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Quantifying Rooftop Solar Photovoltaic Potential for Regional Renewable Energy Policy 
 L.K. Wiginton, H. T. Nguyen,  J.M. Pearce

Abstract
Solar photovoltaic (PV) technology has matured to become a technically viable large-
scale source of sustainable energy. Understanding the rooftop PV potential is critical for 
utility planning, accommodating grid capacity, deploying financing schemes and 
formulating future adaptive energy policies.  This paper demonstrates techniques to 
merge the capabilities of geographic information systems and object-specific image 
recognition to determine the available rooftop area for PV deployment in an example 
large-scale region in south eastern Ontario.  A five-step procedure has been developed for 
estimating total rooftop PV potential which involves geographical division of the region; 
sampling using the Feature Analyst extraction software; extrapolation using roof area-
population relationships; reduction for shading, other uses and orientation; and 
conversion to power and energy outputs.  Limitations faced in terms of the capabilities of 
the software and determining the appropriate fraction of roof area available are discussed. 
Because this aspect of the analysis uses an integral approach, PV potential will not be 
georeferenced, but rather presented as an agglomerate value for use in regional policy 
making. A relationship across the region was found between total roof area and 
population of 70.0 m2/capita ± 6.2%.   With appropriate roof tops covered with 
commercial solar cells, the potential PV peak power output from the region considered is 
5.74 GW (157% of the region’s peak power demands) and the potential annual energy 
production is 6909 GWh (5% of Ontario’s total annual demand). This suggests that 30% 
of Ontario’s energy demand can be met with province-wide rooftop PV deployment. This 
new understanding of roof area distribution and potential PV outputs will guide energy 
policy formulation in Ontario and will inform future research in solar PV deployment and 
its geographical potential.  

Keywords: GIS; roof area; Feature Analyst; renewable energy; solar photovoltaic; 
sustainable future 

1. Introduction 

Global climate destabilization as a result of the anthropogenic emission of green house 
gases (GHGs) is one of today’s most urgent issues (IPCC, 2007; Jacobson, 2009; Sims, et 
al., 2007; UN, 1992).  Being that more than half of anthropogenic GHG emissions 
comprise carbon dioxide from fossil fuel combustion (IPCC, 2007), the mitigation of 
climate change predominantly concerns our energy use.  Renewable energy technologies 
are recognized as a vital part of energy use reform (Jacobson, 2009; Neuhoff, 2005; 
Pearce, 2002; Sanden, 2004).

In particular, the direct conversion of sunlight into electricity by solar photovoltaic (PV) 
technology possesses great untapped potential and represents a technically viable and 
sustainable solution to energy demands (Neuhoff, 2005; Pearce, 2002).  The use of PV 
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power is still dwarfed, however, by conventional (largely fossil fuel-based) energy 
production methods.  In fact, despite staggering growth rates of 110% in the last year 
(Solarbuzz, 2009), PV accounts for less than 1% of the global energy supply (IEA, 
2008a).  Resources to deploy solar PV are not the limiting factor: PV remains an “infant 
technology” primarily because of its prohibitively high levelized cost of electricity and 
lack of market experience, resulting in a low rate of uptake in absolute terms (Neuhoff, 
2005; Pearce, 2008; Sanden, 2004).  To improve the rate of PV deployment, governments 
throughout the world have introduced incentives such as Ontario’s pending feed in tariff 
(FIT). The Ontario FIT is predicted to increase the uptake of PV across the province; in 
particular, it will encourage rooftop PV deployment as a result of its sliding-scale pricing 
structure (OPA, 2009).  Yet, the maximum energy potential if PV is deployed on every 
appropriate rooftop in the region remains unknown because data concerning roof area in 
most regions simply does not exist.  Understanding the rooftop PV potential is critical for 
utility planning, accommodating grid capacity, deploying financing schemes and 
formulating future adaptive policies.

In order to overcome these challenges, this paper will merge geographic sampling with 
object-specific image recognition to determine the available rooftop area for PV 
deployment in a large-scale region in south eastern Ontario, referred to as the 
“Renewable Energy Region (RER)” (Mabee and Carpenter, 2009). It will apply the 
Visual Learning Systems’ ArcGIS extension, Feature Analyst, to produce advanced 
feature classification algorithms for extracting rooftop features from batches of high-
resolution digital orthophotos.  Limitations of the product for this application will be 
discussed.  From this rooftop extraction on a representative geographical sample of the 
region, the relationship between population and roof area will be explored and 
extrapolated to the entire region.  Relating roof area to population will be shown to be 
highly important, not only for understanding the rooftop PV potential, but also with 
regards to other applied urban sustainability initiatives such as solar thermal heating, 
green roofs and stormwater runoff management.  

From total roof area, an estimate of rooftop PV potential will be produced by considering 
factors such as shading, other uses, and orientation of rooftops, PV panel efficiencies and 
average solar insolation in the region.  Because this aspect of the analysis uses an integral 
approach, PV potential will not be georeferenced, but rather presented as an agglomerate 
value for use in regional policy making.  Power and energy outputs will be compared to 
provincial and regional demands.  These important and previously unknown figures can 
be used to direct government, banking and utility-related policy in Ontario immediately 
and in the future.  

The focus of this paper is on the development of an approximation of total roof area.  A 
separate simulation for determining PV potential from total roof area was outside the 
scope of this project as it is highly location dependent, thus, methods were taken from the 
literature.  Future research can expand upon these aspects of this paper’s results.  
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2. Background

2.1 Related Work

Several authors have applied GIS techniques to the topic of PV deployment and/or 
impervious urban fabric (Gadsden et al., 2003; Ghosh & Vale, 2006; Izquierdo et al., 
2008; Kraines et al., 2003; Kraines et al., 2001; Rylatt et al., 2001).  Image recognition, 
both object-based and spectrally-based has been used as a means of studying urban fabric 
and determining roof area (Akbari et al., 2003; Guindon et al., 2004; Ratti & Richens, 
2009; Richens, 1997; Taubenbock et al., 2008).  

Unfortunately, this past research is not directly applicable to determining the rooftop PV 
potential in Ontario for one of the following reasons: (1) the technique was applied a 
single building, neighbourhood or city, not a large-scale region (Gadsden et al, 2003; 
Ghosh & Vale, 2006; Rylatt et al., 2001); (2) the goal is to classify land use designations 
rather than extract roof area (Akbari et al., 2003; Guindon et al., 2004) or (3) the input 
data is different from that which exists for Ontario (Aramaki et al., 2001; Grosso, 1998; 
Izquierdo et al., 2008; Kraines et al., 2003; Kraines et al., 2001; Ratti & Richens, 1999; 
Richens, 1997).  

In particular, Feature Analyst (FA) has been used in the assessment of buildings and/or 
land use.  Psaltis and Ioannidis (2008) and Ioannidis et al. (2009) use FA in detecting 
building change in Greece, while Yuan (2008) detects land-use/land-cover change. 
Feature Analyst has also been used for quantifying impervious land cover for hydrology 
studies (Kunapo, 2006), tsunami vulnerability assessments (Surmaryono et al., 2008) and 
for studying trends in salamander populations (Miller, 2005). None of the work in FA to 
date, however, has studied roof area quantification for PV deployment.

