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Modelling a faillibilistic and perspectivistic reasoning

It is commonly accepted that propositional logic is insufficient to capture human reasoning. To extend its capabilities, we propose to automatically integrate silent propositions into the set of atomic propositions. We call them thoughts. They are used to define a semantic interpretation function on models. Our contribution to the family of non-monotonic formalisms is to formalise a faillibilistic and perspectivistic reasoning. We illustrate the interest of these properties by developing an example of application.

Introduction

Formalisms based on propositional logic Lp classically focus on modelling knowledge that is deemed to be true or false. It is insufficient to model the full diversity and complexity of human reasoning, which obviously also exploits inconsistent or uncertain information. Another difficulty is to move from a monotonic semantic interpretation (what is supposed to be true given a state of knowledge remains true even if a new piece of knowledge appears) to a non-monotonic semantic interpretation (what is supposed to be true given a state of knowledge can become false if a new piece of knowledge appears).

Many propositions have been presented to address these needs: epistemic modal logics, paraconsistent logics, default logic, intuitionistic logic, adaptive logics, or multivalued logics for example. They each manage to capture different properties. But they have not succeeded in modelling the many modes of reasoning empirically observed in humans (D. Andler [2]).

These formalisms most often approach human reasoning through the principle of proof inherited from mathematics. In this article, we propose the contextual logic Lc, which uses the principle of non-refutability. To achieve this, Lc models a faillibilistic reasoning:

Each piece of knowledge is uncertain, and our belief is constructed by identifying those that are justifiable. We will find that the exercise leads, mechanically, to a perspectivist reasoning:

Belief is constructed by aggregating some different justifiable points of view, accepting the possibility that they are incomplete, incorrect, or inconsistent with each other. Lc remains within the monotonic syntax of propositional logic Lp and enrich the set of atomic propositions by silent propositions. We call them thoughts. Integrated and consumed automatically, they identify the formulae belonging to the set of knowledge. We use them to define a non-monotonic semantic interpretation function based on the analysis of their behaviour in models of the theory.

We first present the propositional logic to share the vocabulary we use and the associated definitions. The supposed limits of the syntax of Lp are recalled. The principles of Lc and its main properties are described. The assumed limitations of the propositional logic are then revisited. To illustrate our point, we conclude our presentation by developing an example of application of Lc. It calls upon a sufficiently broad knowledge base to demonstrate, through a practical case, the non-monotonic expressiveness of the language and to give meaning to the various technical examples used throughout the text.

The propositional logic

In this article, we refer to several formal languages. We do not detail them in general so as not to make the presentation unnecessarily heavy, inviting the reader to refer to the many documents available on these formalisms. However, we think it is useful to pause for a moment on the propositional logic Lp.

This paragraph does not contain anything new. There are many equivalent ways of modeling a formal language.

Here we share the definitions of the vocabulary and symbols that we use out of habit.

The syntax of Lp

The language of the propositional logic Lp is composed of the set PLp of atomic propositions, the negation connector ¬, the implication connector →, and the parenthesis symbols, which are used according to classical mathematical rules. The rules for forming a well-formed formula are:

 any atomic proposition is a well-formed formula,  if f and g are well-formed formulae, then the expressions (f), ¬ f and f → g are well-formed formulae,  a well-formed formula is obtained only by applying the two precedent rules a finite number of times. Let f, g and h be some well-formed formulae. The following formulae are some axioms:

 f → (g → f)  (f → (g → h)) → ((f → g) → (f → h))
 (¬f → ¬g) → ((¬f → g) → f) This axiom scheme is sufficient to cover all the axioms of Lp. For example, a → (a → a) is an axiom obtained by applying the first formula for f is a and g is a. f → f is another axiom, which can be demonstrated with this scheme and the theorem formation rules:  any axiom is a theorem,  let f and g be two well-formed formulae. If f and f → g are theorems, then g is a theorem (this rule is called the modus ponens),  a theorem can only be obtained by applying the two previous rules a finite number of times. The statement f is a theorem is denoted ⊢Lp f. A theory ELp is a set of well-formed formulae. The formulae f ∈ ELp represent the hypotheses of ELp. A formula f is said to be provable in ELp if, and only if, it can be produced from ELp by applying the theorem formation rules, for all hypotheses of ELp behaving as theorems. In this case, f is said a theorem of ELp, and this is denoted ELp ⊢Lp f:

A theory is said to be inconsistent if it produces the negation of a theorem. Otherwise, it is said to be consistent.

The semantic of Lp

Classically, the logician's attitude is to consider in formal language only mathematical symbols:

"A formal language is, by definition, a language with only syntax and no semantics" -(translation) J. Hebenstreit, Enclycopedia Universalis What is relevant is the study of the mechanisms and laws of reasoning, modelled by syntactic rules. Any reference to semantic content is discarded. However, it is possible to attribute a meaning to connectors if it is strictly symbolic and univocal.

Let ELp be a theory of Lp, and f and g two well-formed formulae. The syntactic interpretation function of Lp is defined by a function ILp such that:

 ILp(ELp, f) = true or ILp(ELp, f) = false,  If f is a hypothesis of ELp, then ILp(ELp, f) = true. The meaning of the connectors is then defined by:  ILp(ELp, ¬ f) = true if, and only if,

ILp(ELp, f) = false,  ILp(ELp, f → g) = true if, and only if, ILp(ELp, f) = false or ILp(ELp, g) = true.
The symbol ⊨Lp is defined by: ELp ⊨Lp f if, and only if, ILp(ELp, f) = true The syntactic interpretation of an axiom is always true, and Lp is correct and complete: everything that is produced (using ⊢Lp) is true (according to ⊨Lp), and everything that is true is produced: ELp ⊨Lp f if, and only if, ELp ⊢Lp f.

If the constraints of a theory do not allow the true or false truth value of a formula to be calculated, it is said to have an unknown value for this theory -for example, the value of ILp({a → b}, a): a can be true (in this case, b is true) or false (in this case, b can be true or false).

This remark introduces the definition of model. A model of a theory ELp is obtained by associating to each atomic proposition only one truth value (true or exclusively false) such that the result verifies ILp. ELp is consistent if it has at least one model. It is inconsistent otherwise.

