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Substitutions and Möbius disjointness

We show that Sarnak's conjecture on Möbius disjointness holds for all subshifts given by bijective substitutions and some other similar dynamical systems, e.g. those generated by Rudin-Shapiro type sequences.

Introduction

In 2010, Sarnak [? ] formulated the following conjecture: for each zero entropy topological dynamical system pT, Xq (X is a compact metric space and T is a homeomorphism of X), each f P CpXq and x P X, we have (1)

1 N ÿ nďN f pT n xqµpnq Ñ 0,
where µ : N Ñ C is the Möbius function dened by µp1q " 1, µpp 1 ¨. . . ¨pk q " p´1q k for k dierent prime numbers p i , and µpnq " 0 for the remaining case.

The conjecture has already been proved in numerous cases, e.g. [? ? ? ? ? ? ? ? ? ? ? ? ? ? ].

The aim of the present paper is to show that Sarnak's conjecture holds for some classes of dynamical systems of number theoretic origin. Namely, for all dynamical systems given by bijective substitutions (a subclass of substitutions of constant length) [? ] and also for other related systems given by some automata (e.g. by the sequences of the Rudin-Shapiro type). Our approach is purely ergodic and our main tool is the theory of compact group extensions of rotations. Throughout, we deal with uniquely ergodic homeomorphisms, i.e. homeomorphisms possessing exactly one invariant measure (which has to be ergodic).

Given a bijective substitution θ over a nite alphabet A, we dene its group cover substitution θ over a subgroup G of permutations of A, which hence carries an additional natural group structure. Since the dynamical system pS, Xpθqq1 given by θ is a topological factor of the dynamical system pS, Xpθqq given by θ, it suces to show that Sarnak's conjecture holds for pS, Xpθqq. The group cover substitution θ can be identied with a certain (generalized) Morse sequence x and the associated dynamical system pS, Xpxqq is a Morse system. This is where compact group extensions come into play each Morse dynamical system is (measure-theoretically) isomorphic to a compact group extension pT ψ , X ˆGq given by a so called Morse cocycle ψ : X Ñ G over a rotation T , more precisely over an odometer pT, Xq.2 The main diculty is that such compact group extensions have been studied so far mostly from the measure-theoretic point of view [? ? ? ] (the dynamical systems under considerations are uniquely ergodic). The underlying reason and, at the same time, the main obstacle for us is that Morse cocycles are in general not continuous. Thus, we cannot deal directly with such models Sarnak's conjecture requires topological systems.

In order to bypass this diculty, more tools are used. The Morse dynamical system pS, Xpxqq turns out to have a Toeplitz dynamical system pS, Xpp xqq as a topological factor, which, in turn, is an almost 1-1-extension of the odometer pT, Xq. Moreover, the method of Toeplitz extensions [? ] allows us to nd a dynamical system topologically isomorphic to pS, Xpxqq, which also has a form of a compact group extension: pS ϕ , Xpp xq ˆGq given by a continuous cocycle ϕ : Xpp xq Ñ G. If we denote the (natural) factoring map from pS, Xpp xqq to pT, Xq by p, we have the following relation between the two cocycles: ϕ " ψ ˝p. Our goal will be to prove that Sarnak's conjecture holds for pS ϕ , Xpp xq ˆGq.

The passage to group substitutions seems to be unavoidable for our method. Indeed, we require that the substitution subshift has a topological factor, determined by a Toeplitz sequence, which is an almost 1-1 extension of the maximal equicontinuous factor (the underlying odometer) and is measure-theoretically isomorphic to it. However, in [? ], Section 4.4, it is proved that a bijective substitution need not have a symbolic factor which is measure-theoretically isomorphic to the maximal equicontinuous factor (this anwers a question raised by Baake). For example, this surprising property holds for the substitution The rst tool we use to deal with the continuous compact group extensions is the Katai-Bourgain-Sarnak-Ziegler criterion: Theorem 1.1 ([? ? ], see also [? ]). Assume that pa n q Ă C is bounded and suppose that

a Þ Ñ aabaa, b Þ Ñ bcabb and c Þ Ñ cbccc [? ].
1 N ÿ nďN a nr a ns Ñ 0
for all suciently large dierent prime numbers r, s. Then

1 N ÿ nďN a n λpnq Ñ 0 for each multiplicative 3 function λ : N Ñ C, |λ| ď 1.
This criterion is applied to sequences of the form a n " f pT n xq, n ě 1, and if satised, it yields a certain form of disjointness of dierent prime powers of 3 λ : N Ñ C is called multiplicative if λpm ¨nq " λpmq ¨λpnq whenever m, n are coprime.