Further, several authors have explored the relationship between population and roof area 
in Brazil (Ghisi, 2006), Germany/Western Europe (Lehmann & Peter, 2003), India 
(Kumar, 2004; Pillai & Banerjee, 2007), Spain (Izquierdo et al., 2008) and the United 
Kingdom (Pratt, 1999).  Guindon et al. (2004) have studied the relationship between 
building density and population density in Canada; however, they did not study roof area 
in particular.  In addition to the improvements in methodology, this paper will contribute 
to this literature by exploring population-roof area relationships in the province of 
Ontario, Canada and identifying similarities and differences to other regions.

2.2 Government Incentives for Renewable Energy

Governments have an important role to play in reducing GHG emission trends (IEA, 
2008b).  By using careful policy measures, governments have the means to increase the 
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uptake of PV, thereby spurring associated innovation and increasing economic 
competitiveness through economies of scale (Sanden, 2004; Pearce, 2008). By increasing 
reliance on distributed sources of renewable sources of energy, particularly roof-mounted 
PV, governments of any size possess the power to reduce their regions’ environmental 
impact through a reduction in GHG emissions from carbon use (Pearce, 2002; Caamaño-
Martín, 2008; Herig, 2003; IEA, 2008b).  Further, renewable energy technologies address 
regional and national security (IEA, 2008b) in that they decrease reliance on other 
regions for energy sources, particularly fossil fuels (Pimentel et al., 1994; Caamaño-
Martín, 2008), and can also provide greater reliability during times of high demand  and 
pending blackouts (Caamaño-Martín, 2008; Herig, 2003; Perez & Collins, 2004). 
Additionally, renewable energy technologies facilitate the establishment of distributed 
generation which reduces transmission and distribution costs as well as system losses 
(Caamaño-Martín et al., 2008; Pearce and Harris, 2007; Shalaby, 2008).  Finally, 
renewable energy technologies eliminate the need for the construction of new large-scale 
fossil fuel power plants and the associated economic risks that accompany these projects 
(Caamaño-Martín, 2008; Pearce and Harris, 2007; Shalaby, 2008).  Overall it can be seen 
that there are many reasons for which governments have an interest in the expansion of 
distributed generation of renewable energy such as roof-mounted PV in their regions.

2.2.1 Feed-in Tariffs

Feed-in tariffs (FITs) have proven to be the most effective government incentive program 
for renewable technologies: countries who have adopted FITs have been shown to have 
the largest growth rates in renewable energy technology deployment (Pietruszko, 2006; 
REN21, 2009; EPIA, 2008).  In fact, half of the world’s PV installations are due to FITs 
(Peters & Weis, 2008).  FITs for PV are being utilized around the globe: in early 2009, 45 
countries and 18 states/provinces/territories had FITs (REN21, 2009).  In Germany, a FIT 
program has been offered to PV operators for nearly two decades.  The tariff is altered 
throughout the years to spur innovation and effectively stimulate the market (EEG, 2007). 
The success of the FIT enabled Germany to reach its goal of having a 12.5% renewable 
energy supply three years early, in 2007 (EEG, 2007; Peters & Weis, 2008) and 
encouraged 18 other EU countries to adopt similar programs (EEG, 2007).  Another 
country to successfully pursue FITs was Spain: in 2008, Spain saw a five-fold increase in 
PV capacity from the previous year.  Germany and Spain possessed 5.4 and 3.3 GW of 
PV power capacity in 2008, representing the majority of the world’s 13 GW total 
(REN21, 2009).  Other countries/regions with FIT programs in include California, 
Ireland, Portugal, the Slovak Republic, Switzerland, Turkey, Bulgaria, Greece, France, 
Kenya, the Philippines, Poland and South Africa (REN21, 2009).

2.2.2 The Ontario FIT
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The province of Ontario, Canada has committed to phasing out the use of all coal-fired 
plants by 2014 (OPA, 2009a).  The Ontario legislature has passed the Green Energy Act 
2009 (REN21, 2009) which includes provisions for a new FIT renewable energy 
incentive program (OPA, 2009b).  Through the FIT, owners of renewable energy 
technologies will enter into a 20-year contract with the power authority whereby they will 
be paid a fixed amount per unit electricity fed to the electrical grid.  For residential PV 
applications under 10 kW in size, owners will be paid CAD$0.802 per kW (OPA, 2009b). 
The tariff prices are set on a sliding scale such that they provide a greater economic 
incentive for small scale, rooftop PV installations over large, ground-mount systems in 
order to equalize the rate of return.  The initiative is highly ambitious and is set to 
establish Ontario as “North America’s leader in renewable energy” (OPA, 2009c).  

Because of the success of FIT programs in Germany, Spain and several other countries 
(EEG, 2007; Peters & Weis, 2008; REN21, 2009), Ontario’s progressive FIT is predicted 
to increase the uptake of PV across the province; in particular, it will encourage rooftop 
PV deployment as a result of its sliding-scale pricing structure. The maximum potential if 
solar PV is deployed on every appropriate rooftop in the region, however, remains 
unknown because data concerning roof area in most regions simply does not exist. 
Understanding the rooftop solar PV potential is critical for utility planning, 
accommodating grid capacity, deploying financing schemes and formulating future 
adaptive policies. This paper uses geospatial computer-based  techniques to address the 
need to quantify the solar PV potential in Ontario with the goal of producing informed 
and effective policy.

2.3 Region of Study

The Renewable Energy Region (RER) comprises the south eastern region of the province 
of Ontario, Canada.  Seen in Figure 1, the region extends east to Ottawa (Canada’s capital 
city), north to Algonquin Provincial Park, south to Lake Ontario, and west to 
Peterborough, stopping before the Greater Toronto Area.  The RER has a total land area 
of 48 000 km2 and a total population of 1.9 million people as of the 2006 census, 
comprising 16% of Ontario’s population (StatsCan, 2009).  The region consists of 14 
census divisions and 109 census subdivisions.  The three largest cities in the region are 
Ottawa, Kingston and Peterborough, with populations of 812 000, 117 000 and 75 000 
respectively in 2006 (StatsCan, 2009).

The RER was selected to match the Ontario East Economic Development region as 
outlined by the Ontario East Economic Development Commission (OEEDC, 2006). 
Prominent industries in the region include agriculture, manufacturing, biotechnology, 
business process outsourcing, food processing, information and communications 
technology, logistics and distribution, plastics and tourism (OEEDC, 2006).  There is also 
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a growing bioenergy industry which has large support from the provincial government 
(OEEDC, 2006).

One aspect which differentiates Canada from much of the rest of the world is its relative 
abundance of open, undeveloped and sparsely populated land.  This characteristic has a 
large influence on the work and methods contained in this paper.  In the RER, the 
majority of the population is situated along what is known as the Toronto-Ottawa corridor 
which runs along the southern-most part of the region.  North of this corridor, the region 
is typified by farmland; further north still, the land becomes less agriculturally suitable 
and thus the region is largely forested.  