For example, the theory {a → b, c} is verified by three models:

{(a, true), (b, true), (c, true)} {(a, false), (b, true), (c, true)} {(a, false), (b, false), (c, true)} So, it is consistent. As a counter example, {a, ¬ a} does not accept a model: if a is assumed to be true, ¬ a is not verified -and vice versa. a is true and false. It is inconsistent.

We end this paragraph by presenting three often used connectors. To simplify the expression of formulae, the language is extended to disjunction (denoted ∨), conjunction (denoted ∧) and equivalence (denoted ↔) connectors. For f and g two well-formed formulae, they are defined by:

 f ∨ g is equivalent to (¬ f → g),  f ∧ g is equivalent to ¬ (f → ¬ g),  f ↔ g is equivalent to (f → g) ∧ (g → f).
A literal is an atomic proposition or the negation of an atomic proposition. A clause is a disjunction of literals. A formula is said to be in conjunctive normal form if it is a conjunction of clauses. Any well-formed formula admits a logically equivalent rewriting in conjunctive normal form (A. Thayse, [17]). For example, a conjunctive normal form of the formula

((¬ f → g) → h) is ((¬ f ∨ h) ∧ (¬ g ∨ h)). P.
Siegel [16] proposes a linear complexity process that rewrites any well-formed formula into a conjunctive normal form.

The limits of Lp

Modelling human reasoning with Lp faces several difficulties. This article focuses on three of them. 1) A difficulty is to move from a monotonic semantic interpretation to a non-monotonic semantic interpretation. This topic is covered in paragraph 5.

2) Human reasoning sometimes seems incoherent. But whatever f and g two well-formed formulae of Lp, {f, ¬ f} ⊢Lp g. This is the explosion principle. It forbids the appearance of a syntactic inconsistency in a theory. This topic is covered in paragraph 6.

3) Human reasoning uses semantic links between propositions. But the symmetrical behaviour of connectors prohibits this type of modelling in Lp. Put more explicitly with an example, f → (g → h) is syntactically equivalent to g → (f → h): f and g have the same behaviour in the formula, and it is not possible to model a privileged relationship between one of them and h. This topic is covered in paragraph 7.

Two other difficulties are the modelling of induction and abduction, and the computational complexity of the algorithms. We do not address them in this article.

The successive failures of logic researchers to solve these problems have led many to conclude that the modelling of human reasoning probably escapes Lp, and logic formalisms more generally (D. Andler [2]).

The contextual logic

Let us consider a thought. We perceive it in the sense defined by R. Descartes [4]:

"By the name of thought, I understand all that is so much in us that we are immediately aware of it" (translation)

and we describe it with a set of sentences. For example, we can have the thought of a painted picture. Consider the Mona Lisa, by Leonardo da Vinci. We can describe it with some sentences. But even if this description would be ideally complete and perfect, we are immediately aware that it is not the thought that we have of the Mona Lisa. We model this observation by distinguishing two notions in the syntax of the language: a unit sign c, which symbolises a thought, and a combination of signs f, which reproduces the sentences that describe it. This leads to the need to define a relationship between c and f. To this end, we consider the following postulate [8]: Contextual postulate Let L be a formal language with the functions of syntactic production ⊢L and of syntactic interpretation ⊨L. A well-formed formula f of L is a set of signs that has no meaning. Its meaning is carried by a thought, which is an atomic proposition of L "which is not pronounced". For c symbolising this thought, the relation between c and f is c ⊨L f.

The expression c ⊨L f asserts neither the thought c nor the sentence f. It models that the sentence f expresses the thought c. c is an atomic proposition which respects the syntactic properties of L.

For example, consider seven sentences f1, f2, …, f7 of Lp such that:

ELp admits a syntactic behaviour, but it has no semantic meaning according to contextual postulate. To overcome this, we need to consider the thoughts c1, c2, …, c7. c ⊨L f is equivalent to ⊨L c → f if L is Lp. So, after applying contextual postulate, the set becomes:

ELc is a theory of Lp. It models: "each thought ci is expressed by a sentence fi". We thus agree with L. Wittgenstein when he states [18]: "We should not say: The complex sign aRb says that a is in the relation R with b, but: That a is in a certain relation R with b says that aRb" (translation) The application of contextual postulate to a formalism L produces the contextualised logic L. By language convention, we call contextual logic, denoted Lc, the contextualised propositional logic.

Each contextual formula takes a form c → f, for c a thought and f a well-formed formula in the sense of Lp. Expressions in Lc accept a pre-order:

 an atomic proposition that is not a thought is of rank 0,  a thought is of rank 1 or higher. We will see later that we propose to automatically handle the assignment of a rank to a thought,  the rank of a well-formed formula in the sense of Lp is equal to the maximum rank of the atomic propositions (including thoughts) that compose it. We define a well-formed formula in the sense of Lc to be a formula c → f, for c a thought of rank i and f a well-formed formula in the sense of Lp of rank j, such that i > j.

This defines a syntactical restriction. Without these notions of rank and well-formed formula in the sense of Lc, thoughts would have a reflexive property that is not easy to understand: it could be expressed by a sentence containing it:

c could participate in f in c → f.
Knowledge reflexivity is a concept defended by J. Pitrat [12], but we don't master it. The restricted language we propose remains sufficient to cover the level of expressiveness that we want to achieve in this article. However, we do not know if this restriction is necessary.

Given the syntax c → f of the contextual formulae, the set {(ci, false), ci are the thoughts} characterises some models that verify any contextual theory. For example, {(c1, false), (c2, false), …, (c7, false)} characterises some models that verify {c1 → f1, c2 → f2, …, c7 → f7}. The first consequence is that each contextual theory admits at least one model. So, it is always consistent.

The second consequence is that any thought is possibly false. In Lc, uncertainty is intrinsically embedded in the syntax. To remedy this problem, we adopt the following principles:

 because any formula can be false, we cannot interrogate a contextual theory with a question such as "Is f true (or false)?". But we can say: "What can I conclude if I suppose that f is true (or false)?". Notation f is an event (a question, a fact, a new thought, etc.) which generates a need for semantic interpretation. We call this a stimulus.  because every thought is possibly false, we propose to relativize the semantic interpretation to the subsets of thoughts identified as the most relevant.

We cannot conclude that f is true or false, but we can say "f is true (or false) with respect to the most relevant sets of thoughts".

