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THE SINE KUMARASWAMY-G FAMILY OF DISTRIBUTIONS

CHRISTOPHE CHESNEAU 1, FARRUKH JAMAL 2

Abstract. In this paper, we introduce a new trigonometric family of continuous dis-
tributions called the sine Kumaraswamy-G family of distributions. It can be presented
as a natural extension of the well-established sine-G family of distributions, with new
perspectives in terms of applicability. We investigate the main mathematical proper-
ties of the sine Kumaraswamy-G family of distributions, including asymptotes, quantile
function, linear representations of the cumulative distribution and probability density
functions, moments, skewness, kurtosis, incomplete moments, weighted moments and
order statistics. Then, we focus our attention on a special member of this family called
the sine Kumaraswamy exponential distribution. The statistical inference for the related
parametric model is explored by using the maximum likelihood method. Among others,
asymptotic confidence intervals and likelihood ratio test for the parameters are discussed.
A simulation study is performed under varying sample size to assess the performance of
the model. Finally, applications to two practical data sets are presented to illustrate its
potentiality and robustness.

Keywords: Sine-G family of distributions; Kumaraswamy distribution; moments; practi-
cal data sets.
AMS Subject: 9A60; 62E15; 62H10.

1. Introduction

In recent years, much attention has been paid to the construction of trigonometric fam-
ilies of distributions. The advantage of these families are to keep a balance between a
relative simplicity in their definitions, allowing a perfect comprehension of their mathe-
matical properties, and a great applicability for modelling various kinds of practical data
sets. These two points follows from an appropriate use of flexible trigonometric functions.
To the best of our knowledge, the former trigonometric family of distributions is the sine-G
family of distributions introduced by [10]. A brief description of this family is presented
below. Let G(x) be the cumulative distribution function (cdf) of an univariate continuous
distribution and g(x) be the corresponding probability density function (pdf). Then, the
sine-G family of distributions is characterized by the cdf given by

F (x) = sin
(π

2
G(x)

)
, x ∈ R. (1)

The corresponding pdf is given by

f(x) =
π

2
g(x) cos

(π
2
G(x)

)
, x ∈ R.
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Thus, simple functions are involved and it is proved in [10] that the flexibility of G(x) can
be significantly enriched by the sine transformations. The related parametric models take
advantages of these properties for a nice fitting of various kinds of data sets. We refer
to [10] and [17], with the consideration of different baseline cdfs G(x). By exploiting the
flexible nature of various trigonometric transformations, other trigonometric families of
distributions have been developed. See, for instance, the cos-G family of distributions by
[17, Chapter 4], the tan-G family of distributions by [17, Chapter 5], the sec-G family of
distributions by [17, Chapter 6], the sec-G family of distributions by [17, Chapter 6], the
CS-G family of distributions by [1] and the e TransSC-G family of distributions by [8].

In this paper, we propose a new trigonometric family of continuous distributions, called
the sine Kumaraswamy-G family of distributions. It can be viewed as a ”two power shape
parameters generalization” of the former sin-G family of distributions. We describe it as
follows. Let a > 0, b > 0, G(x) be the cdf of an univariate continuous distribution and
g(x) be the corresponding pdf. Then, the sine Kumaraswamy-G family of distributions is
characterized by the cdf given by

F (x) = cos
(π

2
[1−G(x)a]b

)
, x ∈ R. (2)

The corresponding pdf is given by

f(x) =
π

2
abg(x)G(x)a−1[1−G(x)a]b−1 sin

(π
2

[1−G(x)a]b
)
, x ∈ R. (3)

As indicated by its name, by using a trigonometric formula, we can show that F (x) is
obtained by the composition of the sine-G cdf given by (1) and the Kumaraswamy-G
cdf given by H(x) = 1 − [1 − G(x)a]b, x ∈ R. Further details and applications on the
Kumaraswamy-G family of distributions can be found in [2], [13], [5] and [16]. The roles
of a and b are to add more flexibility to the former cdf G(x), allowing the construction
of models which take into account precise characteristics of various data sets. One can
notice that, for b = 1, F (x) becomes F (x) = sin ((π/2)G(x)a), which is the cdf of the
sine exp-G family of distribution (new in the literature to the best of our knowledge, but
very natural to consider) and for a = b = 1, we rediscover the cdf of the sine-G family
of distributions. The idea of combining trigonometric and Kumaraswamy-G families of
distributions finds trace in [17, Chapter 6], but for the sec-G family of distributions (not
the sine-G one) and with the specific Kumaraswamy-Weibull distribution as baseline (not
the general Kumaraswamy-G family of distributions, i.e., for any G(x)). Thus, the sine
Kumaraswamy-G family of distributions remains new in the literature and deserves a
complete study, which is the aim of this paper. After providing a comprehensive treatment
of its mathematical properties, we focus our attention on a special member of this family,
defined with the exponential distribution as baseline. It is called the sine Kumaraswamy
exponential distribution. Then, we consider it as a parametric statistical model, with
the estimation of the unknown parameters via the maximum likelihood method. We take
benefits of the existing convergence properties of this method to present a solid model
for data analysis. This is illustrated by the means of two practical sets. In particular,
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we show that the proposed model is better, in some sense, to well-recognized competitive
models of the literature.

The rest of the paper is organized as follows. In Section 2, the main features of the
sine Kumaraswamy-G family of distributions are explored. Then, the sine Kumaraswamy
exponential distribution is studied in detail in Section 3. In Section 4, it is considered
as parametric model, with a statistical inference study, including concrete applications.
Conclusions are given in Section 5

2. Main features

In this section, we investigate the main features of the sine Kumaraswamy-G family
of distributions. We recall that it is characterized by the cdf F (x) given by (2) and the
corresponding pdf f(x) is given by (3).