The determination of solar rooftop PV potential will contribute to a larger-scale research 
initiative being conducted by the Queen’s Institute of Energy and Environmental Policy 
(QIEEP) for the RER.  QIEEP is investigating the policy changes needed in order to 
render this region an overall net producer of renewable energy.  This involves research 
regarding potential for biomass, wind, hydro, ground-mounted solar PV farms, and solar 
rooftop PV power.  The region possesses abundant renewable resources and is already on 
its way to becoming a net producer of renewable energy (Mabee and Carpenter, 2009). 
There is a need to understand these different resources in order to formulate appropriate 
policy which moves south eastern Ontario toward energy sustainability.  This paper will 
provide the rooftop solar PV piece to this greater research initiative.

2.4 Available Data

The availability of high quality GIS data played the strongest role in determining the 
methodology used for this research.  Canada’s GIS data is often inconsistent across large 
regions, and due to the vast and open nature of the Canadian landscape and the 
dependence of the Canadian economy on primary resources such as forests and minerals, 
the data often focuses on coarse land classifications such as soil type or forest coverage. 
Compared to Japan or Europe (Aramaki et al., 2001; Izquierdo et al., 2008), urban land 
use classification is significantly underexploited whether by means of orthophoto 
recognition and extraction or reconstruction from LIDAR/ GoogleEarth.  

Census data from Statistics Canada was utilized to determine land area and population for 
each of the region’s census subdivisions.  This data is publicly available online (StatsCan, 
2009).  GIS datasets containing the related administrative boundaries were obtained 
through the Maps, Data and Government Information Centre at Queen’s University 
(Queen’s University, 2008).

In Canada, municipalities occasionally obtain roof print data for their own use.  This is 
typically done in large municipalities with adequate funding and aerial imagery.  Roof 
print shapefiles consist of the outline of all buildings from an aerial view which have 
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been digitized manually, thus giving the outputted shape files a high degree of accuracy. 
Within the RER, roof prints were available for Kingston, Peterborough, and a small 
portion of the City of Ottawa, however the majority of the Ottawa district was 
unavailable.  

Finally, a new aerial imagery project titled the Digital Raster Acquisition Project – East 
(DRAPE) has emerged for south eastern Ontario.  DRAPE is a public-private 
collaboration administered by Land Information Ontario (Groupe Alta, 2008).  When 
complete, DRAPE will be a database of 20 cm-resolution digital orthophotos for the 
region matching the RER in colour, black and white, and near infrared (MNR, 2009).  At 
the time of this research, only small segments of the DRAPE database were available.

The roof print and DRAPE data were provided by the Maps, Data and Government 
Information Centre at Queen’s University (Queen’s University, 2008) from the Ontario 
Ministry of Natural Resources in Peterborough, Ontario.  

3. Methodology 

A five-step procedure is used in this paper in the analysis of available rooftop PV 
potential, as seen in Figure 2.  This methodology demonstrates techniques and principles 
in a step-wise manner that may inform the determination of roof area available for PV in 
other initiatives.  

First, the RER is segmented into administrative boundaries so that land area, population 
and population density information can be easily obtained for smaller geographical units 
within the region.  These smaller entities are used as the sampling units for Step Two, 
where roof areas are obtained for 10 of the administrative divisions through automated 
feature extraction techniques.  Next, in Step Three, this sample information is 
extrapolated to represent the entire region, yielding an estimate of total roof area for south 
eastern Ontario.  In Step Four, the total roof area is reduced to represent available roof 
area for PV deployment.  From this, an estimate of total power and energy output is 
obtained which can be compared to the demands of Ontario and specifically of the region 
of interest.

3.1 Division into Geographical Units

In order to begin the analysis of rooftop area, it is necessary to divide the region into 
smaller geographical units.  The administrative boundary of census subdivisions (CSDs), 
which represent municipalities, Indian reserves, Indian settlements and unorganized 
territories, is selected for this purpose.  Administrative boundaries were obtained in 
vector shapefile format and were tailored to fit the RER.  A similar municipal 
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geographical unit was chosen by Izquierdo et al. (2008) in their analysis of solar rooftop 
PV potential in Spain.

The CSD is chosen because land area, population and other types of data are readily 
available for these areas from the Statistics Canada census information database.  The 
CSD is the smallest administrative division that exists continuously across the region and 
is larger than a city block (MADGIC, 2009).  There are 109 CSDs within the region of 
interest which together make up the entire region and do not overlap.  The CSDs which 
comprise the RER are seen in the inset in Figure 1.

3.2 Sampling

Ten of the 109 census subdivisions are sampled to determine the relationship between 
population and roof area.  The roof extraction procedure, which involved the use of the 
Feature Analyst image recognition program, has not been used previously for PV 
quantification.  A description of the sampling process follows.

3.2.1 Roof Print Data

As discussed previously, hand-digitized roof print data exists only for Kingston, 
Peterborough and a small segment in the downtown core of Ottawa.  For Kingston and 
Peterborough, this previously delineated area has been used to determine available roof 
area.  However, a more inventive method of information gathering must be used for the 
large remaining portion of the region.

3.2.2 Image Recognition Program and Input Data

Visual Learning Systems’ Feature Analyst (FA) is an advanced feature extraction 
program which exists as an extension to ArcGIS.  FA was chosen for its simple and easy-
to-learn user interface, behind which lie complex classification algorithms.  FA is an 
object-specific image recognition software which utilizes spectral and spatial information 
through advanced feature classification algorithms.  FA incorporates a machine learner 
function whereby the researcher “trains” the program to recognize certain features within 
the image, based on their colour, size, shape, texture and orientation.  Other important 
capabilities of FA that are critical to this research include its aggregation and smoothing 
mechanisms and its ability to classify batches of images simultaneously using 
transferable classification algorithms (VLS 2008; VLS 2007).  FA is felt to be a highly 
accurate substitute for the labourious nature of hand-digitization and the complexity of 
programming new, customized image recognition capabilities (O’Brien, 2003). 
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DRAPE orthophotos were used as the input data to FA.  Being a non-overlapping set of 1 
km² square tiles, of high resolution (20 cm) and georeferenced, they were found to be 
very compatible with FA operations.  Altogether, 2036 DRAPE photos were used.

Under the Universal Transverse Mercator (UTM) projection, the RER sits in Zones 17 
and 18N for the Northern hemisphere. The datum is North American Datum 1983 
(NAD83). The DRAPE photos, which exist in GeoTiff format, were found to align with 
the projection.  Hence, unless otherwise indicated, all input and output is conducted in 
UTM 17N and 18N NAD83.  

3.2.3 Sample Selection

Two main factors affect the selection of census subdivisions for sampling.  First, the 
DRAPE database covers only a portion of the region at the time of the writing of this 
paper.  Thus, researchers are limited to census subdivisions which fall within the DRAPE 
area.