It is called aperiodic whenever

1 N ř
nďN λpan `bq Ñ 0 for all a, b P N. The Möbius function µ is multiplicative and aperiodic. the homeomorphism T ; notice that suciently large in Theorem 1.1 may now depend on f and x.

Our second tool is based on the method of lifting generic points in the Cartesian products of dierent prime powers T r and T s to almost 1-1-extensions. It has already appeared in [? ], where the almost 1-1-extensions are chosen in such a way that the original cocycle considered on the extended space becomes continuous. Moreover, we will study ergodic joinings of pT ψ q r and pT ψ q s and show that in our case this set consists only of the relatively independent extensions of isomorphisms between T r and T s for dierent suciently large primes r, s. This will allow us to control generic points in the Cartesian product of the continuous compact group extension pS ϕ q r ˆpS ϕ q s . In Section 5, we give the main application of our method we prove Sarnak's conjecture for the dynamical systems given by:

• all bijective substitutions,

• certain subclass of regular (generalized) Morse sequences,

• certain sequences of the Rudin-Shapiro type.

In Section 6, we compare our results concerning generalized Morse sequences and the Rudin-Shapiro type sequences with some earlier results in which (1) has been proved only for f pyq " p´1q yr0s . Using spectral approach, we prove, in some cases, that the validity of (1) for such f yields Sarnak's conjecture in its full form for the corresponding dynamical system. In particular, we show that Sarnak's conjecture holds for the dynamical systems given by Kakutani sequences [? ? ].4 Sometimes, however, it seems that more than one function satisfying (1) is necessary for the validity of Sarnak's conjecture. E.g., this seems to happen for the dynamical systems given by the Rudin-Shapiro type sequences.

Here, (1) for f has been been proved in [? ? ] by a purely combinatorial approach. The methods developed in [? ] seem to be exible enough to give (1) for nitely many functions described in Section 6.3, hence yields one more proof of Sarnak's conjecture for the corresponding dynamical system.

In Section 6.4, we compare our results with a recent work of Veech [? ]. He provides a proof of Sarnak's conjecture for a class of dynamical systems given by some genearlizations of Kakutani sequences over an arbitrary compact group.

In particular, [? ] gives an alternative proof of Sarnak's conjecture for Kakutani systems.

2 Basic tools

Spectral theory

For an ergodic automorphism T of a standard probability Borel space pX, B, µq, we consider the associated Koopman operator on L 2 pX, B, µq given by U T pf q " f ˝T . Then there exist elements

f n P L 2 pX, B, µq, n ě 1, such that (2) L 2 pX, B, µq " à ně1
Zpf n q and σ f1 " σ f2 " . . . ,

where Zpf q " spantU n T pf q : n P Zu is the cyclic space generated by f and σ f denotes the only nite positive Borel measure on T such that ş X f ˝T n ¨f dµ " ş T z n dσ f pzq for each n P Z (σ f is called the spectral measure of f ). The class of all measures equivalent to σ f1 in the above decomposition is called the maximal spectral type of U T and (2) is called a spectral decomposition. We say that the maximal spectral type is realized by f P L 2 pX, B, µq if σ f is equivalent to σ f1 .

If L 2 pX, B, µq " Zpf 1 q ' ¨¨¨' Zpf k q for some f i P L 2 pX, B, µq, we say that U T has multiplicity at most k. 

Joinings

Recall that if T and S are ergodic automorphisms on pX, B, µq and pY, C, νq respectively, then by a joining between T and S we mean any T ˆS-invariant measure κ on pX ˆY, B b Cq whose projections on X and Y are µ and ν, respectively. We denote by JpT, Sq the set of joinings between T and S and by J e pT, Sq the subset of ergodic joinings. Clearly, µ b ν P JpT, Sq. If T and S are isomorphic, an isomorphism given by R : pX, B, µq Ñ pY, C, νq, then the measure µ R determined by µ R pB ˆCq " µpB X R ´1C q, B P B, C P C, belongs to J e pT, Sq. It is concentrated on the graph of R and is called a graph joining.

When T " S we speak about self-joinings of T and each graph self-joining is given by some element from the centralizer CpT q of T . 5 Suppose that T and S are isomorphic, where the isomorphism is given by R : X Ñ Y , and have extensions to T on pX, B, µq and S on pY , C, νq, respectively. The relatively independent extension of µ R (to a joining of T and S) is denoted by r µ R and determined by

ż XˆY F b G dr µ R " ż X
EpF |Xq ¨EpG|Y q ˝R dµ for F P L 2 pX, µq, G P L 2 pY , νq.

Compact group extensions

Assume that T is an ergodic automorphism of a standard Borel probability space pX, B, µq. Let G be a compact metric group with Haar measure m G .