2.1. Main functions. We now express the main functions of interest of the sine Kumaraswamy-
G family of distributions. The corresponding survival function (sf) is given by

S(x) = 1− F (x) = 2
[
sin
(π

4
[1−G(x)a]b

)]2
, x ∈ R.

The corresponding hazard rate function (hrf) is given by

h(x) =
f(x)

S(x)
=
π

2
abg(x)G(x)a−1[1−G(x)a]b−1 cot

(π
4

[1−G(x)a]b
)
, x ∈ R.

The corresponding cumulative hazard rate function (chrf) is given by

Ω(x) = − log[S(x)] = − log(2)− 2 log
[
sin
(π

4
[1−G(x)a]b

)]
, x ∈ R.

Another central function of the sine Kumaraswamy-G family of distributions is the quantile
function (qf) given by

Q(y) = QG

[1−
{

2

π
arccos(y)

}1/b
]1/a , y ∈ (0, 1), (4)

where QG(y) denotes the qf corresponding to G(x). Let us recall that Q(y) is characterized
by the non-linear equation F (Q(y)) = Q(F (y)) = y, y ∈ (0, 1). The median is given by

M = QG

[1−
{

2

π
arccos(0.5)

}1/b
]1/a ,

with arccos(0.5) ≈ 1.04719755. The qf is also involved in the following key result: for
a random variable U having the uniform distribution on the unit interval, the random
variable X given by X = Q(U) has the cdf (2). Others uses of the qf will be developed in
the next.
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2.2. Asymptotic properties. Let us now investigate the asymptotic properties of the
functions F (x), f(x) and h(x). As G(x) → 0, using the equivalence (1 − ya)b ∼ 1 − bya
when y → 0, we have

F (x) ∼ π

2
bG(x)a, f(x) ∼ π

2
abg(x)G(x)a−1, h(x) ∼ π

2
abg(x)G(x)a−1.

As G(x)→ 1, using cos(y) ∼ 1− y2/2 when y → 0, we have

F (x) ∼ 1−π
2

8
[1−G(x)a]2b, f(x) ∼ π2

4
abg(x)[1−G(x)a]2b−1, h(x) ∼ 2abg(x)[1−G(x)a]−1.

The convergence and limits of f(x) and h(x) can not be determined in full generality; they
depend on a, b and the definition of G(x) (and g(x) a fortiori).

2.3. Critical points. The critical points of f(x), say x0, satisfy the following equation:
[log(f(x)]′ |x=x0= 0, i.e.,

g′(x0)

g(x0)
+ (a− 1)

g(x0)

G(x0)
− (b− 1)

ag(x0)G(x0)
a−1

1−G(x0)a

− π

2
abg(x0)G(x0)

a−1[1−G(x0)
a]b−1 cot

(π
2

[1−G(x0)
a]b
)

= 0. (5)

By investigating the sign of τ = [log(f(x)]′′ |x=x0 , we can determine the nature of x0; it
corresponds to a local maximum if τ < 0, , a local minimum if τ > 0 and a point of
inflection if τ = 0.

Similarly, the critical points of h(x), say x∗, satisfy the following equation: [log(h(x)]′ |x=x∗=
0, i.e.,

g′(x∗)

g(x∗)
+ (a− 1)

g(x∗)

G(x∗)
− (b− 1)

ag(x∗)G(x∗)
a−1

1−G(x∗)a

+
π

2
abg(x∗)G(x∗)

a−1[1−G(x∗)
a]b−1

[
cot
(π

4
[1−G(x∗)

a]b
)
− cot

(π
2

[1−G(x∗)
a]b
)]

= 0.

(6)

Also, the sign of θ = [log(h(x)]′′ |x=x∗ is informative concerning the nature of x∗.

2.4. Linear representations. Here, some linear representations for F (x) and f(x) are
determined. It follows from the series expansion of the cosine function that

F (x) = cos
(π

2
[1−G(x)a]b

)
=

+∞∑
k=0

(−1)k

(2k)!

π2k

22k
[1−G(x)a]2bk.

Then, the generalized binomial formula gives

[1−G(x)a]2bk =

+∞∑
`=0

(
2bk

`

)
(−1)`G(x)a`,
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where
(
2bk
`

)
= 2bk(2bk−1) . . . (2bk−`+1)/`!. We immediately deduce the following linear

representation for F (x):

F (x) =

+∞∑
`=0

a`G(x)a`, a` = (−1)`
+∞∑
k=0

(−1)k

(2k)!

π2k

22k

(
2bk

`

)
. (7)

By differentiation, we obtain the following linear representation for f(x):

f(x) =
+∞∑
`=0

a`[a`g(x)G(x)a`−1]. (8)

Thus, some mathematical properties of the sine Kumaraswamy-G family of distributions
can be derived from these expansions and those of the properties of the exp-G family of
distribution.

Alternatively, one can investigate linear representations for F (x) and f(x) in terms of
the survival function corresponding to G(x), i.e., SG(x) = 1 − G(x). This can be more
useful if SG(x) is more tractable than G(x). By using the generalized binomial formula,
we have

G(x)a` =

+∞∑
m=0

(
a`

m

)
(−1)mSG(x)m.

It follows from (7) that

F (x) =
+∞∑
m=0

bmSG(x)m, bm = (−1)m
+∞∑
`=0

(
a`

m

)
a`. (9)

By differentiation, we obtain the following linear representation for f(x):

f(x) =
+∞∑
m=0

b∗m
[
mg(x)SG(x)m−1

]
, b∗m = −bm. (10)

Applications of (9) and (10) will be proposed in Section 3 for a given cdf G(x).