For example, let a and b be two atomic propositions of Lp, and c1, c2 and c3 be three thoughts. Consider the following set: ELc = {c1 → a, c2 → ¬ a, c3 → b} We cannot prove that a or b is true or false. But we can say that a is true considering {c1}, or that a is false and b is true considering {c2, c3}, etc. There are many possible combinations, so we should define a method for selecting "the most relevant sets of thoughts". For this purpose, we need some definitions. Definitions Let ELc be a theory of Lc and i and j be 2 integers such that 0 < i ≤ j.

 A set of thoughts is called a context.  A context is said to be of rank i to j if all the thoughts in it are of rank i to j. A context of rank i to i is said of rank i.  A context that is verified by at least one model of ELc is called a possible (or a consistent) context.  A context that does not check any model of ELc is called an impossible (or an inconsistent) context.  An impossible context is called a minimal impossible context if each of its strict subsets is possible.  A possible context that has no strict extension that checks ELc is called a maximal context.  A possible context is called the credible context if it has no intersection with a minimal impossible context and if all its strict extensions have an intersection with a minimal impossible context. In the following, and in accordance with common practice, we invariably use the notions of conjunction of formulae (for example: c1 ∧ c2) or of set of formulae (for example: {c1, c2}) to designate the same object. A conjunction of thoughts also means a context. Example Let a, b and c be three atomic propositions of Lp, and c1, c2, c3, c4 and c5 be five thoughts. Consider the following set:

ELc = {c1 → a, c2 → ¬ a, c3 → b, c4 → ¬ b, c5 → c} c1 ∧ c2
and c3 ∧ c4 are the only two minimal impossible contexts. So, c5 is the credible context, and there are four maximal contexts: {c1, c3, c5}, {c1, c4, c5}, {c2, c3, c5} and {c2, c4, c5}.

We see that, for a given theory, there are possibly several maximal contexts (potentially empty) and a single credible context (potentially empty). They are obtained by calculating the minimal impossible contexts in a first step. The different possible combinations of thoughts then produce them.

We use these definitions to define the function that identifies the contexts considered most relevant for semantic interpretation. Definition Let ELc be a theory of Lc, S be a stimulus, i and j be two integers such that 0 < i < j, and k be the maximal rank of the thoughts of ELc. The relevant contexts are defined as follows:

 calculation of the maximal epistemic contexts: if k < j then there is an empty maximal epistemic context, else calculation on {ELc, S} of the maximal contexts of rank j to k,  then enrichment of each maximal epistemic context C, by the credible context of rank i to j-1 on {ELc, S, C}. This defines the set of epistemic contexts. It is denoted CELc, S, i, j.

This definition presents the notion of epistemic contexts. They are the most relevant sets of thoughts, which meets the need we identified earlier. Other definitions are possible, for example by using the ranks of thoughts more finely. Epistemic contexts are sufficient for the modelling needs presented in this article.

Example Let a and b be two atomic propositions of Lp, c1 and c2 be two thoughts of rank 1, and c3 and c4 be two thoughts of rank 2. Consider the following set:

ELc = {c1 → a, c2 → ¬ b, c3 → c1, c4 → ¬ c1} Let i=1
and j=2, and we consider the stimulus is empty. {c3, c4} is incoherent, so {c3} and {c4} are the two maximal contexts of rank 2. Let's add to each the credible context of rank 1 associated with it to calculate the two epistemic contexts. We obtain:

 {c1, c2} is the credible context of rank 1 considering {ELc, S, c3}, so we have {c3, c1, c2},  {c2} is the credible context of rank 1 considering {ELc, S, c4}, so we have {c4, c2}. We are now able to define the semantic interpretation function of Lc. Definition Let ELc be a theory, S be a stimulus and i and j be two integers such that 0 < i < j. Considering ELc, S, i and j, a sentence f, called a piece of belief, is said: This definition presents the basic semantic interpretation function of Lc. It can be enriched, for example by distinguishing true formulae in all semantic perspectives. This version is sufficient for the modelling needs presented in this article. Example Let us return to the epistemic contexts of the previous example. We obtain:  {c3, c1, c2}: the associated semantic perspective says that a is true and b is false,  {c4, c2}: the associated semantic perspective says that b is false.

 conceivable if,
So, according to the semantic vocabulary of Lc, a is credible and b is improbable.

We have just presented the mathematical definition of the semantic interpretation function of Lc. This is not compatible with our natural language habits. Therefore, we will allow ourselves some linguistic shortcuts, for example: a context is said to be a belief or a piece of knowledge, and vice versa, a semantic perspective is said to be a perspective, a conceivable expression is said to be true and false, or possible, a credible expression is said to be true, conceivable, or possible, and an improbable expression is said to be false, conceivable, incredible, or impossible. We will use them in a way that does not create confusion.

The properties of Lc

We now present the properties of Lc. We remain on a technical observation and not discuss their relevance. Indeed, each property echoes philosophical concepts and deserves a dedicated article. The debates are rich, and there are as many defenders as detractors. We do not bring new philosophical elements to enrich these exchanges -only a few practical findings that we will share in paragraphs 6 and 7.

To facilitate the understanding of what is to come, we propose to illustrate the principles of Lc with some small diagrams. Consider the following set:

It is syntactically inconsistent, and it has no semantic meaning according to contextual postulate. Let us apply it by enriching the set of atomic propositions with the thoughts c1, c2, c3, c4, c5, c6, c7 and c8 such that:

The resulting set ELc is a kind of dictionary of thoughts: each thought ci is expressed by a formula fi. It is syntactically consistent even though the thoughts may be semantically incoherent with each other. This result is obtained at the cost of an absolute uncertainty: all thoughts are potentially false.

To analyse a situation (formalised by a stimulus), Lc identifies the set of relevant thoughts concerning it.

In this example (presented for illustrative purposes only), the stimulus S1 generates the semantic perspective P1. Its epistemic context is {c1, c2, c3}. c1, c2 and c3 are the most relevant thoughts considering S1. Assume another stimulus S2: S2 is seen through two mutually incoherent semantic perspectives P2 and P3.

The syntax production function is monotonic

Lc respects the syntax of the propositional logic and is therefore syntactically monotonic: whatever f and g are contextually well-formed formulae, if a theory ELc produces f then {ELc, g} produces f. Note that the syntactic interpretation function is mechanically also monotonic.