Denition 2.1. Any measurable map ψ :

X Ñ G is called a cocycle. The automorphism T ψ of pX ˆG, B b BpGq, µ b m G q dened by
T ψ px, gq :" pT x, ψpxqgq is called a G-extension of T (it is an example of a compact group extension of T ). We say that ψ is ergodic if T ψ is ergodic.

5 The centralizer CpT q consists of automorphisms of pX, B, µq commuting with T .

Compact group extensions enjoy the following relative unique ergodicity property.

Lemma 2.1 ([? ]). If T ψ is ergodic (i.e. if the product measure µ b m G is ergodic) then µ b m G is the only T ψ -invariant measure projecting onto µ.

Let τ g be an automorphism of pX ˆG, µ b m G q given by τ g px, g 1 q " px, g 1 ¨gq for each g 1 P G.

Then T ψ ˝τg " τ g ˝Tψ , that is, τ g is an element of the centralizer CpT ψ q of T ψ .

Proposition 2.2 ([? ]). Assume that T is ergodic and ψ : X Ñ G is ergodic as well. Assume additionally that T has discrete spectrum. Then each r S P CpT ψ q is a lift of some S P CpT q. More precisely, r S " S f,v , where S f,v px, gq " pSx, f pxqvpgqq for some S P CpT q, some measurable f : X Ñ G and some continuous group automorphism v : G Ñ G. Moreover, if r S and S are two lifts of S P CpT q then r S " S ˝τg0 for some g 0 P G. Denition 2.2. We will say that T ψ has G-trivial centralizer if CpT ψ q " tT k ψ ˝τg : k P Z, g P Gu.

Denition Remark 2.3. Notice that a power of a group extension is clearly a group extension: pT ψ q r " T r ψ prq 6 and the passage to natural factors is commutative:

ppT ψ q r q H " pT ψH q r . We need some facts about joinings of compact group extensions.

Theorem 2.4 ([? ]). Assume that T is ergodic. Assume that S P CpT q and let ψ i : X Ñ G be an ergodic cocycle, i " 1, 2. Assume that κ P J e pT ψ1 , T ψ2 q and projects on the graph self-joining µ S of T . Then there are two closed normal subgroups H 1 , H 2 Ă G and an isomorphism S (a lift of S) between the two normal natural factors T ψ1H1 and T ψ2H2 such that

κ " Č pm G{H1 q S ,
i.e. κ is the relatively independent extension of the graph joining pm G{H1 q S P J e pT ψ1H1 , T ψ2H2 q given by the isomorphism S.

Remark 2.5. Suppose that T has rational discrete spectrum and pT ψ q r and pT ψ q s are ergodic. Then T r and T s are isomorphic and the only ergodic joinings between them are the graph joinings. By Theorem 2.4, if there is no isomorphism 6 ψ prq pxq :" ψpxqψpT xq . . . ψpT r´1 xq for r ě 0 and extends to r P Z so that the cocycle identity ψ pm`nq pxq " ψ pmq pxqψ pnq pT m xq holds for every m, n P Z.

between nontrivial normal natural factors of pT ψ q r and pT ψ q s , then there are no ergodic joinings between pT ψ q r and pT ψ q s , except for the most independent ones: the relatively independent extensions of isomorphisms between T r and T s . Notice also that if such a relative product is ergodic then automatically, by Lemma 2.1, it is the only invariant measure on X ˆG ˆX ˆG projecting on the graph of the isomorphism.

Generic points

Let T be a homeomorphism of a compact metric space X. Let µ be a T -invariant Borel probability measure on X.

Denition 2.4. We say that x P X is generic for

µ if 1 N ř nďN δ T n x Ñ µ weakly.
If the convergence to µ takes place only along a subsequence pN k q then

x is called quasi-generic for µ. Remark 2.6. Notice that, by the compactness of X, the space of probability measures on X is also compact, hence each point is quasi-generic for some Tinvariant measure.

3 Basic objects

Odometers, Morse cocycles and Toeplitz extensions

Odometers Assume that pn t q tě0 satises n 0 " 1 and n t |n t`1 with λ t :" n t`1 {n t ě 2 for t ě 0. Consider X :" ś tě0 Z{λ t Z with the product topology and the group law given by addition mod λ t , with carrying the remainder to the right. This makes X a compact metric Abelian group. We dene the translation T by p1, 0, 0, . . .q: T px 0 , x 1 , x 2 , . . .q " px 0 `1, x 1 , x 2 , . . .q to obtain pX, B, m X , T q an ergodic rotation. Denition 3.1. T dened above is called an odometer. Remark 3.1. Odometer T dened above has rational discrete spectrum given by the n t -roots of unity, t ě 0. For each t ě 0, there is a Rokhlin tower D t :" tD t 0 , D t 1 , . . . , D t nt´1 u, i.e. a partition of X for which T i D t 0 " D t i mod nt for each i ě 0 (by ergodicity, such a tower is unique up to cyclic permutation of the levels). Indeed, D 0 0 " X and we set

D t 0 :" tx P X : x 0 " . . . " x t´1 " 0u, t ě 1.
Clearly, the partition D t`1 is ner that D t and the sequence of such partitions tends to the partition into points.