2.5. Moments. Hereafter, it is supposed that all the presented quantities exist (integral,
sum. . . ).

Let r be an integer. Then, the r-th moment of the sine Kumaraswamy-G family of
distributions is given by

µ′r =

∫ +∞

−∞
xrf(x)dx

=

∫ +∞

−∞
xr
π

2
abg(x)G(x)a−1[1−G(x)a]b−1 sin

(π
2

[1−G(x)a]b
)
dx.
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By applying the change of variable x = Q(y), where Q(y) denotes the qf given by (4), we
get

µ′r =

∫ 1

0
Q(y)rdy =

∫ 1

0

QG
[1−

{
2

π
arccos(y)

}1/b
]1/ar dy.

This integral may be not expressed simply with standard integral techniques. However, in
most of the cases, for given G(x), a, b and r, it can be evaluated numerically by the use
of a modern mathematical software.

Alternatively, linear representations of µ′r can be derived to (8) or (10), according to
the definition of G(x). Indeed, by using (8), we have

µ′r =

+∞∑
`=0

a`

∫ +∞

−∞
xr
[
a`g(x)G(x)a`−1

]
dx =

+∞∑
`=0

a`

∫ 1

0

[
a`ya`−1QG(y)r

]
dy.

Similarly, by using (10), we obtain

µ′r =
+∞∑
m=0

b∗m

∫ +∞

−∞
xr
[
mg(x)SG(x)m−1

]
dx =

+∞∑
m=0

b∗m

∫ 1

0

[
mym−1QG(1− y)r

]
dy. (11)

Especially, the mean is given by µ = µ′1 and the variance is given by σ2 = µ′2 − µ2. Also,
the r-th central moment is given by

µr =

∫ +∞

−∞
(x− µ)rf(x)dx =

r∑
k=0

(
r

k

)
(−1)k(µ′1)

kµ′r−k

and the r-th descending factorial moment is given by

µ′(r) =

∫ +∞

−∞
x(x− 1)(x− r + 1)f(x)dx =

r∑
k=0

ssti(r, k)µ′k,

where ssti(r, k) denotes the Stirling number of the first kind defined by ssti(r, k) = (1/k!)[x(x−
1) . . . (x−r+1)](k) |x=0. We end this subsection by mentioning that the moment generating
function can be obtained with arguments similar to those used for µ′r.

2.6. Skewness and kurtosis. In the context of (probability) distributions, let us recall
that the skewness corresponds to the asymmetry and the kurtosis corresponds to the
tailedness. A skewness measure is given by

CS =
µ3

µ
3/2
2

=
µ′3 − 3µ′2µ+ 2µ3

σ3
. (12)

A kurtosis measure is given by

CK =
µ4
µ22

=
µ′4 − 4µ′3µ+ 6µ′2µ

2 − 3µ′4
σ4

. (13)
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If the moments do not exist (mainly depending on the definition of G(x)), we can envisage
measures of skewness and kurtosis depending on the qf given by (4). For instance, for a
skewness measure, we can use the Bowley skewness given by

B =
Q(3/4) +Q(1/4)− 2Q(2/4)

Q(3/4)−Q(1/4)
.

See [9]. For a kurtosis measure, we can use the Moors kurtosis given by

M =
Q(3/8)−Q(1/8) +Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

Details and applications can be found in [12].

2.7. Incomplete mean and consorts. Let t ∈ R. The incomplete mean of the sine
Kumaraswamy-G family of distributions is given by

µ∗(t) =

∫ t

−∞
xf(x)dx =

∫ t

−∞
x
π

2
abg(x)G(x)a−1[1−G(x)a]b−1 sin

(π
2

[1−G(x)a]b
)
dx.

Equivalently, we have

µ∗(t) =

∫ cos(π2 [1−G(t)a]b)

0

QG
[1−

{
2

π
arccos(y)

}1/b
]1/ar dy.

For given G(x), a, b and t, this integral can be evaluated numerically.
Alternatively, we can use the linear representation given by (8) and (10). Indeed, by

using (8), we have

µ∗(t) =
+∞∑
`=0

a`

∫ t

−∞
x
[
a`g(x)G(x)a`−1

]
dx =

+∞∑
`=0

a`

∫ G(t)

0

[
a`ya`−1QG(y)

]
dy.

Similarly, by using (10), we obtain

µ∗(t) =
+∞∑
m=0

b∗m

∫ t

−∞
x
[
mg(x)SG(x)m−1

]
dx =

+∞∑
m=0

b∗m

∫ 1

SG(t)

[
mym−1QG(1− y)

]
dy.

From these expressions, several probabilistic quantities involving µ∗(t) can be expressed.
This is the case for the mean deviation about the mean given by

δ1 =

∫ +∞

−∞
|x− µ|f(x)dx = 2µF (µ)− 2µ∗(µ) = 2µ cos

(π
2

[1−G(µ)a]b
)
− 2µ∗(µ).

One can also mention the mean deviation about the median given by δ2 =
∫ +∞
−∞ |x −

M |f(x)dx = µ − 2µ∗(M), the mean residual life given by m(t) = [1 − µ∗(t)]/S(t) − t,
the mean waiting time given by M(t) = t − µ∗(t)/F (t), the Bonferroni curve given by
B(y) = µ∗(Q(y))/(yµ) with y ∈ (0, 1) and the Lorenz curve given by L(y) = µ∗(Q(y))/µ
with y ∈ (0, 1).
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2.8. Weighted moments. Let r and s be two integers. We now investigate the (r, s)-th
weighted moment of the sine Kumaraswamy-G family of distributions defined by

µ′r,s =

∫ +∞

−∞
xrF (x)sf(x)dx

=

∫ +∞

−∞
xr
[
cos
(π

2
[1−G(x)a]b

)]s π
2
abg(x)G(x)a−1[1−G(x)a]b−1 sin

(π
2

[1−G(x)a]b
)
dx.