The semantic interpretation function is non-monotonic

Lc decorrelates the syntactic interpretation function from the semantic interpretation function. Syntax produces a set of formulae according to the rules of the contextualised formalism. Semantics then provides an interpretation by analysing the behaviour of the thoughts in the models of the theory. They are considered as they are produced by the syntactic rules of Lp.

The models of a theory can change if a new piece of knowledge is introduced. So, CELc, i, j must be recalculated in this case, and Lc has a non-monotonic semantic: considering a stimulus S, a formula f can be credible considering {ELc, S} and incredible considering {{ELc, g}, S}, for g a contextual well-formed formula. We present some examples of use in the following paragraphs. The semantic is faillibilistic Non-monotonicity is a matter of completeness of knowledge: a belief that is true in one state may be false in an enriched state. Faillibilism (K. Popper [13]) is a more radical philosophical principle. It assumes that knowledge is impossible: all belief can, at any time, be questionedand possibly contradicted.

A consequence of contextual postulate is that every proposition (which is not an axiom) is possibly false. To avoid this, the solution is to consider that what is not explicitly false is credible and will remain so until it is explicitly contradicted or challenged. We illustrate this with some examples which we develop in the following paragraphs. The semantic is perspectivistic Perspectivism (F. Kaulbach [7]) refers to philosophical doctrines that defend the idea that our perception of reality is composed of the sum of the perspectives we have on it.

In Lc, belief is not the consequence of a global point of view built on the whole of thoughts, but the juxtaposition of several points of view built from distinct subsets of thoughts each considered to be relevant.

Atomic propositions of Lp are attributes and not assertions

In Lc, a mechanical consequence of the application of contextual postulate is that it is not possible to deduce that a proposition is true or false according to Lp. A proposition can only be interpreted in relation to a set of thoughts, called a context. It characterises it. Consider, for example, the sentence:

"If Tweety is a bird, then it flies". Its modelling in predicate logic can be:

Bird(Tweety) → Fly(Tweety) In Lc, this assertion is modelled by: {c1 → (Tweety → Bird), c2 → (Bird → Fly)} which allows for several readings -for example: Bird and Fly are attributes of the stimulus Tweety if we consider the context {c1, c2}.

Reasoning is introspective

By distinguishing expression and thought, and by modelling a relationship between them, contextual postulate brings a capacity for introspective reasoning to the formal language: the thoughts can reason about themselves using the constraints carried by the sentences that express them.

We have finished with the presentation of Lc. The following sections show how to use its properties to provide answers to the two last difficulties identified in paragraph 3 (the first being covered as we have just observed).

Considering the definition of epistemic contexts, i and j can theoretically take any value. According to the work of J. Pitrat [12], there are probably cognitive thresholds limiting human reasoning abilities. In the rest of this document, we use the thresholds 2 and 3, which are sufficient to cover the expected level of expressiveness expected in this article.

We will see in paragraph 7 for what we reserve rank 1. And by writing convention, we now note ci,j the thoughts. i singularizes the atomic proposition and j indicates its rank. Considering the set of thoughts {c10,2, c20,2, c30,2, c40,2}, we assume the following theory:

Modelling an inconsistent information

ELc = {c10,2 → (a → b), c20,2 → (a → ¬ b), c30,2 → c, c40
,2 → a} Note that thoughts name formulas, which will allow us to carry out introspective reasoning. ELc is consistent, and there is an incoherence between the three thoughts c10,2, c20,2, and c40,2 because: {ELc, c10,2, c20,2, c40,2} ⊢Lp b ∧ ¬ b {c10,2, c20,2, c40,2} is a minimal impossible context. So, {c30,2} is the only epistemic context. If the stimulus is empty, we obtain one perspective which says {c}, and {a, c} if the stimulus is {a}. This is a first result showing the possibility of exploiting inconsistent beliefs in Lc. The solution is to get around the problem by considering that the thoughts c10,2, c20,2 and c40,2 are not credible because they produce an inconsistency.

We now want to address this inconsistency, by modelling that a → b (i.e., the thought c10,2) is not always true -or, put differently, is sometimes true and sometimes false. Let's use two new thoughts, c11,3 and c12,3:

ELc = {c10,2 → (a → b), c11,3 → c10,2, c12,3 → ¬ c10,2, c20,2 → (a → ¬ b), c30,2 → c, c40,2 → a}
Considering a is the stimulus, let's calculate the epistemic contexts. There are 2 maximum contexts of rank 3: {c11,3} and {c12,3}. Let us extend each of them to their associated credible contexts of rank 2:

 considering {ELc, a, c11,3}, {c20,2, c40,2} is the only minimal impossible context, so {c10,2, c30,2} is the credible context of the rank 2 in this case,  considering {ELc, a, c12,3}, {c10,2} is the only minimal impossible context, and {c20,2, c30,2, c40,2} is the credible context in this. In fine, considering the stimulus {a}, we obtain two epistemic contexts:  {c11,3, c10,2, c30,2} which says {a, b, c} is true,  {c12,3, c20,2, c30,2, c40,2} which says {a, ¬ b, c} is true.

Taking a as the stimulus, we conclude that c is credible (or true), and that b is conceivable (or true and false). The formalism does this by modelling an epistemic information: the belief a → b (i.e., c10,2) is true (what c11,3 formalises) and false (what c12,3 formalises).

We have used a single contradiction {c11,3, c12,3} to illustrate our point. If multiple contradictions (two contradictions {cx1,3, cx2,3} and {cy1,3, cy2,3} for example), the different cases are managed on the maximal epistemic contexts ({cx1,3, cy1,3}, {cx1,3, cy2,3}, {cx2,3, cy1,3}, and {cx2,3, cy2,3} with the example).

We obtain by combination the set of relevant perspectives. This is illustrated in the example that we develop at the end of this article.

Comparison with other formalisms

In this section, we point out the major gaps in the treatment of inconsistent or incomplete information between Lc and other non-classical formalisms.

The first and, from our point of view, the main difference is that contextual logic does not quit the syntax of propositional logic. Contrary to what is commonly shared, it is not necessary to add new connectors or to modify the syntactic rules of Lp to model a notion of inconsistency. It's not the only gap.

Paraconsistent and multivalued logics aim to tolerate inconsistencies by escaping the principle of explosion. The approach, theorised by J. Lukaszewicz [10], is either to weaken Aristotle's principles to limit the inferential capacities of language or to add a third truth value to indicate that the piece of knowledge concerned is both true and false.