Remark 3.2 (cf. Remark 2.5). Notice that for each r ě 1,

T r is isomorphic to T whenever T r is ergodic.

Indeed, T r has the same spectrum as T . To see the isomorphism more directly, notice that gcdpr, n t q " 1 and T r permutes the levels of D t this extends to an isomorphism map between T and T r .

Remark 3.3 (cf. Remark 2.5). Since T has discrete spectrum, its only ergodic joinings are graph measures pm X q W , where W P CpT q is another rotation on X [? ]. It easily follows that (4) each point px, yq P X ˆX is generic for an ergodic self-joining of the form pm X q W . Indeed, dene W as the translation by x ´y.

Morse cocycles Assume that G is a compact metric group and pT, Xq is an odometer.

Denition 3.2 ([? ? ]). We say that ψ :

X Ñ G is a Morse cocycle if ψ is constant on each D t i , t ě 0, i " 0, 1, . . . , n t ´2 (ψ| D t i may depend on i).
Remark 3.4. To read the values on D t`1 nt`1´1 (n t`1 " λ t`1 n t ), we pass to D t`2 etc. It is clear that ψ dened in this way is continuous everywhere (as the levels of the towers are clopen sets) except perhaps one point (given by the intersection of the top levels of all towers). Notice also that whenever G is nite then a Morse cocycle cannot be continuous unless for some t 0 , it is constant on each level of the tower D t0 . In this case, T ψ , if ergodic, is a direct product of T with a rotation on G. In particular, Sarnak's conjecture holds for T ψ .

Remark 3.5. The class of group extensions given by Morse cocycles is (up to measure-theoretic isomorphism) the same as the class of dynamical systems generated by generalized Morse sequences, see [? ? ? ? ], which we consider in the next section.

Toeplitz extensions Morse cocycles yield extensions of odometers which are special cases of so called Toeplitz extensions studied in [? ]. Toeplitz extensions are also given by cocycles over odometers but in the denition of such cocycles we are letting more than one level have non-constant values, as in the example below.
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Example 3.1. Let λ t :" 2 for each t ě 0 and G :" Z{2Z. We dene ψ : X Ñ Z{2Z so that at stage t it is dened on each D t i , except for i " 2 t´1 ´1 and i " 2 t ´1. Then, when we pass to D t`1 , on the levels D t`1 2 t´1 ´1 and D t`1

2 t `2t´1 ´1
(ψ must be dened here at this stage of the construction), we set the values 0 and 1 (or 1 and 0), respectively.

The class of Toeplitz extensions of the dyadic odometer described in Exam- 7 It is however required that the numbers of levels of D t on which the cocycle is non-constant divided by nt goes to zero. A reason for that is that we want to obtain a regular Toeplitz sequence which is behind such a construction, see [? ] for more details.

Generalized Morse sequences

Let G be a compact metric group with the unit e. Lemma 3.8 (cf. Figure 1). pS, Xpxqq is topologically isomorphic to pS ϕ , Xpp xqĜ q, where ϕ : Xpp xq Ñ G is the continuous cocycle given by ϕpzq " zr0s, for each z P Xpp xq.

Proof. The topological isomorphism is given by the (equivariant) map y Þ Ñ pp y, yr0sq.

Remark 3.9 (cf. Figure 1). Let x be the Morse sequence given by (5) with n t :" |c t | " |b 0 ˆ¨¨¨ˆb t´1 |, t ě 1. Then the Toeplitz system pS, Xpp xqq has the tn t u-odometer pT, Xq as its topological factor. Moreover, the Morse dynamical system pS, Xpxqq is given by a Morse cocycle ψ over T . The values pψ| D t 0 , . . . , ψ| D t n t ´2 q are determined by p c t :

ψ| D t i " p c t ris for 0 ď i ď n t ´2, t ě 1. It follows that b 0 r0s " e, b 0 ris " i´1 ź j"0 p c 1 rjs, 1 ď i ď λ 0 ´1
and then, inductively (c t " b 0 ˆ. . . ˆbt´1 ), b t`1 r0s " e, b t`1 ris "

1 ź j"i pp c t`1 rjn t ´1sc t rn t ´1sq, 1 ď i ď λ t`1 ´1 
(for more details see, e.g. [? ? ]). However, the Morse cocycle is not continuous.