Note that µ′r,0 = µ′r. Such weighted moment naturally appears for the moment of the

order statistics, as we will see later. Another expression of µ′r,s is given by

µ′r,s =

∫ 1

0
ys

QG
[1−

{
2

π
arccos(y)

}1/b
]1/ar dy.

For given G(x), a, b, r and s, this integral can be evaluated numerically.
Alternatively, one can also investigate a linear representation for µ′r,s in terms of (raw)

moments. Indeed, by applying a result established by [6, Section 0.314], we have

F (x)s+1 =
[
cos
(π

2
[1−G(x)a]b

)]s+1
=

[
+∞∑
k=0

(−1)k

(2k)!

π2k

22k
[1−G(x)a]2bk

]s+1

=
+∞∑
k=0

cs,k[1−G(x)a]2bk,

where cs,0 = 1 and, for any k ≥ 1,

cs,k =
1

k

k∑
`=1

[`(s+ 2)− k]
(−1)`

(2`)!

π2`

22`
cs,k−`.

The generalized binomial formula gives

[1−G(x)a]2bk =
+∞∑
`=0

(
2bk

`

)
(−1)`G(x)a`.

So,

F (x)s+1 =

+∞∑
`=0

ds,`G(x)a`, ds,` = (−1)`
+∞∑
k=0

cs,k

(
2bk

`

)
.

Hence, by differentiation, we have

F (x)sf(x) =

+∞∑
`=0

d∗s,`

[
a`g(x)G(x)a`−1

]
, d∗s,` =

ds,`
s+ 1

.
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Therefore,

µ′r,s =

+∞∑
`=0

d∗s,`

∫ +∞

−∞
xr
[
a`g(x)G(x)a`−1

]
dx =

+∞∑
`=0

d∗s,`

∫ 1

0

[
a`ya`−1QG(y)r

]
dy. (14)

In terms of SG(x), by using the generalized binomial formula, we have

F (x)s+1 =
+∞∑
m=0

es,mSG(x)m, es,m = (−1)m
+∞∑
`=0

ds,`

(
α`

m

)
.

Hence, by differentiation, we have

F (x)sf(x) =

+∞∑
m=0

e∗s,m
[
mg(x)SG(x)m−1

]
, e∗s,m = −

es,`
s+ 1

.

So,

µ′r,s =
+∞∑
m=0

e∗s,m

∫ +∞

−∞
xr
[
mg(x)SG(x)m−1

]
dx =

+∞∑
m=0

e∗s,m

∫ 1

0

[
mym−1QG(1− y)r

]
dy.

(15)

2.9. Order statistics. Here, we focus on the order statistics related to the sine Kumaraswamy-
G family of distributions. LetX1, . . . , Xn be the random sample having the sine Kumaraswamy-
G cdf given by (2) and Xi:n be the i-th order statistic, i.e., the i-th random variable such
that, by arranging X1, . . . , Xn in increasing order, we have X1:n ≤ X2:n ≤ . . . ≤ Xn:n.
The complete theory about order statistics can be found in [4]. In particular, in our
mathematical context, the cdf of Xi:n is given by

Fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k

k + i

(
n− i
k

)
F (x)k+i

=
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k

k + i

(
n− i
k

)[
cos
(π

2
[1−G(x)a]b

)]k+i
, x > 0.

The corresponding pdf is given by

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n− i
k

)
f(x)F (x)k+i−1

=
n!

(i− 1)!(n− i)!
f(x)F (x)i−1S(x)n−i

=
n!

(i− 1)!(n− i)!
2n−i−1πabg(x)G(x)a−1[1−G(x)a]b−1 sin

(π
2

[1−G(x)a]b
)

[
cos
(π

2
[1−G(x)a]b

)]i−1 [
sin
(π

4
[1−G(x)a]b

)]2(n−i)
.
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In particular, the pdf corresponding to the first order statistics, i.e., X1:n = inf(X1, X2, . . . , Xn),
is given by

f1:n(x) = n2n−2πabg(x)G(x)a−1[1−G(x)a]b−1 sin
(π

2
[1−G(x)a]b

) [
sin
(π

4
[1−G(x)a]b

)]2(n−1)
and the pdf corresponding to the last order statistics, i.e., Xn:n = sup(X1, X2, . . . , Xn), is
given by

fn:n(x) = n
π

2
abg(x)G(x)a−1[1−G(x)a]b−1 sin

(π
2

[1−G(x)a]b
) [

cos
(π

2
[1−G(x)a]b

)]n−1
.

Several kinds of moments can be obtained from fi:n(x). In particular, the r-th moment of
Xi:n is given by

µor = E(Xr
i:n) =

∫ +∞

−∞
xrfi:n(x)dx.

It can be calculated at least numerically for given G(x), a, b and r. Alternatively, it can
be expressed via the weighted moments given by (14). Indeed, we have

µor =

∫ +∞

−∞
xrfi:n(x)dx

=
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n− i
k

)∫ ∞
−∞

xrf(x)F (x)k+i−1dx

=
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n− i
k

)
µ′r,k+i−1. (16)

Again, this integral can be evaluated numerically.