A second factor in the selection of CSDs is the population density.  A number of 
researchers (Izquierdo et al., 2008; Lehmann & Peter, 2003; Naroll, 1962; Pratt, 1999; 
Taubenbock et al., 2008) have identified a relationship between population density and 
roof area.  Thus, it is important to investigate trends in both sparsely and densely 
populated areas of the region.  In order to select a representative sample, CSDs were 
grouped according to population density into three categories: low (0-100 persons/km2), 
medium (100-500 persons/km2) and high (above 500 persons/km2).  It should be noted 
that of the 109 CSDs, 89 are of low density, with an average density of 21.4 persons/km2. 
Only five are of medium density with an average density of 227.6 persons/km2, while 15 
are of high density with an average density of 827.3 persons/km2.  CSDs were then 
chosen to represent this distribution, drawing from the low, medium and high categories. 
Table 1 lists the selected CSDs and their population density categories.  As well, it 
provides a description of the settlement typology as shown by the DRAPE images in that 
area, in order to illustrate the differences in land use across selected CSDs.

It is also informative to note the highly dispersed nature of Canadian settlements 
compared to other parts of the world, a difference which will affect the available roof 
area.  As a comparison, the “low density” category used in Spain by Izquierdo et al. 
(2008) comprises regions ranging from 1-2400 persons/km2, and some municipalities 
reach densities higher than 7800 persons/km2.

3.2.4 Urban/Suburban Feature Extraction
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The very different nature of urban and rural areas required the development of a separate 
workflow for each.  Here it should be noted that the term “urban” is used loosely to 
describe areas where the land is covered by more buildings than open space; it does not 
refer specifically to urban areas designated by Statistics Canada.  For this paper, the FA 
extraction tool is used only for “urban” areas and has been found to be most effective in 
identifying residential buildings.  Rooftops which were systematically missed by the 
learner (large, flat, grey buildings), as well as rooftops in rural areas, are outlined by 
hand-digitization in ArcGIS.  The following sections describe the procedure and 
challenges faced in working with FA.  The entire procedure used to extract buildings 
from photos is described in Figure 3.

The FA extraction tool works through the creation of a training set on a sample DRAPE 
orthophoto.  An orthophoto (1 km2 in size) is chosen that is felt to be representative of the 
building typologies of the census district.  Over the photo, the researcher hand-digitizes 
60-70 rooftops as the training set.  The training set should encompass a variety of roof 
colors and types to avoid mis-recognition.  In effect, the 'learner' is given a defining range 
of roof configurations to develop a suitable classification scheme (VLS 2008; VLS 2007).

When training FA to extract features, the user must choose from a number of algorithms, 
input representations and tools.  Using trial and error, sensitivity analyses and FA 
documentation (VLS, 2007), a simple “Manhattan” input representation pattern with a 
pixel width of five pixels has been chosen.  As seen in Figure 4, the machine learner 
analyzes the 12 surrounding pixels in order to analyze the pixel of interest (marked with 
an ‘X’).  Using this input representation, FA generates a new shape file which attempts to 
capture all of the rooftops in the photo.  

Next, an aggregation mechanism is used, whereby polygons or holes smaller than 750 
pixels in size are merged or eliminated.  This helps to smooth the features and remove 
elements of clutter.  

The user may alter the training set several times until the machine learner produces a 
feature extraction set which is satisfactory.  The final feature classification algorithm, 
which is associated with the training set, may then be saved as an “automated feature 
extraction” (AFE) file.  Figure 5 demonstrates the output of an AFE run on a suburban 
area in the CSD of Cobourg where FA buildings output are seen in white, hand-digitized 
additions are seen in grey (online: FA buildings are red, hand-digitized in yellow).

Although FA is also capable of running multiple input representations, hierarchical 
learning through trained clutter removal, and squaring of features, which render the 
resulting shape file more visually pleasing, these operations were found to reduce the 
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accuracy of the results.  In addition, the use of a simple process, consisting of one basic 
input representation followed by an aggregation step, was able to reduce the processing 
time per orthophoto significantly.  Miller (2005) also found that excessive hierarchical 
learning steps improved the individual training set, but decreased the extraction accuracy 
overall.

After the creation of an effective AFE file, batch classification of all photos in the set is 
carried out in order to reduce extraction time.  Output files are polygon shapefiles.  An 
unfortunate limitation to batch classification is that FA does not contain the capabilities to 
apply a mask to the photos when using a batch approach.  A mask tells the AFE to ignore 
regions within or outside of the mask file, hence narrowing the area to be processed and 
reducing the incidence of false feature extraction.  The application of such a technique 
could have been effective in eliminating roads, for example. 

Finally, the resulting roof print layers are examined and manual cleaning is carried out. 
Manual cleaning consists of using the Edit and Select tools to select and delete features 
such as roads, parking lots and vegetation which have been falsely classified as rooftops. 
Although in some cases the manual cleaning operations represented a large proportion of 
the overall processing time; they were necessary for increased accuracy.

While FA is an extremely powerful tool, it presents some difficulties in building 
extraction for two main reasons.  First, there is a large variation in roof types within cities 
and neighbourhoods.  The roof type in new suburban developments differs greatly from 
that in older, more mature downtown neighbourhoods, for example.  Secondly, there are 
spectral similarities between features which are rooftops and features which are not.  For 
example, shades of grey in pavement are spectrally similar to the flat, grey tops of 
commercial and industrial buildings. Thus, a trade off is necessary between the inclusion 
all buildings and the associated production of a large number of false positives, or, the 
exclusion of problematic shades of colour while overlooking some buildings in the 
process.  Where necessary, buildings of these particular colours were excluded from the 
training layer in order to produce minimal false features.  The result is a generally 
conservative estimate of total rooftop area.  

In addition, a difference in roof configurations was seen across CSDs.  An AFE 
developed for the CSD of Cornwall, for example, was found to lose accuracy when 
applied to a different CSD such as Kingston, producing errors of up to 60%.  Miller 
(2005) also found degradation in AFE accuracy with distance.  This inconsistency is 
believed to be due to the fact that the DRAPE imagery has been collected over a period of 
time.  A minimal change in sunlight or cloud cover can have a significant effect on the 
spectral nature of the image.  Secondly, as previously discussed, different regions have 
different histories, ages and building typologies associated with them.  Thus in order to 
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maintain accuracy, a new, local AFE has been developed for each district of analysis to 
account for the different typologies within it.  

Although these limitations with FA exist, it was overall found to be a well-suited tool to 
the analysis.  By avoiding problematic shades where necessary and developing CSD-
tailored AFEs, the challenges presented by the program were mitigated in a way that 
produced satisfactory results.

3.2.5 Rural Feature Extraction

As discussed, the learning algorithm encountered a difficulty in distinguishing certain 
types of rooftops from spectrally similar fields.  This presented a large problem in rural 
areas, where building density is very low and there few buildings per photo, with prolific 
fields and vegetation.  It was determined that to run the photos through the AFE and also 
undertake the cleaning procedure was more time consuming than to simply create these 
features manually; thus, all photos considered rural are hand digitized, whereby the Edit 
and Sketch tools are used to outline each building as a new feature.