Lc addresses the issue of uncertainty and inconsistency through its perspectivistic property: it models that something is simultaneously true according to some thoughts and false according to others. Lc is therefore not a paraconsistent or a multivalued formalism: it preserves the syntactic rules of Lp. Therefore, it does not escape the principle of explosion. If one retains a reference context that syntactically produces f ∧ ¬ f, then it produces any belief g whatsoever.

Inconsistency is accepted in the semantic interpretation of Lc. It remains non-tolerable in its syntax.

Another difference between Lc and other non-classical formalisms is its faillibilistic property: noting that nothing is true, it takes as credible what is possible. This property gives Lc a particular behaviour, which does not allow it to fully capture modal logics or default logics, for example.

Default logic is proposed by R. Reiter [15]. To reason with uncertain information, he extends production rules by expressions of the form (a : b / c) which read:

If a is true and if b is possible then c is produced In Lc, the thought that b is possible "generates the thought b". However, related to R. Reiter's syntax, Lc's expressiveness is limited to normal default rules, of the form (a : b / b) [8].

Modal epistemic logics extend the expressiveness of languages by adding a new connector for reasoning about the quality of the interpretative value. The most widely used epistemic modal connector is the alethic connector ◻. ◻ f usually expresses that f is necessary, and its dual ¬◻¬ f, denoted ◇ f, that f is possible. The language relies on the semantics of possible worlds of S.A. Kripke [9] to benefit from a syntactic interpretation function of ◻.

We have proposed a relationship between modal epistemic logics and Lc [8]. This requires an evolution of the definition of epistemic context, using ranks to capture the imbrications of the monadic connector (rank i for ◻, rank i+1 for ◻◻, etc.). It models the sets {◻ f} and {◇ f, ◇¬ f}, but the set restricted to {◇ f} is interpreted as {◻ f}: f is considered necessary if the possibility of its opposite is not explicitly expressed.

The behaviour of Lc is equivalent to adding a default rule to the K system: {◇ f : ◻ f / ◻ f}. In the framework of Kripke's semantics, this expression can be understood as:

If I know an accessible world in which f is true, and if I do not know an accessible world in which ¬ f is true, then I consider that f is true in all accessible worlds. Paraconsistent, default and modal epistemic logics deal with the issue of incoherence by evolving the syntactic capabilities of the language. D. Batens proposes another approach [3]. He considers that there are several reasoning strategies, and that the solution consists in choosing the one that is best adapted to the situation. These are adaptive logics. For example, let be the following set of formulae: ELa = {¬ p, ¬ q, p ∨ q, p ∨ r, q ∨ r} It is incoherent, and therefore explosive in the context of propositional logic because {¬ p, ¬ q} contradicts p ∨ q. If one adopts a strategy favouring reliable reasoning, it is not possible to deduce r: it would be unwise to conclude anything using the first three formulae. However, if we choose a strategy that minimises abnormalities, and assume that at least two of the first three formulae are true, then r is produced.

In contextual logic, the set becomes:

ELc = {c1,2 → ¬ p, c2,2 → ¬ q, c3,2 → p ∨ q, c4,2 → p ∨ r, c5,2 → q ∨ r}
Assume that the stimulus is empty. {c4,2, c5,2} is the reference context because {c1,2, c2,2, c3,2} is a minimal impossible context. As far as we know, r is not interpretable. Using epistemic contexts that retain the maximal credible contexts at rank 2 is therefore a prudent strategy.

So, Lc is not an adaptive logic. Both formalisms have the capacity to adapt their semantic interpretation to local characteristics: Lc chooses to use or not a thought depending on the stimulus. But its principle is not to adapt its reasoning according to the typology of the situation. It uses a unique analysis strategy, based on the definition of epistemic contexts.

We end this comparative section with the circumscription logic of J. McCarthy [11]. It consists in extending the set of atomic propositions by some atomic propositions that indicate the epistemic character of a formula. For example, "a → b is true except in atypical cases" is modelled by ((a → b) ∨ abnormal).

The atomic proposition abnormal carries the exceptional behaviours when needed. The models of the theory are then analysed to select those that minimise the abnormalities.

This approach, which consists in seeking a solution by enriching the set of atomic propositions and then analysing the models of the theory, is most certainly the closest to ours. We have shown that contextual logic can capture its expressive capacity by adapting the definition of epistemic contexts to meet the minimality criterion [8].

However, beyond this result, the choice to minimise abnormalities seems reasonable but can easily be questioned with use cases. This difficulty is shared with adaptive logics, or more generally with the concept of epistemic rooting proposed by P. Gardenfors and D. Makinson [6].

Indeed, these methods suppose the existence of an order relation (on pieces of knowledge or on reasoning strategies) which would oversee selecting the information in case of incoherence. In Lc, syntactic consistency is guaranteed. It is therefore not necessary to manage this in the formalism.

Modelling a predicate information

Lp sees a proposition as a whole, which is given a universal value. It is necessary to decompose this whole when we wish to use a singular value. To this end, predicate logic meets this need by allowing the desired relationship to be modelled directly in the elementary proposition.

It then becomes possible to model that Socrates is a man, and to deduce that Socrates is mortal because a man is mortal: Man(Socrates) Man(Socrates) → Mortal(Socrates) This syllogism uses the link between Man and Socrates to deduce the association with Mortal. In this context, G. Frege [5] theorised the notion of universal quantifier.

As a classical example of use: ∀ x Man(x) → Mortal(x) which reads: whatever x is, if x is a man then x is mortal. We note two enrichments with respect to the native modelling capabilities of the propositional logic:

 the notion of the universal quantifier ∀. We will come back to the subject of universal connectors or universal quantifier at the paragraph 9,  the possibility of breaking down an atomic proposition of Lp into several singular instances. In our example, the proposition he is a man is modelled by using two distinct units, Man and x. The expression Man(x) creates a syntactic relationship, which formalises a semantic link, between these two-unit elements. x then allows to create a semantic link between the two propositions Man(x) and Mortal(x). We have seen in paragraph 3 that it is not possible to model a relation between two atomic propositions in Lp because of the symmetric behaviour of connectors. We now present how this point can be solved in Lc.