3. The sine Kumaraswamy exponential distribution

This section is devoted to a special member of the sine Kumaraswamy-G family of
distributions called the sine Kumaraswamy exponential (SKE) distribution.

3.1. Definition and main functions. As indicated by its name, the SKE distribution
is the member of the sine Kumaraswamy-G family of distributions defined with the expo-
nential distribution with parameter λ > 0 as baseline. Hence, it is characterized by the
cdf given by (2) with the cdf G(x) = 1− e−λx, x > 0, i.e.,

F (x) = cos
(π

2
[1− (1− e−λx)a]b

)
, x > 0. (17)

One can remark that, for a = b = 1, we have F (x) = cos
(
(π/2)e−λx

)
, the cdf of the SE

distribution introduced by [10].
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The pdf corresponding to (17) is given by

f(x) =
π

2
abλe−λx(1− e−λx)a−1[1− (1− e−λx)a]b−1 sin

(π
2

[1− (1− e−λx)a]b
)
, x > 0.

(18)

The corresponding sf is given by

S(x) = 2
[
sin
(π

4
[1− (1− e−λx)a]b

)]2
, x ∈ R.

The corresponding hrf is given by

h(x) =
π

2
abλe−λx(1− e−λx)a−1[1− (1− e−λx)a]b−1 cot

(π
4

[1− (1− e−λx)a]b
)
, x > 0.

The corresponding chrf is given by

Ω(x) = − log(2)− 2 log
[
sin
(π

4
[1− (1− e−λx)a]b

)]
, x > 0.

The corresponding qf is given by

Q(y) = − 1

λ
log

1−

[
1−

{
2

π
arccos(y)

}1/b
]1/a , y ∈ (0, 1). (19)

Median, quartiles and octiles can be derived, as well as other results.

3.2. Some properties. All the properties exhibited in Section 2 for the general sine
Kumaraswamy-G family of distributions can be applied for the SKE distribution with the
functions G(x) = 1−e−λx, x > 0, g(x) = λe−λx and QG(y) = −(1/λ) log(1−y), y ∈ (0, 1).
The most significant of them, with numerical illustrations, are presented below.

As x→ 0, we have

F (x) ∼ π

2
bλaxa, f(x) ∼ π

2
abλaxa−1, h(x) ∼ π

2
abλaxa−1.

We can remark that, if a < 1, we have f(x) → +∞, if a = 1, we have f(x) → (π/2)bλ,
and if a > 1, we have f(x)→ 0. The same limits hold for h(x).

As x→ +∞, we have

F (x) ∼ 1− π2

8
a2be−2bλx, f(x) ∼ π2

4
bλa2be−2bλx, h(x) ∼ 2abλ.

Therefore, for all the values of the parameters, we have f(x)→ 0 and h(x)→ 2abλ.
By using (5) and (6), the critical points of f(x), say x0, satisfy the following equation:

− λ2 + (a− 1)
λe−λx0

1− e−λx0
− (b− 1)

aλe−λx0(1− e−λx0)a−1

1− (1− e−λx0)a

− π

2
abλe−λx0(1− e−λx0)a−1[1− (1− e−λx0)a]b−1 cot

(π
2

[1− (1− e−λx0)a]b
)

= 0
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and the critical points of h(x), say x∗, satisfy the following equation:

− λ2 + (a− 1)
λe−λx∗

1− e−λx∗
− (b− 1)

aλe−λx∗(1− e−λx∗)a−1

1− (1− e−λx∗)a

+
π

2
abλe−λx∗(1− e−λx∗)a−1[1− (1− e−λx∗)a]b−1×[

cot
(π

4
[1− (1− e−λx∗)a]b

)
− cot

(π
2

[1− (1− e−λx∗)a]b
)]

= 0.

They can be evaluated numerically. We illustrate the shapes of f(x) and h(x) in Figure 1
for selected values of a, b and λ.
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Figure 1. Plots of some (a) SKE pdfs and (b) SKE hrfs for selected values
of a, b and λ.

Also, by (10), we can express f(x) as an infinite linear combinations of exponential
pdfs, i.e.,

f(x) =

+∞∑
m=0

b∗m[mλe−λmx], x > 0.

Let r be an integer. Then, the r-th moment of the SKE distribution exists. It can be
expressed as integrals as in (11) or as the following linear representation:

µ′r =
+∞∑
m=0

b∗m

∫ +∞

0
xr[mλe−λmx]dx = λ−rΓ(r + 1)

+∞∑
m=0

b∗mm
−r,
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where Γ(x) =
∫ +∞
0 ux−1e−udu (the gamma function). Table 1 presents the numerical

values of the moments of order 1, 2, 3 and 4, the variance σ2, the coefficient of skewness
CS and the coefficient of kurtosis CK defined by (12) and (13) respectively, for selected
values of a, b and λ.

Table 1. Some moments, skewness and kurtosis of X for SKE distribution
for the following selected parameters values in order (a, b, λ); (i): (1, 2, 5),
(ii): (3, 2, 5), (iii): (1.5, 1, 5) (iv): (1.5, 0.5, 0.5) (v): (5, 6, 0.5) and (vi):
(30, 6, 0.5) .