The passage to the Toeplitz dynamical system from Lemma 3.8 allows us to get its continued version.

Lemma 3.10. The normal natural factors of Morse dynamical systems over G are Morse dynamical systems over G{H.

Proof. The assertion follows immediately from the equality B ˆC mod H " pB mod Hq ˆpC mod Hq and Remark 3.9.

Bijective substitutions

Fix a nite alphabet A with |A| " r ě 2.

Denition 3.5. A map θ : A Ñ A λ (λ ě 1) is called a substitution on A of constant length λ (in what follows, simply substitution) if there exists n ě 1 such that for each a, a 1 P A there exists k such that θ n paqrks " a 1 . We extend θ rst to a map on blocks over A, then to a map θ : A N Ñ A N . We will assume that θpa 0 qr0s " a 0 . By iterating θ at a 0 , we obtain a xed point for the map θ : A N Ñ A N and by pS, Xpθqq we denote the corresponding subshift of A Z .

Remark 3.11 (see Chapter 5 in [? ]). For each substitution θ of constant length, pS, Xpθqq is strictly ergodic.

Remark 3.12. Let θ : A Ñ A λ be a substitution of constant length such that pS, Xpθqq is aperiodic. Recall that then for each y P Xpθq there is a unique sequence pi t pyqq tě1 Ă Z (t-skeleton ) with i t pyq P r´λ t `1, 0s such that yri t kλ t , i t `pk `1qλ t ´1s " θ t pa k,t q for each k P Z and some letters a k,t P A. This allows us to dene the corresponding towers of height λ t by setting the base of the t-tower D t 0 :" ty P Xpθq : i t pyq " 0u

to obtain

Ť λ t ´1 i"0 S i D t 0 " Xpθq.

Denition 3.6 ([? ]

). We say that θ is recognizable if there exists a constant M ą 0 such that if y P Xpθq, t ě 1 and i P r´λ t `1, 0s satisfy yri, i `M λ t ´1s " θ t pb 1 q . . . θ t pb M q for some b 1 , . . . , b M P A then i " i t pyq. We say that M is a constant of recognizability.

Remark or, equivalently, the maps σ i paq :" θpaqris are bijections of A, i " 0, . . . , λ ´1.

Remark 3.15. We can assume (wlog) that σ 0 " Id by considering, if necessary, some its power.

Denition 3.8. Let G be a nite group with the unit e. A substitution θ : G Ñ G λ is called a group substitution whenever θpgq " θpeq ˝g for each g P G.

Remark 3.16. Each group substitution is bijective. Moreover, each group substitution can be identied with the Morse sequence θpeq ˆθpeq ˆ. . . Lemma 3.17 (cf. Lemma 3.10 and Remark 3.16). The normal natural factors of dynamical systems given by group substitutions are determined by group substitutions.

Proof. Consider the group substitution given by e Þ Ñ B (i.e. g Þ Ñ B ˝g). Then gH Þ Ñ B mod gH yields a bijective substitution as in each column of the matrix corresponding to the group substitution we see all elements of G; in particular, by taking them mod H, we see all elements of G{H.

Denote S r the group of permutations of A. Dene r θ : S r Ñ S λ r by setting (8) r θpτ q " pσ 0 ˝τ, σ 1 ˝τ, . . . , σ λ´1 ˝τ q " r θpIdq ˝τ

for each τ P S r . Let G Ă S r be the subgroup generated by σ 0 , σ 1 , . . . , σ λ´1 and dene (9) θpτ q :" r θpτ q for τ P G.

Denition 3.9 (cf. Lemma 3.19 below). We call θ the group cover substitution of θ.

Lemma 3.18. θ is a (bijective) substitution.

Proof. Notice that if θ n pσ 0 qrjs " τ then in θ n`1 pσ 0 q we can nd the block pσ 0 ˝τ, . . . , σ λ´1 ˝τ q. Since all elements in G are of nite order (σ ´1 i " σ r!´1 i ), it follows by induction that, for some n, we will see all symbols from G on θ n pσ 0 q. Lemma 3.19. pS, Xpθqq is a topological factor of its group cover substitution pS, Xpθqq.

Proof. We dene an equivalence relation on G by setting τ " τ 1 if τ p0q " τ 1 p0q.9 

For y P Xpθq, set F pyqrns :" pyrnsqp0q.

Notice that the image of F equals Xpθq, F is equivariant and takes the same values on the equivalence classes of ". Finally, notice that tτ p0q : τ P Gu " A since θ is a substitution, whence G acts transitively on A.

Remark 3.20 (cf. Remark 3.16). The group cover substitution θ can be identied with the Morse sequence B ˆB ˆ. . . (over G), where B " pσ 0 , σ 1 , . . . , σ λ´1 q.