Suppose in Lp the set of propositions {a, b, c, d, e, f} and the following theory:

ELp = {a → b, c → d, a → ¬ c, c → (a → e), c → (a → f)}
We want to model that a → e is a predicate of c -i.e., c is the subject of a → e. The problem is that the formula c → (a → e) is syntactically equivalent to a → (c → e). Now, consider the following set in Lc:

ELc = {c10,2 → (a → b), c20,2 → (c → d), c30,2 → (a → ¬ c), c40,2 → (c → c41,1), c41,1 → (a → e), c50,2 → (c → (a → f))} c40,2
and c41,1 model the predicative piece of knowledge. They break the syntactic symmetry and introduce two new pieces of information: the predicate is syntactically distinguished by the thought c41,1, and c40,2 says that c41,1 is true if the subject c is true. It is important to note that c41,1 is of rank 1, so, by definition, it does not belong to an epistemic context. It only appears later, in the contexts in which c40,2 is true if c is true.

Let c ∧ a be the stimulus. {c10,2, c20,2, c40,2, c50,2} is its epistemic context. The perspective associated says {c, a, b, d, e, f, c41,1}. The presence of c41,1 indicates that a → e is a predicate, but the relationship with its subject c is not apparent. It can be found by applying the following method:

 calculate the perspectives of the stimulus c. It says {c, ¬ a, d, c41,1}. The predicate c41,1 is obtained by c40,2,  calculate the perspectives of the stimulus a. It says {a, ¬ c, b}. The thought c41,1 is not syntactically produced,  apply the predicates associated with each perspective to the other perspectives. This produces {e} by applying c41,1 to the perspective of a. e is associated with the stimulus c associated with the applied predicate,  and finally, calculate the perspectives of the stimulus c ∧ a. This produces {f}. If the thought of a predicate appears in a perspective, then it expresses that its subject is its stimulus. Unlike in predicate logic, the notion of predicate is not carried by the syntax of Lc. It is interpreted from the semantics of perspectives. This method extends the consumption of epistemic contexts by a recursive function:

The semantics of a composite universe is obtained by crossing the semantics of the objects that compose it. The semantics of a universe composed of three objects A, B and C can only be partially obtained by analysing the perspectives of A ∧ B ∧ C. To obtain a complete perception, we must analyse {A}, {B}, {C}, {A, B}, {A, C}, {B, C} and {A, B, C} separately, and cross-reference the properties associated with these seven different objects.

We call this method the generalised contextual semantics. It allows exhaustively capturing the characteristics of each object, of each combination of objects, and to calculate cross-predictive inferences. It seems to produce redundancies. We have not studied whether technical optimizations are possible.

An example of application

After presenting the theoretical principles of contextual logic, we propose to develop an example of application to clarify our purpose, and to illustrate the knowledge modelling capabilities of Lc. To do this, we use the example of the bird Tweety, a classical case study in the literature on non-monotonicity and belief revision. Example Consider the following knowledge, which we call the ENL (for Natural Language) set: Birds and felines are animals (01 and 02) . Birds are not felines (03) . Animals are diurnal (04) . Diurnal animals are not nocturnal (05) . Birds fly (06) . They are insectivorous (07) and gregarious (08) . Felines are carnivorous (09) and solitary [START_REF] Lukaszewicz | Many-Valued Systems of Propositional Logic[END_REF] . Solitaires are not gregarious [START_REF] Mccarthy | Circumscription -A Form of Non-Monotonic Reasonnig[END_REF] . Insectivores are not carnivorous [START_REF] Pitrat | Méta-connaissance, Futur de l'Intelligence Artificielle[END_REF] . Swallows, sparrows, ostriches, and owls are birds (13, 14, 15 and 16) . Swallows are not sparrows [START_REF] Thayse | Approche logique de l'Intelligence Artificielle[END_REF] , ostriches [START_REF] Wittgenstein | Tractatus logico-philosophicus[END_REF] , or owls (19) . Sparrows are not ostriches (20) or owls (21) . Ostriches are not owls (22) . Ostriches do not fly (23) . Owls are solitary (24) , nocturnal (25) , carnivorous (26) , and insectivorous (27) . Cats and lions are felines (28 and 29) . Cats are not lions (30) . Cats are nocturnal (31) . Lions are gregarious (32) . Carnivores are hunters (33) . Herbivores are prey for hunters (34) . Hunters attack prey (35) . If the prey is larger than the hunter, the latter does not attack (36) . Ostriches are larger than cats [START_REF]Herbivore → (Hunter → Prey) 35 Hunter → (Prey → Attack) 36 Hunter → (Prey → (Larger → ¬ Attack)) Ostrich → (Cat → Larger) 38 Ostrich → (Owl → Larger) After application to the whole of ENL, we obtain: 01 c010.2 → (Bird → Animal) 02 c020.2 → (Feline → Animal) 03 c030.2 → (Bird → ¬ Feline) 04 c040.2 → (Animal → Diurnal) c041.3 → c040.2 c042.3 → ¬ c040.2 05 c050.2 → (Diurnal → ¬ Nocturnal) 06 c060.2 → (Bird → Fly) c061.3 → c060.2 c062.3 → c060.2 07 c070.2 → (Bird → Insectivore) c071.3 → c070.2 c072.3 → ¬ c070.2 08 c080.2 → (Bird → Gregarious) c081.3 → c080.2 c082.3 → ¬ c080.2 09 c090.2 → (Feline → Carnivore) 10 c100.2 → (Feline → Solitary) c101.3 → c100.2 c102.3 → ¬ c100.2 11 c110.2 → (Gregarious → ¬ Solitary) 12 c120.2 → (Insectivore → ¬ Carnivore) c121[END_REF] and owls (38) .

ENL contains a lot of inconsistent, epistemic, and predicative information -for example: birds fly and do not fly, birds are insectivores and carnivorous, and hunters attack prey (and not the reverse).

We have chosen to take a relatively large knowledge base to model several cross-cases, and we will develop below the example in detail. What follows is therefore quite tedious to read. We apologize to the readers for this. The objective is to give them enough element to reproduce the exercise if they wish.

This knowledge is deemed to escape the syntax of propositional logic. We are however going to show that it is sufficient to model and exploit them.