(i) (ii) (iii) (iv) (v) (vi)

µ′1 0.1984 0.0974 0.0742 0.2809 10.7531 1.3342
µ′2 0.05637 0.0128 0.2613 2575.5120 126.3263 1.8944
µ′3 0.02077 0.0020 0.4247 172252.4 1599.5430 2.8323
µ′4 0.0094 0.0004 0.0005 0.9924 21625.63 4.4266
σ2 0.0169 0.0033 0.0049 0.1823 10.6944 0.1141
CS 1.2845 1.00650 1.8457 3.1944 0.3182 0.0014
CK 5.5791 4.4545 8.1281 18.6453 3.1172 2.8808

Other kinds of moments can be expressed. For instance, for t ≥ 0, the incomplete r-th
moment of the SKE distribution is given by

µ∗r(t) =

+∞∑
m=0

b∗m

∫ t

0
xr[mλe−λmx]dx = λ−r

+∞∑
m=0

b∗mm
−rγ(r + 1, λmt),

where γ(x, t) =
∫ t
0 u

x−1e−udu (the lower incomplete gamma function).
Similarly, using (15), the r-th weighted moment of the SKE distribution is given by

µ′r,s =
+∞∑
m=0

e∗s,m

∫ +∞

0
xr[mλe−λmx]dx = λ−rΓ(r + 1)

+∞∑
m=0

e∗s,mm
−r,

Finally, we mention that all the results on order statistics are presented in Subsection 2.9
can be applied, with the use of the weighted moments to express the (raw) moments of
the i-th order statistic, as described in (16).

4. Estimation, simulation and applications

In this section, we investigate the SKE model governed by the cdf given by (17) (and
the pdf given by (18)).

4.1. Estimation. We now investigate the estimation of the parameters a, b and λ of
the SKE model by using the maximum likelihood method, ensuring nice convergence
properties of the obtained estimates called the maximum likelihood estimates (MLEs).
Among others, they can be used to construct approximate confidence intervals for a, b
and λ and test statistics. The essential of the method adapted to the SKE distribution
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is presented below. Let x1, . . . , xn be a sample of size n from the SKE distribution with
parameters a, b and λ. The likelihood function for the vector of parameters Θ = (a, b, λ)>

is given by

L(Θ) =
n∏
i=1

f(xi)

=
(π

2
abλ
)n n∏

i=1

e−λxi(1− e−λxi)a−1[1− (1− e−λxi)a]b−1 sin
(π

2
[1− (1− e−λxi)a]b

)
.

The corresponding log-likelihood function is given by

`(Θ) = log [L(Θ)]

= n log
(π

2

)
+ n log(a) + n log(b) + n log(λ)− λ

n∑
i=1

xi + (a− 1)
n∑
i=1

log
(

1− e−λxi
)

+ (b− 1)
n∑
i=1

log
[
1− (1− e−λxi)a

]
+

n∑
i=1

log
[
sin
(π

2
[1− (1− e−λxi)a]b

)]
.

Then, the corresponding score vector is given by U(Θ) = (Ua(Θ), Ub(Θ), Uλ(Θ))> with

Ua(Θ) =
∂

∂a
`(Θ) =

n

a
+

n∑
i=1

log
(

1− e−λxi
)
− (b− 1)

n∑
i=1

(1− e−λxi)a log(1− e−λxi)
1− (1− e−λxi)a

− π

2
b

n∑
i=1

(1− e−λxi)a log(1− e−λxi)[1− (1− e−λxi)a]b−1 cot
(π

2
[1− (1− e−λxi)a]b

)
,

Ub(Θ) =
∂

∂b
`(Θ) =

n

b
+

n∑
i=1

log
[
1− (1− e−λxi)a

]
+
π

2

n∑
i=1

[1− (1− e−λxi)a]b log
[
1− (1− e−λxi)a

]
cot
(π

2
[1− (1− e−λxi)a]b

)
,

Uλ(Θ) =
∂

∂λ
`(Θ) =

n

λ
−

n∑
i=1

xi + (a− 1)
n∑
i=1

xie
−λxi

1− e−λxi
− a(b− 1)

n∑
i=1

xie
−λxi(1− e−λxi)a−1

1− (1− e−λxi)a

− π

2
ab

n∑
i=1

xie
−λxi(1− e−λxi)a−1[1− (1− e−λxi)a]b−1 cot

(π
2

[1− (1− e−λxi)a]b
)
.

The MLEs of a, b and λ, denoted by â, b̂ and λ̂ respectively, satisfy the system U(Θ̂) =

(0, 0, 0)>, with Θ̂ = (â, b̂, λ̂)>. There are no closed form for these estimates. However,
hey can be obtained numerically with useful iterative algorithms (see [14]). Under reg-

ularity conditions, the subjacent distribution of Θ̂ can be approximated by a 3 dimen-
sional normal distribution with mean Θ and covariance matrix given by J(Θ̂)−1, where
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J(Θ) = −∂2`(Θ)/∂Θ∂ΘT . Then, for h ∈ {a, b, λ}, an approximate confidence interval for
h at the level 100(1− ω)% is given by

CIh = [ĥ− zωsĥ, ĥ+ zωsĥ], (20)

where sĥ is the square-root of the diagonal element of J(Θ̂)−1 at the same position as h
and zω = QZ(1−ω/2), where QZ(x) is the quantile function of a standard normal random
variable Z. Note that, for ω = 0.05, we have zω = 1.959964 and for ω = 0.01, we have
zω = 2.575829.

The likelihood ratio (LR) statistics for testing goodness-of-fit of the SKE model with
its sub-models can also be described. Thus, we can consider hypotheses of the form:
H0 : Θ = Θ0 versus H1 : Θ 6= Θ0, where Θ0 denotes a vector of 3 fixed values. In this
case, the LR statistics is given by

LR = 2[`(Θ̂)− `(Θ0)], (21)

where Θ̂0 contains the MLEs of a, b and λ under H0. Then, if H0 is assumed to be
true, the subjacent distribution of LR converges in distribution to a random variable K
following the chi square distribution with r degrees of freedom, where r is equal to the
difference between the number of parameters estimated in the general case and the number
of parameters estimated under H0. The corresponding p-value is given by

p = P(K > LR). (22)

In our study, it is useful to check if the SKE model is superior to a fit using the SE model,
i.e, with cdf F (x) = cos

(
(π/2)e−λx

)
, for a given data set.