3.3 Extrapolation

In order to relate the roof area of the sampled CSDs to the entire region, roof area for 
each CSD is plotted against its population.  It is well known that roof area shares a 
correlation with population (Ghisi, 2006; Izquierdo et al., 2008; Kumar, 2004; Lehmann 
& Peter, 2003; Naroll, 1962; Pillai & Banerjee, 2007; Pratt, 1999; Taubenbock et al., 
2008).  In fact, Guindon et al. (2004) confirm a “high correlation” between building 
density and population density in Canada.  Because of the inconsistent distribution of 
built-up areas across the region, population is indeed the best indicator of the distribution 
of roof area (although others could be explored in future work).

From the roof area-population relationship in the sample CSDs, an approximate value of 
roof area per capita may be determined (Aroof/cap).  Then, roof area across the region 
(Aroof) may be extrapolated across the RER, using population (p):

Aroof = (Aroof/cap) * p (1)

This gives an estimation of the gross roof area for the whole of the RER.
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3.4 Reduction

Having obtained total roof area for a region, it is necessary to reduce this area to that 
which is available for solar photovoltaic applications, in order to determine potential 
power output.  There are many factors which influence the fraction of available roof area, 
including: (1) shading, from other parts of the roof or from neighbouring buildings and 
trees; (2) the use of roof space for other applications, such as ventilation, heating/air 
conditioning, dormers or chimneys; (3) the orientation of pitched roofs; and (4) the 
installation and racking of the PV panels themselves. In Canada, most residential homes 
possess pitched roofs.  In this case, the PV-appropriate roof space is that which faces 
generally south.  

The primary focus of this paper is to develop a careful estimate of the total roof area in 
the region; a separate simulation or statistical analysis for obtaining reduction factors was 
outside the scope of the project and thus related literature was utilized to obtain 
approximate areas available for PV.  Table 2 summarizes the fractions of available roof 
area found by other research initiatives which were felt to be appropriate analyses with 
which to compare, and indicates how these values were determined. In each case, the 
researchers multiply the total roof area by the reported fraction to obtain roof area 
available for PV deployment, taking into account the factors reported in the Table 2. 

These fractional coefficients must be compared carefully as they are obtained under 
different criteria in different regions.  However, they give important clues as to 
appropriate approximate values of roof area reductions.  As described in Table 2, these 
reductions are used to account for shading, other roof uses, insolation patterns and 
building orientation in various combinations.  Those which are most informative in this 
case are those which account for all sources of reduction.  For these purposes of this 
analysis, the most conservative estimates of roof area reductions from the literature are 
used.  Future research may modify this step to suit other intended uses or analyses.  

The reduction process for this analysis was determined as follows.  First, building 
orientation must be accounted for.  On average, approximately one quarter of total roof 
area was comprised of large, flat buildings (rflat=0.25).  These buildings will undergo no 
reduction for orientation since they do not possess peaked rooftops and are therefore 
unaffected by orientation (fflat=1) (reductions for panel installation and other factors will 
be accounted for in the second reduction factor).  Residential and other small buildings 
with peaked rooftops, which constitute the remaining buildings (rpeak=0.75), will be 
considered to have 50% south-facing area on average (fpeak=0.5).  Thus is obtained the 
fraction of properly oriented roof area, fo: 

fo= fflat * rflat +  fpeak * rpeak = (1*0.25+0.5*0.75)=0.625 (2)
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Next, shading, other uses, and installation must be accounted for.  As this analysis aims to 
be as conservative as possible, the lowest fraction from the literature listed in Table 2 will 
be applied   This allows for the calculation of the fraction of unshaded roof area which is 
unused for other purposes, including panel servicing and installation.  This fraction, fs, is 
therefore taken as:

fs=0.30 (3)

Thus, the roof area available for PV (APV) is the total roof area (Aroof) reduced by the 
product of fo and fs:

APV/cap = (Aroof/cap) * fo * fs = (Aroof/cap)*0.19 (4)
  
And, using population across the RER to extrapolate:

APV = (APV/cap) * p (5)

This represents the total roof area which is available and appropriate for PV deployment 
in the RER.  

3.5 Conversion

Finally, an estimate of potential power and energy output from the deployment of rooftop 
PV in south eastern Ontario may be obtained.  The potential power and energy output 
relies heavily on the type of photovoltaic panels used since variations in efficiency of 
more than a factor of two exist across materials and manufacturers.  As such, the analysis 
has been carried out with four different types of photovoltaic panels readily available on 
the market: (i) crystalline silicon, (ii) multi-crystalline silicon (often referred to as 
polycrystalline on the market), (iii) amorphous silicon multi-junction, and (iv) thin-film 
polycrystalline silicon (also called micro-crystalline or nano-crystalline in the literature). 
These four types of cells have markedly different efficiencies (summarized in Table 3) 
and are used to showcase various deployment scenarios.  

Potential power output may be calculated as:

P = Ig * e *APV (6)

where Ig is the solar global insolation based on the Global Air-Mass 1.5 Spectrum of 1000 
W/m2 and e is the module efficiency (Green et al., 2009).
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Total annual energy output is calculated as:

E = Imd * 365 * e *APV (7)

Where Imd is the mean daily global insolation on a horizontal plane, calculated as an 
annual average, of 3.3 kWh/m2 (NRCan, 2007) and e is the module efficiency (Green et 
al., 2009).

4. Results

4.1 Total Roof Area

The methodology outlined in Figure 2 was followed for the RER.  After geographic 
division and sampling of the CSDs, roof area was plotted against population in order to 
determine the relationship for use in extrapolation.  Across the 10 sample CSDs, a 
constant linear relationship between population and roof area is observed, as seen in 
Figure 6.  As shown in Figure 6, the linear relationship holds with an R-squared value of 
0.993, indicating a strong correlation across both large and small census subdivisions. 
The relationship indicates a total roof area of 70.0 m2/capita ± 6.2%, for use in equations 
(1) and (4),  plus a base, b, of 237 000 m2 for the region.  This analysis has a 95% 
confidence interval.  The base (intercept) may be explained by infrastructure, such as 
utilities, in place even in small communities regardless of the number of inhabitants.  It is 
seen, however, that on the large scale of the region, 237 000 m2 is well within the error 
and is thus a negligible corollary of producing the line of fit.  Thus, in the proceeding 
analyses the base will be disregarded.

A comparison of this value to other regions suggests that 70.0 m2/capita is a very 
reasonable estimate of roof area per person in the Canadian context.  Izquierdo et al. 
(2008) report a range of 24.4-180.5 m2/capita for the country of Spain before reducing for 
shading and other uses.  For the country as a whole, 41.7 m2/capita is reported.  In Brazil, 
Ghisi (2006) has found a range of 17.6-21.2 m2/capita of total roof area, determined 
during a study for rainwater catchment opportunities.  Finally, Pratt (1999) reports a 
range of 10.6-30.7 m2/capita in the United Kingdom, also in a study of stormwater runoff. 
Each of these values is compares reasonably given the differences in building density and 
sprawl between Canada and European/South American countries.