Remark 3.21. Notice that, in order to prove Sarnak's conjecture for a bijective substitution θ, it suces to prove it for pS ϕ , Xpp xq ˆGq, where x " B ˆB ˆ. . . as pS, Xpθqq is its topological factor (see Lemma 3.19 and Remark 3.20). Notice also that we do not claim that for pS, Xpθqq the Toeplitz dynamical system pS, Xpp xqq is its topological factor (even though the odometer is its topological factor). In fact, there is a counterexample due to Herning [? ].

4 Sarnak's conjecture for nite group extensions

Lifting generic points for compact group extensions

We now recall a basic result on lifting generic points from [? ]. Assume that T i (T i ) is a uniquely ergodic homeomorphism, with a unique invariant measure µ i (µ i ), of a compact metric space X i (X i ), i " 1, 2. Assume, moreover, that π i : X i Ñ X i is continuous and yields pT i , X i q a topological factor of pT i , X i q.

Proposition 4.1 ([? ]). Assume that pT i , X i , µ i q and pT i , X i , µ i q are measuretheoretically isomorphic. Assume, moreover that pT i , X i , µ i q is measuretheoretically coalescent10 for i " 1, 2. Assume that px 1 , x 2 q P X 1 ˆX2 is generic for an ergodic T 1 ˆT2 -invariant measure ρ. Then there exists a unique T 1 ˆT 2invariant measure ρ, such that each pair px 1 , x 2 q P pπ 1 ˆπ2 q ´1px 1 , x 2 q is generic for ρ. Moreover, the system pT 1 ˆT 2 , ρq is isomorphic to pT 1 ˆT2 , ρq.

µ Þ Ñ m X Let T be an odometer acting on pX, B, µq and let T be a uniquely ergodic homeomorphism of X (with the unique invariant measure µ) such that π : X Ñ X is a topological factor map, and pT, µq and pT , µq are measure-theoretically isomorphic (then π is a.e. 1-1 as transformations with discrete spectrum are coalescent). Assume that ψ : X Ñ G is ergodic and such that the cocycle ψ : X Ñ G given by (10) ψpxq :" ψpπpxqq is continuous (it is automatically ergodic as pT ψ , X ˆG, µ b m G q and pT ψ , X ˆG, µ b m G q are isomorphic). Assume that r ‰ s are such that pT ψ q r and pT ψ q s are ergodic, hence T r and T s are isomorphic (and they are isomorphic to T ). Proposition 4.2. Assume that the only ergodic joinings between pT ψ q r and pT ψ q s are the relatively independent extensions over the graphs of isomorphisms between T r and T s . Let x P X and let ρ " µ R be the (ergodic) graph joining for which the point pπpxq, πpxqq is generic. Then for each g P G, the point ppx, gq, px, gqq is generic for the r ρ, where ρ comes from Proposition 4.1 (" stands for the relatively independent extension). Moreover, (11) ppT ψ q r ˆpT ψ q s , r ρq and ppT ψ q r ˆpT ψ q s , Ă µ R q are isomorphic.

Proof. The point ppx, gq, px, gqq is quasi-generic for a pT ψ q r ˆpT ψ q s -invariant measure κ. By Proposition 4.1, px, xq is generic for ρ. Therefore, the projection of κ on X ˆX is equal to ρ. Using Lemma 2.1 (applied to T r ˆT s , ψ prq ˆψpsq and ρ), to conclude, we only need to prove that ppT ψ q r ˆpT ψ q s , r ρq is ergodic. Notice that ( 11) is obvious since ρ " µ R and ρ yield isomorphic systems. This gives immediately that ppT ψ q r ˆpT ψ q s , r ρq is ergodic, whence κ " r ρ.

Criterion for Sarnak's conjecture for nite group extensions

In this section, we assume that pT, X, B, µq is an ergodic transformation with discrete spectrum and ψ : X Ñ G is an ergodic cocycle with values in a nite group G.

Lemma 4.3. Let m " |G|. Assume that r ě 2 is an integer such that pT ψ q r is ergodic and gcdpr, mq " 1. Then CpT ψ q " CppT ψ q r q.

Proof. Assume that r S P CppT ψ q r q. Since T ψ P CppT ψ q r q, we have pT ψ q ´1 ˝r S Tψ P CppT ψ q r q. Since pT ψ q ´1 ˝r S ˝Tψ P CppT ψ q r q is a lift of S and pT ψ q r is ergodic, it follows by Proposition 2.2 that pT ψ q ´1 ˝r S ˝Tψ " r S ˝τg for some g P G.