4.2. Simulation. The following result in distribution holds. For a random variable U
following the uniform distribution on the unit interval, by using the qf given by (19), the
random variable X defined by

X = Q(U) = − 1

λ
log

1−

[
1−

{
2

π
arccos(U)

}1/b
]1/a

follows the SKE distribution with parameters a, b and λ. Based on this result, we can
simulate data distributed following the SKE distribution. Here, we use this result to
evaluate the performance of the MLEs of the SKE parameters via a graphical Monte Carlo
simulation study. All the computations are done by using the software R. We generate
N = 3000 samples samples of size n = 20, 40, ..., 500 from the SKE distribution with true
parameters values I: a = 2.5, b = 5, λ = 1.5, II: a = 2.5, b = 3 , λ = 1.5 and III: a = 2.5,
b = 5.5 , λ = 3. We also calculate the mean square error (MSE) of the MLEs empirically.
For h ∈ {a, b, λ}, we consider the empirical MSE corresponding to h is given by

MSEh =
1

N

N∑
i=1

(ĥi − h)2,
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where ĥi denotes the MLE of h obtained at the i-th repetition of the simulation. The
obtained results are given in Figures 2, 3 and 4.
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Figure 2. The MSE plots for the selected parameter values I for the SKE
distribution, i.e., a = 2.5, b = 5, λ = 1.5.
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Figure 3. The MSE plots for the selected parameter values II for the SKE
distribution, i.e., a = 2.5, b = 3 , λ = 1.5 .



The Sine Kumaraswamy-G family of distributions 17

(a) (b) (c)

0 100 200 300 400 500

0
1

2
3

4

n

M
S

E
(a

)

0 100 200 300 400 500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

n

M
S

E
(b

)

0 100 200 300 400 500

0
2

4
6

8

n

M
S

E
(λ

)

Figure 4. The MSE plots for the selected parameter values III for the
SKE distribution, i.e., a = 2.5, b = 5.5 , λ = 3.

In each figure, we observe that, when the sample size increases, the empirical MSEs tend
to zero in all cases. This is consistent with the subjacent theory of the MLEs ensuring the
theoretical L2 convergence.

4.3. Applications. In this subsection, the flexibility of the SKE model is shown by means
of two real data sets. Also, the SKE model is compared with the four competitive models

listed in Table 2. The following standard statistics are used: −̂̀ (where ̂̀ denotes the
maximized log-likelihood), AIC (Akaike information criterion), BIC (Bayesian informa-
tion criterion), CVM (Cramér-Von Mises), AD (Anderson-Darling) and KS (Kolmogorov
Smirnov), consistent Akaike information criterion (CAIC), and Hannan-Quinn information
criterion (HQIC). All the computations are done by using the software R.

Table 2. The considered competitive models of the SKE model.

Model Reference
Kumaraswamy Weibull (KW) [3]
Beta Weibull (BW) [11]
CS transformation of exponential (CS1E) [1]
Exponential (E) Standard

The first application is a real data set given by [7]. It consists of thirty successive values
of March precipitation (in inches) in Minneapolis/St Paul. The data are: 0.77, 1.74, 0.81,
1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59,
0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.

The second data set represent the tensile strength data measured in GPa for single
carbon fibers. It is from [15]. The data are: 0.312, 0.314, 0.479, 0.552, 0.700, 0.803, 0.861,
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0.865, 0.944, 0.958, 0.966, 0.997, 1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179,
1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434,
1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642,
1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821, 1.848, 1.880, 1.954,
2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585.

Analysis of data set 1. For data set 1, descriptive statistics are given in Table 3. In
particular, we see that the subjacent distribution of data set 1 is left-skewed (skewness
estimated to 1.0866) with a non-negligible tail (kurtosis estimated to 1.2068). Table 4
provides the values of goodness-of-fit measures for the SKE model and other fitted models.
We see that the SKE model has the lowest statistics, indicating that it provides a better
fit to the considered competitors. The MLEs and their corresponding standard errors
(SEs) (in parentheses) are listed in Table 5. The probability-probability (P-P), quantile-
quantile (Q-Q), empirical probability density function (epdf) and empirical cumulative
density function (ecdf) plots of the SKE are shown in Figure 5. In each cases, a nice fit
is observed, indicating that the SKE model is appropriate for the analysis of data set 1.
To complete this analysis, we provide in Table 6 the approximation confidence intervals
of the parameters of the SKE model (see (20)). The levels 95% and 99% are considered.
Finally, a LR test with the hypotheses: H0 : a = b = 1 versus H1 : a 6= 1 or b 6= 1, is
performed in Table 7 (the formulas (21) and (22) are used). The p-value, using the chi
square distribution with 2 degree of freedom, satisfies p-value < 0.0001. This shows the
importance of the parameters a and b in terms of fit for data set 1 in comparison to the
former SE model.

Table 3. Some descriptive statistics for data set 1.

Statistics N Mean Median Variance skewness kurtosis
Data set 1 30 1.6750 1.4700 1.0012 1.0866 1.2068

Table 4. Goodness-of-fit measures for data set 1.