It should be understood that 70.0 m2/capita ± 6.2% of total roof area is a coarse, overall 
value meant to be applied to the RER as a whole.  To see why this is important, the 
delineation of the census subdivisions must be examined.  In most cases, as in Kingston 
for example, the border of the census subdivision is large and contains the dense 
downtown region surrounded by suburbs and then by rural farmland.  Other census 
subdivisions have been delineated directly around the dense urban area, while others 
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comprise nearly all rural farmland.  The mix of settlement types within the study area 
means that the relationship between population and roof area is an overall approximation 
for the combination of these different land uses.  

For analyses on a smaller, more specific scale, there in fact exists a more subtle 
relationship: with increasing population density, a decline in roof area per capita is seen. 
This has been confirmed by work from several authors, including Izquierdo et al., (2008), 
Lehmann & Peter (2003) and Pratt (1999).  Others have investigated this relationship 
inversely to infer population density from roof areas in present-day developing regions 
(Taubenbock et al., 2008) and during antiquity (Naroll, 1962).

Lehmann and Peter (2003) have studied this relationship most closely.  Plotting values 
obtained for many sites in Germany, they show that for non-residential buildings, roof 
area per capita decreases with a cubic function as population density increases. 
Residential buildings, on the other hand, show a decreasing quadratic function.

In Figure 7, population density is plotted against roof area per capita for each individual 
census subdivision.  It is clearly seen in Figure 7 that as the population density increases 
the roof area per capita decreases. While 10 data points is not sufficient to obtain a 
precise function to describe this complex relationship, this graph does demonstrate the 
value in examining the relationship between population density and roof area per capita 
for smaller scale analyses.  In particular, it is seen that for the low density CSDs (1-100 
persons/km2), the average total roof area value, 124.7 m2/capita, is a more accurate 
representation.  Further, when an analysis was conducted on the much higher density 
downtown core of Ottawa (data for the entire CSD was unavailable), it was found that 
value closer to 50 m2/capita was more representative.  Thus, it is suggested that when 
analyzing smaller segments of towns, cities, or individual municipalities, the population 
density should lie between 100-1500 persons/km2 in order to use the overall value of 70.0 
m2/capita.

Finally, the roof area per capita is extrapolated across the RER using equation (1), giving 
a value of 134 000 000 m2 ± 6.2%.  This value is of use to many fields of applied 
sustainability and urban and regional planning.

4.2 Solar PV Available Roof Area

This total roof area must be reduced to that which is available for PV applications, as 
discussed in Section 3.4.  If total roof area per capita, Aroof/cap, is equal to 70.0 m2/capita 
± 6.2%, then area available for PV per capita, APV/cap, using equation (4), is 13.1 
m2/capita ± 6.2%, which remains a considerably high value. 
  
Next, this available roof area is extrapolated across the RER using equation (5), giving a 
value of 25 000 000 m2 ± 6.2%.  This represents the total roof area which is available and 
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appropriate for PV deployment in the RER in that it is free of shading and other uses and 
is oriented generally south.

4.3 Power and Energy Potential

Equations (6) and (7) are then used to approximate the potential power and energy 
outputs from this distribution of roof area; results are presented in Table 3.  As seen in 
Table 3, potential output from the large-scale deployment of rooftop PV is large: with the 
more efficient crystalline-silicon panels, 3620 kWh/capita of energy can be produced 
annually.  In 2005, the OPA reported an annual per-capita total (all industries) energy use 
of approximately 12 000 kWh (OPA, 2009d), and an average annual household energy 
use of 10 000 kWh (ICF Consulting, 2005).  This indicates the considerable contribution 
that rooftop PV can have to the Ontario grid.  Further comparison of outputs to demands 
will be detailed in Section 5.

4.4 Error

Some sources of error in this analysis relate to data sources which themselves contain a 
small but unknown error: census data for population and population densities, hand-
digitized roof print data from two municipalities, solar insolation estimations and PV 
system efficiency values. Within the analysis itself, the two main sources of error are the 
error accrued during the FA building extraction procedure and the standard error on the 
linear regression model.

The CSD of Kingston offers a unique opportunity for assessing extraction error analysis 
because both pre-digitized roof print data from the City and DRAPE orthophotos exist. 
To assess the error accrued using FA, 10 individual orthophotos from Kingston were run 
through the building extraction workflow; next, the resulting shape files were compared 
to the roof print data obtained from the City for that photo area.  The total rooftop area 
extracted for each orthophoto by FA was tabulated as a percentage of the “true” rooftop 
area (i.e. the area indicated by the pre-digitized roof print data offered by the City).  

The average absolute error in building extraction on the 10 orthophotos examined was 
found to be 15%.  This represents the error on each data point and denoted by the error 
bars in Figure 6.  Due to the available resources, it was not possible to carry out a 
consistent analysis on more samples.  However, given that the error determined in this 
fashion has a direct dependency on the number of samples chosen, in the future a larger 
sample size would certainly contribute to a reduction in error.

It is important to note that although the average absolute error found in this analysis was 
15%, the average error accounting for negative/positive error is 2%.  Therefore, the 
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extraction error over entire census subdivisions may have canceled out to a significant 
degree.  This is to some extent verified by the standard error of the linear regression, 
which with a 95% confidence interval is ± 6.2%.  This is the error which has been 
reported on the per capita roof area values.  Further, many of the buildings (rural and 
missed large, flat and grey buildings) were outlined by hand and therefore constitute an 
error much lower than 15%.  

As discussed in Section 3.2, the accuracy of the FA process is highly dependent on the 
similarity of the building typology under analysis to that in the orthophoto used as a 
training set to create the AFE.  In this case, the AFE was developed for an older, mature 
neighbourhood, which represented the majority of the Kingston area.  As a result, it was 
less accurate when applied to the newer suburban areas on the other side of the city.  A 
similar discrepancy will have been encountered in each of the CSD analyses.  

The focus of this paper is on the extraction of roof area for PV analysis; the calculation of 
PV potential itself may be tailored by other researchers to specific analyses based on 
projected panel distributions and efficiencies.  Thus, a basic approach has been taken to 
estimate PV power and energy potentials in the large-scale RER in this analysis.  It 
should be kept in mind that there is an additional error associated with this aspect of the 
analysis.

5. Discussion and Policy Implications 

The potential output from the deployment of rooftop PV in the RER showcases the 
important influence that these technologies can have on the large-scale electrical system. 
To understand the effect of rooftop PV deployment, the power and energy outputs are 
compared to the demands in Ontario as a whole and the RER specifically.

As seen in Table 4, if PV models from the high efficiency range of the current panels on 
the market are utilized, based on the demands seen in 2008 (IESO, 2009; IESO, n.d.), 
rooftop solar photovoltaics can provide 24% of the peak Ontario power demand, or 
approximately 157% of the peak demand in the south eastern region (power output from 
equation (6); power demands from IESO, 2009 with RER assumed to be East and Ottawa 
zones).  Further, five per cent of total annual energy use of Ontario can be supplied 
(energy output from equation (7); energy demands from IESO, n.d.).  Recall that this five 
per cent is generated by rooftops in the RER, which is inhabited by only 16% of 
Ontario’s population (StatsCan, 2009).  Since it has been shown that roof area has a 
generally constant relationship with population, it may be inferred that there is much 
more energy potential across the entire province. In fact, if the roof area-population 
relationship found in the RER can be shown in the future to hold throughout all of 
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Ontario, then as high as 30% of Ontario’s annual energy demands could potentially be 
supplied by rooftop PV alone.  This has an immense significance to energy policy 
formulation, particularly in urban areas.  These results indicate that the FIT has the 
potential to initiate considerable renewable power inputs to the Ontario grid from roof-
mounted PV alone.