Therefore pT ψ q ´2 ˝r S ˝pT ψ q 2 " pT ψ q ´1 ˝r S ˝τg ˝Tψ " pT ψ q ´1 ˝r S ˝Tψ ˝σg " r S ˝τg 2 and, in a similar way, pT ψ q ´m ˝r S ˝pT ψ q m " r S ˝τg m " r S, i.e. r S P CppT ψ q m q.

Let a, b P Z be such that am `br " 1. We conclude that r S commutes with pT ψ q am`br " T ψ which completes the proof. Proposition 4.4. Assume that T ψ has continuous spectrum on the orthocomplement of L 2 pX, B, µq b 1 G . Suppose that r ě 2 is such that T r is ergodic and gcdpm, rq " 1. Then CpT ψ q " CppT ψ q r q.

Proof. Since, by assumptions, pT ψ q r is ergodic, the assertion follows from Lemma 4.3.

We can now formulate a general criterion concerning the validity of Sarnak's conjecture for continuous nite group extensions. Proposition 4.5. Let T be a uniquely ergodic homeomorphism which is a con- tinuous extension of an odometer T , measure-theoretically isomorphic to T . Assume that its (rational discrete) spectrum is determined by nitely many prime numbers. Assume that ψ : X Ñ G is a cocycle with G nite, ( 10) is satised, and T ψ has continuous spectrum in the orthocomplement of L 2 pX, B, m X q b 1 G . Assume moreover that the centralizers for all normal natural factors T ψH of T ψ are G{H-trivial whenever H ‰ G. Then, for each f P CpXq and j P CpGq of zero mean, ( 1) is satised for T ψ and pf ˝πq b j P CpX ˆGq at each point. Proof. Fix r, s two dierent prime numbers suciently large (so that pT ψ q r and pT ψ q s are ergodic). Notice that T r is then isomorphic to T s . Following Theorem 2.4 (applied to T r isomorphic to T s , both isomorphic to T ) and Remark 2.5, we rst will prove that if H 1 , H 2 are proper normal subgroups of G then pT ψH1 q r is not isomorphic pT ψH2 q s . For this aim, it is enough to notice is that pT ψH2 q s cannot have an r-th root. Indeed, using the fact that the centralizer of pT ψH2 q s is G{H 2 -trivial and Proposition 4.4, if pT ψH2 q s an r-th root then pT ψH2 q s " ppT ψH2 q k ˝τgH2 q r " pT ψH2 q kr τ g r H2 .

It follows that τ g r H2 " pT ψH2 q s´kr , which is an absurd as s, r are prime (s ‰ kr) and T ψ is aperiodic.

Take any px, gq. By the rst part of the proof and Proposition 4.2, we obtain 1 N ÿ nďN δ pT ψ q rn ˆpT ψ q sn ppx,gq,px,gqq Ñ r ρ.

Therefore 1 N ÿ nďN ppf ˝πqbjqpT ψ q rn ˆpT ψ q sn ppx, gq, px, gqq Ñ

ż ppf ˝πqbjq¨ppf ˝πq b jq d r ρ " ż pf b jq ¨pf b jq d Ă µ R " ż X f ¨f ˝R dm X ¨żGˆG j b j dm G b m G " 0,
where the last equality follows by the assumption on j. The result follows by Theorem 1.1.

Remark 4.6. The assertion of Proposition 4.5 remains true if in the orthocomplement of L 2 pX, B, m X q b 1 G there are nitely many rational eigenvalues (in the proof we need to exclude nitely many r, s).

Special case: 2-point extensions of odometers

We now consider the special case when G " Z{2Z. As an immediate consequence of Theorem 2.4, we obtain the following:

Corollary 4.7. Let T be an odometer and let φ, ψ : X Ñ Z{2Z be ergodic cocyles. Then, either T φ and T ψ are isomorphic or they are relatively disjoint over T , i.e. J e pT φ , T ψ q " tr µ R : R P CpT qu.

Remark 4.8. We give now a direct proof of Corollary 4.7. Fix ρ P J e pT φ , T ψ q.

We have pT φ ˆTψ , ρq » pT φˆψ˝R , κq where κ projects on µ and R P CpT q. If φ ˆψ ˝R is ergodic, it follows by Lemma 2.1 that κ " µ b pm G b m G q, so ρ " r µ R . If φ ˆψ ˝R is not ergodic, then φ ´ψ ˝R " ξ ´ξ ˝T for some measurable ξ : X Ñ Z{2Z.

It follows that T φ and T ψ are isomorphic: R ξ ˝Tφ " T ψ ˝Rξ .

We also have the following (cf. Proposition 4.4).