In Let us consider that the knowledge is entered in the order in which it appears, according to the following algorithm:

For each formula fi

If fi has a subject, then PK Else Creating the thought ci0,2 Creating the formula ci0,2 → fi If there is a contradiction, then EM

We assume there is a monitor accompanying the learning. For example, we don't have a grammatical module allowing us to identify the subjects of each sentence. So, the system queries its instructor. Up to formula 34, the instructor's response is that there is none. Indeed, the identification of the subject is not always necessary. Doing it systematically would only make the presentation more cumbersome.

The sentences are processed one after the other (the description of the modules EM and PK will come later). 01 c010.2 → (Bird → Animal) 02 c020.2 → (Feline → Animal) .. 24 c240.2 → (Owl → Solitary)

The formula is integrated, and the system tested its semantic consistency. Until formula 23, there is no question. The formula 24 is then integrated, and a potential inconsistency is detected: owls are birds [START_REF] Siegel | Représentation et utilisation de la connaissance en calcul propositionnel[END_REF] , birds are gregarious (08) , owls are solitary (24) and gregarious is not solitary [START_REF] Mccarthy | Circumscription -A Form of Non-Monotonic Reasonnig[END_REF] . So, owls do not exist, or they are solitary and not solitary.

We consider that there is no automatic solution to resolve an inconsistency. The properties of Lc make it possible to record it as it arrives, and additional information can possibly bring precision. For this, the system interrogates its instructor. He has three possible answers:

1) he does not know, or he considers it is normal: the semantic inconsistency is accepted, and the system moves on to the next step, 2) he indicates that one of the pieces of knowledge involved in the inconsistency is false. In this case, the system applies the EM module to the indicated formula, 3) he indicates that one of the pieces of knowledge involved in the inconsistency is true and false: it is an alethic information. In this case, birds are gregarious (08) is sometimes true and sometimes false. Then the system applies the EM module to the indicated formula. The EM module is:

if fi is false // Case 2
Creating the thoughts ci2,3

Creating the formula ci2,3 → ¬ ci0,2 // The combinatorics on the maximal contexts // of Tm means that ci0,2 will no longer be // retained in the epistemic contexts else if fi is true and false // Case 3

Creating the thoughts ci1,3 et ci2,3

Creating the formula ci1,3 → ci0,2 Creating the formula ci2,3 → ¬ ci0,2

We identify below the formulae that are affected by this module. We will only use the third last case which is the most interesting. We come to the formula number 34: Herbivore → (Hunter → Prey). Before integration, the system asks if it contains a subject.

Until now, we had not used this possibility so as not to make the presentation unnecessarily heavy. But, within the framework of this formula, the identification of the subject is necessary. So, the answer is yes, for Herbivore. The PK module is then applied: // fi is a clause, so it is of type g → h // with g is a conjunction of literals // and h is a disjunction of literals // g is indicated by the instructor Creating the thoughts ci0,2 et ci3,1 Creating the formula ci0,2 → g → ci3,1 Creating the formula ci3,1 → h

We identify below the formulae that are affected by this module.

c352. sparrow is in a bad way, but the ostrich can go about its business,  and if the stimulus is {Lion, Ostrich}: the ostrich would have some reason to be worried.

Informatic tool

The different steps are described in detail, which probably makes reading tedious at times. The goal is to allow the readers to control and to reproduce the process if they wish.

We use a classical propositional logic solver to calculate the minimum inconsistent contexts, and a classical combinatorial algorithm using the minimum inconsistent contexts to calculate the epistemic contexts.

These tools are common and easily accessible. We hold those which we developed at the disposal of the readers who would like it.

Use case

We use the example of Tweety, which may seem simplistic or even naive. Its first interest is to be understandable by all, while illustrating all the theoretical problems of non-monotonicity and of belief revision.

Any other subject could have done the trick. The syntactic and semantic rules used were defined by the theory, and we did not integrate any behavioural rules specific to the subject.

Modelled information

While strictly preserving the syntactic rules of propositional logic, Lc allows us to define a semantic function on the models of the theories of Lp. It exploits:

 semantically incoherent pieces of knowledge: Birds fly. Ostriches are birds. Ostriches do not fly (thoughts c060,2, c150,2 and c230,2),  predicative pieces of knowledge: Herbivores are prey for hunters (thoughts c340,2 and c343,1),  and alethic modal pieces of knowledge: Birds are generally insectivorous (thoughts c070,2, c071,3 and c072,3). The example contains several different cases to illustrate their use thanks to the combinatorics calculated for the identification of reference contexts. And we have adjoined a case which simultaneously uses a predicate and an alethic modality: Hunter → (Prey → Attack) (thought c350,2). It is false if the prey is large (thought c360,2).

Some points of clarification and opening

In the previous paragraphs, we have certainly not answered all the questions that our presentation raises. But there are also some topics that we have deliberately skimmed over so as not to make our remarks totally indigestible. We are not going to develop them, for the same reason. But, for readers who wish to explore these concepts in more depth, we offer to list them below, in a thought-provoking format.

The notion of subject

We do not use the notion of subject on all formulas. In absolute terms, this should have been done in the first sentence. But the result would have been unreadable, without any contribution to what we wished to demonstrate.

In fact, this remark is not insignificant. It raises some questions as: are we saying the same thing with a → b and ¬ b → ¬ a? The question is about the meaning of connectors. It has been extensively studied, notably by J. Lukaszewicz [10].

Without elaborating on the subject, let us point out to readers interested in this topic that Lc proposes an answer. c → f says that if c is true then f is true. But if c is false, then f can be true or false. The fact that a thought is false does not imply that the expression that describes it is false in the sense of syntactic interpretation.

Thoughts

They are indeed silent atomic propositions. They appear completely automatically in the syntax. In the algorithms of paragraph 10, the communication interface with the instructor does not see them, and only acts through the sentences of Lp.

Conjunctive normal form

To expand the example, we have chosen to associate a new thought with each clause of the conjunctive normal form of the theory. This has an impact on the semantic interpretation: for the same stimulus, the interpretation of the set {c1 → f, c2 → g} may be different from that which would be obtained on the set {c → f ∧ g}.

Our choice has no theoretical basis. It is pragmatic: the conversion of a set of formulae into its conjunctive normal form is achieved by a linear algorithm, and each clause identifies a unique formula and therefore a unique thought. We have chosen the simplest technical solution.

Epistemic context

Concerning the semantic interpretation function, we propose the definition of epistemic contexts to identify the relevant sets of thoughts. Other definitions are possible.