Model −̂̀ AIC BIC CAIC HQIC KS CVM AD
SKE 36.8774 81.1549 85.3585 82.0780 82.4997 0.0635 0.0112 0.1041

KW 37.9766 83.9533 89.5581 85.5533 85.7463 0.0681 0.0148 0.1065

BW 38.0700 84.1400 89.7448 85.7400 85.9330 0.0631 0.0144 0.1045

CS1E 41.8522 89.7045 93.9081 90.6276 91.0493 0.0964 0.0702 0.4887

E 45.4743 92.9480 94.3499 93.0916 93.3970 0.2351 0.0195 0.1086
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Table 5. MLEs and SEs (in parentheses) for data set 1.

Model Estimates
SKE 3.7201 0.3802 1.5250

(a, b, λ) (0.6010) (0.1086) (0.2959)

KW 2.8788 0.1685 2.9571 1.4502

(a, b, α, β) (1.4350) (0.0467) (0.1595) (0.1688)

BW 0.3536 0.8078 4.4861 5.5074

(a, b, α, β) (2.7762) (0.9862) (9.9203) (2.1934)

CS1E 0.8412 9.7350 0.5383

(α, θ, λ) (1.3128) (1.5192) (0.0865)

E 0.5969

(λ) (0.1089)
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Figure 5. P-P, Q-Q, epdf and ecdf plots of the BCG-HC distribution for
data set 1.
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Table 6. Confidence intervals for the parameters of the KSE model for
data set 1.

CI a b λ
95% [2.5421 4.4989] [0.1673 0.5930] [0.9450 2.1049]
99% [2.1695 5.2706] [0.1000 0.6603] [0.7615 2.2884]

Table 7. LR test for data set 1.

Idea H0 LR p-value
SKE versus SE [10] a = b = 1 17.1938 < 0.001 (***)
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Analysis of data set 2. For data set 2, we adopt the same methodology to the one
used for data set 1. Thus, some descriptive statistics are presented in Table 8. Since the
estimated skewness is close to zero, the subjacent distribution is near symmetric around
its mean. The values of the goodness-of-fit measures for the SKE model and other fitted
models are collected in Table 9, whereas the MLEs and their corresponding SEs are listed
in Table 10. Again, we see that the SKE model has the lowest statistics, indicating that it
is statistically superior to the competitor. The P-P, Q-Q, epdf and ecdf plots of the SKE
are presented in Figure 6. We see nice fits, indicating that the SKE model is good choice
for the analysis of data set 2. Then, we provide the approximation confidence intervals
of the parameters of the SKE model in Table 11, for the levels 95% and 99%. Finally, a
LR test with the hypotheses: H0 : a = b = 1 versus H1 : a 6= 1 or b 6= 1, is performed in
Table 12. The p-value satisfies p-value < 0.0001, indicating that the SKE model is again
preferable to the SE model.

Table 8. Some descriptive statistics for data set 2.

Statistics N Mean Median Variance skewness kurtosis
Data set 2 69 1.4513 1.4780 0.2451 -0.02821 -0.05927

Table 9. Goodness-of-fit measures for data set 2.

Model −̂̀ AIC BIC CAIC HQIC KS CVM AD
SKE 48.1311 104.2624 110.9647 104.6316 106.9214 0.0455 0.0211 0.1977

KW 48.7684 105.5368 114.4733 106.1618 109.0822 0.0475 0.0226 0.1984

BW 48.8954 105.7908 114.7272 106.4158 109.3362 0.0480 0.0256 0.2217

CS1E 49.5405 105.0810 111.7833 105.4502 107.7400 0.0487 0.0279 0.1989

E 94.7013 191.4026 193.6367 191.4623 192.2890 0.3622 0.1238 0.8712
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Table 10. MLEs and SEs (in parentheses) for data set 2.

Model Estimates
SKE 3.5848 50.6984 0.2100

(a, b, λ) (0.5853) (4.0734) (0.1626)

KW 0.7268 0.1621 1.0308 3.5369

(a, b, α, β) (0.0052) (0.0186) (0.0218) (0.0086)

BW 0.3585 3.7827 0.7813 5.7953

(a, b, α, β) (2.0367) (1.2916) (0.4105) (2.5127)

CS1E 0.0916 10.7578 0.2785

(α, θ, λ) (1.0176) (11.6449) (0.0276)

E 0.5969

(λ) (0.1089)
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Figure 6. P-P, Q-Q, epdf and ecdf plots of the SKE distribution for data
set 2.
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Table 11. Confidence intervals for the parameters of the KSE model for
data set 2.

CI a b λ
95% [2.4376 4.3433] [42.7146 58.6822] [0 0.5286]
99% [2.0747 5.0948] [40.1890 61.2077] [0 0.6295]

Table 12. LR test for data set 2.

Idea H0 LR p-value
SKE versus SE [10] a = b = 1 93.1404 < 0.001 (***)
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5. Conclusions

In the last decade, the trigonometric families of distributions have received a lot of
attention, mainly thanks to their flexible properties in term of fitting a wide variety of
real data sets. In this study, we explore a natural extension of the sine-G family of distri-
butions, called the sine Kumaraswamy-G family of distributions. We investigate its main
mathematical properties, including asymptotes, quantile function, linear representations
of the cumulative distribution and probability density functions, moments, skewness and
kurtosis, incomplete moments, weighted moments and order statistics. Then, a special
focus is done on the sine Kumaraswamy exponential distribution, notable member of this
family. After presenting its mathematical features, we study the ability of the related
model in the fitting of data sets. The maximum likelihood method is used in to estimate
the unknown parameters and a simulation study give numerical guarantees of their perfor-
mances. Applications to two practical data sets are presented in details, showing that the
proposed model outperformed some strong well-established competitors in the literature.
We hope that the sine Kumaraswamy-G family of distributions and the related perspective
of models may attract wider applications in statistics in various areas.
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