The use of solar photovoltaic technologies is complicated because of the temporal and 
seasonal nature of solar irradiation.  For example, while rooftop PV has the potential to 
supply 157% of the peak power demand in the RER, without storage this is only possible 
if the peak hours of the sun correspond with the instance of peak demand. Further, the 
energy supply from rooftop PV will not supply a constant 5% of Ontario’s annual energy 
demand; rather, it will supply more than this during the summer months, and less during 
the winter.  Fortunately, however, the times of highest power demand (summer air 
conditioning peaks) tend to correspond to the times of highest solar flux (Pearce, 2009; 
Perez & Collins, 2004). Through innovation and careful policy choices, these unique 
features of solar energy availability may be mitigated, and even capitalized upon.  

A first policy measure to explore with relation to PV, therefore, is energy storage, which 
is critical in times when power demands do not match PV power generation.  Energy 
storage allows for increased capacity and flexibility of the system, making it possible to 
achieve increased PV penetration rates (Denholm & Margolis, 2007).  Options for storage 
include compressed-air, hydraulic pumping, flywheels and many types of battery 
technologies (Nourai, 2005).  Storage is felt to be a key aspect in better grid performance 
and financial gains (Brandon, 2008; Denholm & Margolis, 2007; Nourai, 2005). 

A second initiative to consider is the coupling of PV with other energy technologies. 
Hybrid combined heat and power (CHP)-PV systems enable CHP to provide back up for 
the intermittent nature of the solar resource (Pearce, 2009; Derewonko and Pearce, 2009). 
CHP systems are significantly more efficient than conventional power systems because of 
their ability to use thermal energy which is typically released as waste heat (Pearce, 2009; 
Siddiqui et al., 2003).  Although the addition of CHP is more complicated physically, the 
energy and economic savings can be considerable particularly when CHP systems are 
installed near to a heat sink (Siddiqui et al., 2003), as in a household where there are 
several thermal demands, such as water and space heating, for example.

The design of the electric grid is another major policy consideration in the large-scale 
deployment of PV.  Because of the distributed nature of PV, particularly that of mass 
deployment of rooftop solar, significant changes in grid capabilities will be required.  The 
facilitation of distributed generation (DG), in contrast to conventional vertical supply 
systems, should be a strong consideration in future grid upgrades – this is an important 
factor in the future of the Ontario electricity system (Shalaby, 2008).
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A final policy aspect in the large-scale deployment of rooftop PV technologies in the 
RER is the consideration of which locations should be prioritized for deployment.  The 
capacity of the existing grid to receive additional power is a primary consideration. 
Additionally, an important finding of this paper is that across the region as a whole, roof 
area generally is constant as a function of population (although roof area per capita shows 
an increase in the less densely populated regions).  This indicates that the more rural 
regions offer a particularly large opportunity for rooftop PV deployment, especially given 
their higher transmission costs on the conventional grid system.  However, the large-scale 
deployment of rooftop PV holds great potential across all areas of the RER, and therefore 
also across Ontario and the country.

6. Future Work

Throughout this paper, a number of opportunities for future works have surfaced that can 
serve to expand and solidify the discoveries made here. First, the collection of more roof 
area-population data points across Ontario and the country will help to confirm the 
relationships explored in this research.  The completion of the DRAPE orthophoto 
project, and other similar imagery projects, is an important step in making this 
methodology usable elsewhere.  Available data is a crucial part of this type of analysis. 
Municipalities, cities and towns should be encouraged to compile roof print data of their 
own; as has been mentioned, this is important for informing beneficial environmental 
policy surrounding more than PV.  Further, a careful analysis of trends in building 
orientation, shading and other uses in the Ontarian context should be conducted in order 
to increase the accuracy of the conversion factors used to convert total roof area to PV-
available roof area.  Additionally, more refined energy modeling taking into 
consideration of solar panel tilt and azimuth angles could be made.  Finally, a more in-
depth analysis of the ability of rooftop solar to meet peak and overall power and energy 
demands could be carried out, accounting for the temporal and seasonal nature of solar 
energy and the variable distribution of insolation across the region.  

In the future, the findings described here will be consolidated by the Queen’s Institute for 
Energy and Environment Policy with research concerning other renewable energy 
opportunities for the region.  This work will inform the ways in which south eastern 
Ontario can move toward truly being a “Renewable Energy Region” and thus a net 
generator of renewable energy.

7. Conclusions

http://dx.doi.org/10.1016/j.compenvurbsys.2010.01.001


Published in: L.K. Wiginton, H. T. Nguyen,  J.M. Pearce, “Quantifying Solar Photovoltaic Potential on a Large Scale 
for Renewable Energy Regional Policy”, Computers, Environment and Urban Systems 34, (2010) pp. 345-357. 
http://dx.doi.org/10.1016/j.compenvurbsys.2010.01.001

This paper has used geographic information systems and advanced feature extraction 
algorithms to deepen the understanding of building form and distribution in a specific 
“Renewable Energy Region” of south eastern Ontario for the purpose of quantifying 
potential for rooftop solar photovoltaic (PV) deployment.  A five-step procedure has been 
developed for estimating total rooftop PV potential which involves geographical division 
of the region; sampling using the Feature Analyst extraction software; extrapolation using 
roof area-population relationships; reduction for shading, other uses and orientation; and 
conversion to power and energy outputs.  The methodology consists of a broad set of 
principles and techniques which may be used and modified conveniently in other related 
initiatives to forward knowledge concerning PV potential in general.

This research has investigated the use of Feature Analyst in large-scale rooftop analyses, 
particularly in the study of PV potential.  It has also explored the relationship between 
roof area and population and has discovered a constant total roof area of 70.0 m2/capita ± 
6.2% which applies across the region as a whole.  With reference to similar numbers 
found in other parts of the world, this value demonstrates the low-density character of 
Canadian settlements and the relative abundance of roof area possessed here.  This 
understanding is critical to determining potential PV deployment in this region, but is 
also highly important to many other fields, allowing for the better informing of policy 
surrounding other applied sustainability initiatives such stormwater runoff, green roof 
deployment, solar thermal applications and land-use planning in general. 

Potential peak power outputs for the region with roof tops covered with PV range from 
2.05-5.74 GW, depending on the panel efficiencies used.  Potential annual energy 
production ranges from 2474-6909 GWh.  These outputs are considerable; based on the 
higher efficiency PV panels, rooftop PV deployment in the region could supply 24% of 
Ontario’s or 157% of the region’s peak power demands, based on 2008 figures.  In terms 
of energy, 5% of Ontario’s total annual demand can be met with only rooftops in the 
region of study, suggesting potentially 30% of Ontario’s energy demand can be met with 
province-wide rooftop deployment.