Another method, perhaps more purist, would have consisted in giving the different possible definitions and comparing their mathematical properties. It requires a lot of methodical work that we have not done.

Universal connector

A difference between predicate logic and contextual logic is that the latter has no universal quantifier.

In fact, Lc natively models a form of quantifier. For example, assume a knowledge base consisting of a single piece of information: {c → (Bird → Fly)}. This says that Birds fly. Given this piece of knowledge, it would be the same to say All bird fly.

Lc is faillibilistic. In this context, asserting that a state is universal does not make sense: a state is universal as long as it is not contradicted. In the same vein, epistemic modalities are not expressed by a dedicated connector, but are deduced from a semantic interpretation.

Stimulus

Contextual logic introduces the notion of stimulus. Its concept is necessary to generate a possible reaction. We use it in the different examples as an imposed external event f. Relations with facts are carried by thoughts, according to an anchoring principle that remains to be defined.

Conclusion

Contextual logic is obtained by applying the contextual postulate on propositional logic. It proposes to formalise a relation between thoughts and languages. This brings the possibility of modelling an introspective reasoning.

The principle of proof is the foundation of mathematical philosophy. But introspective reasoning automatically generates the impossibility to demonstrate that something is true. Faced with the need for decidability, Lc uses the principle of non-refutability, which is backed by faillibilism and perspectivism. These are some old and still open subjects (H. Albert [1] and W. Quine [14] for example). Our work proposes to reconcile the different theories, by an answer based on a "semantic of uncertainty" modelled by a "certain syntax".

The historical ambition of logic is to model the process of human reasoning. This article, by presenting an application of the contextual postulate, performs a first clearing. It addresses, or rather it flies over, some basic concepts of AI, mixing mathematics, computer science, philosophy, and cognitive science. We are especially aware that this presentation leaves many open questions.

The syntactic dimension of formal languages is a vast field of work. For many years, it has been the subject of substantial studies, and many discoveries probably remain to be made in this area. Our contribution is to show that the syntax of the simplest known formal language, namely propositional logic, is sufficient to model complex reasoning which until now was deemed to escape it.

Contextual logic has a non-monotonic semantic and exploits some inconsistent information and some predicative forms. We obtain this by remaining in the syntax of Lp. By presenting this result, we invite to study the possibilities of enriching the semantic interpretation capacities of formal language theories by revisiting the definitions and meanings associated with atomic propositions.

  For example, consider a set of Lp's propositions {a, b, c} and let be the following set:ELp = {a → b, a → ¬ b, c, a} It is inconsistent because ELp ⊢Lp b ∧ ¬ b. ButELp has no meaning according to contextual postulate. Let us now place ourselves in the contextual logic framework.

  CELc, S, i, j} is called a semantic perspective.

						is
	no	epistemic	context	C2	such	that
	{ELc, S, C2} ⊨Lp ¬ f,				
	 improbable if, and only if, there is at least one
	epistemic context C1 such that {ELc, S, C1} ⊨Lp ¬ f,
	and there is no epistemic context C2 such that
	{ELc, S, C2} ⊨Lp f,				
	 not interpretable in other cases.		
	{ELc, S, C ∈					

and only if, there is at least one epistemic context C1 such that {ELc, S, C1} ⊨Lp f, and there is at least one epistemic context C2 such that {ELc, S, C2} ⊨Lp ¬ f,  credible if, and only if, there is at least one epistemic context C1 such that {ELc, S, C1} ⊨Lp f, and there

  a first time, we propose to translate it into the syntax of Lp by the following formulae.

	04 Animal → Diurnal)
	05 Diurnal → ¬ Nocturnal
	06 Bird → Fly
	07 Bird → Insectivore
	08 Bird → Gregarious
	09 Feline → Carnivore
	10 Feline → Solitary
	11 Gregarious → ¬ Solitary
	12 Insectivore → ¬ Carnivore
	13 Swallow → Bird
	14 Sparrow → Bird
	15 Ostrich → Bird
	16 Owl → Bird
	17 Swallow → ¬ Sparrow
	18 Swallow → ¬ Ostrich
	19 Swallow → ¬ Owl
	20 Sparrow → ¬ Ostrich
	21 Sparrow → ¬ Owl
	22 Ostrich → ¬ Owl
	23 Ostrich → ¬ Fly
	24 Owl → Solitary
	25 Owl → Nocturnal
	26 Owl → Carnivore
	27 Owl → Insectivore
	28 Cat → Feline
	29 Lion → Feline
	30 Cat → ¬ Lion
	31 Cat → Nocturnal
	32 Lion → Gregarious
	33 Carnivore → Hunter
	34 Herbivore → (Hunter → Prey)
	35 Hunter → (Prey → Attack)
	36 Hunter → (Prey → (Larger → ¬ Attack))
	37 Ostrich → (Cat → Larger)
	38 Ostrich → (Owl → Larger)
	01 Bird → Animal
	02 Feline → Animal
	03 Bird → ¬ Feline

  We have converted ENL into a set ELc that is a theory of Lp. It is consistent. Lc uses the syntactic rules of propositional logic. Here are some examples obtained by applying the generalised contextual semantic:  if the stimulus is Bird: birds are animals, diurnal, gregarious, insectivore, and fly,  if the stimulus is Swallow: swallows are birds, animals, diurnal, gregarious, insectivore, and fly,  if the stimulus is Ostrich: ostriches are birds, animal, diurnal, gregarious, insectivore, and do not fly,  if the stimulus is Owl: owls are birds, animals, nocturnal, solitary, carnivorous, and fly,  if the stimulus is Cat: cats are feline, animals, diurnal, carnivorous and solitary,  if the stimulus is Lion: lions are feline, animals, diurnal, carnivorous and gregarious,  if the stimulus is {Cat, Sparrow}: the sparrow is attacked,  if the stimulus is Owl, Sparrow, Ostrich}:

	3 → ¬ c350.2
	c353.1 → (Prey → Attack)
	36 c360.2 → (Hunter → c363.1)
	c363.1 → (Prey → (Larger → ¬ Attack))
	37 c370.2 → (Ostrich → c373.1)
	c373.1 → (Cat → Larger)
	38 c380.2 → (Ostrich → c383.1)
	c383.1 → (Owl → Larger)