning

Another advantage of the smoothing algorithm proposed in this chapter for practitioners is that there are very few parameters to tune, a feature in sharp contrast with other methods that involve process noise covariance matrices. The three scalar parameters to tune are the number of observations we wait after a possible jump to accept the jump or to reject it, called k in Algorithm 1, the size of the sliding window k and the probability p of a jump, which is used in [START_REF] Dong-Si | Motion tracking with fixed-lag smoothing: Algorithm and consistency analysis[END_REF] to compare the smoother that has just jumped with the one that has not jumped. Moreover, our experience is that the filter is robust to small variations in the parameters. In contrast, the IMM has to be tuned carefully, and must match the amplitude of the jumps. Indeed, if the process noise is too low, then the filter cannot accommodate the jumps, whereas if it is too high, the accuracy elsewhere is degraded.

Conclusion

In this paper, a novel estimation method has been applied to the mono-traget tracking problem, using nonlinear least squares and a target dynamic model based on piecewise deterministic Markov models. As no process noise is assumed during the non-jumping phases, estimation is quite smooth and accurate in the absence of jumps (stationary phases), and allows us to accurately detect jumps in the trajectory (transition phases). Some types of targets, such as modern missiles, may exhibit very abrupt changes in heading between two observations (while changes in the linear velocity/acceleration are necessarily much more limited). Our estimation algorithm should prove especially useful for this type of targets, as illustrated by the displayed comparisons to the IMM.

This smoothing algorithm has only been derived for a 2D target model, in a vector space. Perspectives include extension to 3D, using the general Lie group setting introduced in [START_REF] Pilté | An innovative nonlinear filter for radar kinematic estimation of maneuvering targets in 2d[END_REF].

Figure 2 :

 2 Figure 2: Smoothing with jumps and underlying non-jumping smoother.

Figure 3 :

 3 Figure 3: Example of position and velocity estimates using our approach. The real trajectory has two jumps. The smoothing algorithm detects the two jumps.

Figure 5 :

 5 Figure 5: Velocity vector along the trajectory for the IMM (fig.5a), for the smoothing algorithm, with the results output in real time (fig.5b), and for the smoothing algorithm with the final result (fig.5b). The results are more precise for the smoothing algorithm, even when considering the real time output, and not the final smoothed estimation. The smoothing algorithm is able to manage the jumps, and to be accurate during straight lines, whereas the IMM algorithm, while managing the jumps has troubles during straight lines, because of the high process noise.

Table 1 :

 1 : smoothed Smoothing: real time IMM RMSE for the smoothing algorithm and the IMM on trajectories simulated with 100 Monte-Carlo simulations of random jumps of heading, angular velocity and norm of velocity.

	Position (m)	40	60	43
	Norm of velocity (m/s)	15	32	75
	Orientation (rad)	0.12	0.24	0.26

Table 2 :

 2 RMSE for the smoothing algorithm and the IMM for the trajectory of Figure5.

	Position (m)	33	49	46
	Norm of velocity (m/s)	13	35	81
	Orientation (rad)	0.18	0.45	0.67