These results confirm that the Ontario Feed-In Tariff has the potential to initiate 
significant renewable energy inputs to the Ontario grid.  This new understanding of roof 
area distribution and potential PV outputs has an immense significance to policy 
formulation in the region: there should be a shift toward establishing solar photovoltaics 
as a major policy focus in the region, and across Canada, in the move toward a 
sustainable future.
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Glossary 

AFE: automated feature extraction
CSD: census subdivisions 
DRAPE:  Digital Raster Acquisition Project – East
FA:  Feature Analyst
FIT:  feed in tariff
GHGs: green house gases 
NAD83: North American Datum 1983 
OEEDC: Ontario East Economic Development Commission 
orthophoto: an aerial photograph geometrically corrected ('orthorectified') such that the 
scale is uniform
PV:  photovoltaic 
QIEEP: Queen’s Institute of Energy and Environmental Policy 
RER:  Renewable Energy Region 
shapefile: simple GIS vector files containing points, lines or areas.
UTM: Universal Transverse Mercator 
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Captions (Figures) 

Figure 1 
Map of Canada, inset shows the Renewable Energy Region in southeastern Ontario
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Figure 2
Overall workflow for determining roof area available for solar PV in a large-scale region

http://dx.doi.org/10.1016/j.compenvurbsys.2010.01.001


Published in: L.K. Wiginton, H. T. Nguyen,  J.M. Pearce, “Quantifying Solar Photovoltaic Potential on a Large Scale 
for Renewable Energy Regional Policy”, Computers, Environment and Urban Systems 34, (2010) pp. 345-357. 
http://dx.doi.org/10.1016/j.compenvurbsys.2010.01.001

Figure 3
Building extraction process using Feature Analyst and manual methods; repeated for each 
CSD

Figure 4
Manhattan input representation pattern (each square is a 20 cm x 20 cm pixel)
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Figure 5
Sample automated feature extraction results
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Figure 6
Total roof area as a function of population in the Renewable Energy Region
Footnote:Error bars represent a conservative 15% error on each data point as discussed in 
Section 4.4.
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Figure 7
Total roof area per capita decreases with increasing population density
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able 1 - Representative characteristics of sampled census subdivisions

Census 
Subdivision 
(CSD)

Population 
Density 
(persons/km2)

Population 
Density 
Classification

Settlement Typology

Cobourg 814.0 High Residential, commercial, 
institutions 

Cornwall 747.1 High Residential, highly industrial
Killaloe, 
Hagarty and 
Richards 

6.4 Low Rural residential, sheds and 
barns, open space and forest

Kingston 260.2 Medium Residential, commercial, 
institutions

Laurentian 
Valley

16.8 Low Rural residential, sheds and 
barns, open space and forest

Loyalist 44.3 Low Rural residential, agriculture and 
forest

Pembroke 970.7 High Residential, some industry
Peterborough 1282.6 High Residential, commercial, 

institutions
Smiths Falls 1070.7 High Residential, some industry
South Stormont 28.0 Low Rural residential, highly 

agricultural
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Table 2 - Fraction of available roof area for solar PV application from five research 
initiatives 

Location Building Type 
Assessed

Criteria 
Used

Method Fraction of 
Available 
Roof Area

Reference 

Spain All buildings 
within urban-
designated areas

Accounts for 
shading and 
other roof 
uses

Human 
inspection

0.34 Izquierdo et 
al., 2008

Germany, 
Western 
Europe

Segments of 
buildings which 
have been 
designated as 
“solar appropriate”

Accounts for 
shading and 
other roof 
uses

Estimation 0.90 Lehmann & 
Peter, 2003

Switzerland Three urban sites Irradiation, 
daylight 
fluxes, polar 
diagrams, 
sky view 
factors

Computer 
ray-tracing 
simulations

0.95
0.73
0.49

Scartezzini 
et al., 2002; 
Montavon et 
al., 2004

India Houses, hospitals, 
hotels and nursing 
homes

Accounts for 
shading and 
other roof 
uses

Estimation 0.30 Pillai & 
Banerjee, 
2007

New 
Zealand

Five residential 
blocks

Fraction of 
roof area 
within 45 
degrees to 
north

CITYgreen 
GIS software

0.30
0.23
0.30
0.22
0.47

Ghosh & 
Vale, 2006
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Table 3 - Power and energy outputs in Renewable Energy Region based on four PV 
panel scenarios

Solar PV Panel 
Type

Module 
Efficiency

Panel 
Output 
(W/m2)

Power 
Output Per 

Capita 
(kW/cap)

Power 
Output 

for RER 
(GW)

Annual 
Energy 

Produced 
Per Capita 
(kWh/cap)

Annual 
Energy 

Produced 
for RER 
(GWh)

Si (crystalline) 22.9% 229 3.01 5.74 3620 6909
Si 
(multicrystalline)

15.5.% 155 2.03 3.88 2450 4676

a-Si/a-SiGe/a-SiGe 
(multijunction)

10.4% 104 1.37 3.61 1644 3138

Si (thin-film 
polycrystalline)

8.2% 82 1.08 2.05 1296 2474

Efficiencies from M.A. Green et al. (2009) calculated using global AM1.5 spectrum = 1000 W/m2; 
mean daily global insolation with horizontal tilt (annual mean) from Natural Resources Canada, 
insolation = 3.3 kWh/ m2.
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Table 4 - Ability of rooftop solar PV to meet provincial and regional power and 
energy demands

Solar PV Panel 
Type

Percentage of 
Ontario Peak 

Power Demand 
[24.2 GW]

Percentage of RER 
Peak Power 

Demand 
[3.7 GW]

Percentage of 
Ontario Annual 

Energy Use
 [148 000 GWh]

Si (crystalline) 24% 157% 5%
Si (multicrystalline) 16% 105% 3%
a-Si/a-SiGe/a-SiGe 
(tandem)

11% 71% 2%

Si (thin-film 
polycrystalline)

8% 56% 2%

Sources: Power demand from IESO, 2009 and energy demand from IESO, n.d.

http://dx.doi.org/10.1016/j.compenvurbsys.2010.01.001

	2. Background
	2.1 Related Work
	2.4 Available Data
	3. Methodology 
	3.1 Division into Geographical Units
	3.2 Sampling
	3.3 Extrapolation
	In order to relate the roof area of the sampled CSDs to the entire region, roof area for each CSD is plotted against its population.  It is well known that roof area shares a correlation with population (Ghisi, 2006; Izquierdo et al., 2008; Kumar, 2004; Lehmann & Peter, 2003; Naroll, 1962; Pillai & Banerjee, 2007; Pratt, 1999; Taubenbock et al., 2008).  In fact, Guindon et al. (2004) confirm a “high correlation” between building density and population density in Canada.  Because of the inconsistent distribution of built-up areas across the region, population is indeed the best indicator of the distribution of roof area (although others could be explored in future work).
	3.4 Reduction

	5. Discussion and Policy Implications 
	7. Conclusions