Corollary 4.9. Let T be an odometer and let ψ : X Ñ Z{2Z be ergodic. Assume that T ψ has continuous spectrum in the orthocomplement of L 2 pX, B, µq b 1 Z{2Z and CpT ψ q is Z{2Z-trivial. Assume, moreover, that r ‰ s are prime numbers such that T r and T s are ergodic. Then pT ψ q r and pT ψ q s are not isomorphic. Now, using Corollary 4.7, the corresponding part of Proposition 4.5 takes the following form.

Corollary 4.10. Let T be a uniquely ergodic homeomorphism which is a con- tinuous extension of an odometer T , measure-theoretically isomorphic to T . Assume that its (rational discrete) spectrum is generated by nitely many prime numbers. Assume that ψ : X Ñ Z{2Z is a cocycle, ( 10) is satised, and T ψ has continuous spectrum in the orthocomplement of L 2 pX, B, m X q b 1 Z{2Z . Assume that for suciently large prime numbers r ‰ s, the automorphisms pT ψ q r and pT ψ q s are not isomorphic. Then for each f P CpXq and 1 ‰ j P z Z{2Z, (1) is satised for T ψ and pf ˝πq b j at each point.

Applications

Bijective substitutions

Let θ : A Ñ A λ be a bijective substitution with the corresponding bijections σ i P S r . Let Cpθq denote the centralizer of the set tσ i : i " 0, . . . , λ ´1u in S r . Assume that η P Cpθq. Then η induces a map r η (both on nite blocks over A and on A Z ) given by r ηpyqrns :" ηpyrnsq for each n P Z.

We claim that r ηpXpθqq " Xpθq. Indeed, since ηpσ i p0qq " σ i pηp0qq, it follows that r ηpθ n p0qq " θ n pηp0qq

and we use the transitivity of the action of the group G generated by σ 0 , . . . , σ λ´1 on A. Since r η commutes with the shift, r η P CpS, Xpθqq (indeed, pS, Xpθqq is uniquely ergodic, so r η must preserve the unique measure). Now, the result from [? ] shows that this is the only way to get non-trivial elements in the centralizer of the (measure-theoretic) dynamical system determined by a bijective substitution:

Theorem 5.1 ([? ]). CpS, Xpθqq " tS i ˝r η : i P Z, η P Cpθqu.

Suppose now that θ : G Ñ G λ is a group substitution, i.e. θpgq " θpeq ˝g for g P G. Notice rst that in each column j of the matrix for θ, we have elements θpeqrjs ¨g. Therefore σ j is the left translation on G by θpeqrjs and the group generated by θpeqrjs, j " 0, . . . , λ ´1, is G. It follows that the group generated by σ 0 , . . . , σ λ´1 is the group of all left translations on G. Its centralizer Cpθq is equal to the group of all right translations. Thus, we obtain the following consequence of Theorem 5.1:

Corollary 5.2. The centralizer of the group substitutions is G-trivial. Remark 5.3. The discrete part of the spectrum of the dynamical system pS, Xpθqq, where θ is a substitution, consists of the spectrum of the underlying odometer and a cyclic group determined by the height h of the substitution [? ].

It follows that when the height is equal to 1, then the spectrum is continuous in the orthocomplement of the L 2 -space of the underlying odometer. Otherwise, in this orthocomplement we have the cyclic group of eigenvalues generated by e 2πi{h .

We are now ready to show that Sarnak's conjecture holds for dynamical systems given by bijective substitutions.

Theorem 5.4. For each bijective substitution θ : A Ñ A r , each function F P CpXpθqq, each bounded by 1, aperiodic multiplicative function λ : N Ñ C and each y P Xpθq, we have

(12) 1 N ÿ nďN F pS n yqλpnq Ñ 0 when N Ñ 8.
In particular, each topological dynamical system determined by a bijective substitution satises Sarnak's conjecture. for each bounded by 1, aperiodic multiplicative function λ. This can be also proved more directly. Notice that for each odometer pT, Xq we have (1) true with µ replaced by λ since each nite system enjoys this property and pT, Xq is a topological inverse limit of such systems. If pT , Xq is a uniquely ergodic topological extension of pT, Xq, measure-theoretically isomorphic to pT, X, m X q, we can apply Lemma 7 and Proposition 3 in [? ] to lift the orthogonality condition (12) from the odometer to pT , Xq.

Remark 5.6. The proof of Sarnak's conjecture also gives the following: whenever pS, Xpθqq is a subshift given by a bijective substitution, for each ergodic powers S r and S s , each point py, zq P Xpθq ˆXpθq is generic (for an ergodic measure).

5.2 Regular Morse sequences and the Rudin-Shapiro case Remark 5.7. Theorem 5.4 is also true for all so called regular Morse sequences [? ] x " b 0 ˆb1 ˆ. . . (b t P t0, 1u λt , t ě 0) (their centralizer is Z{2Z-trivial [? ]), whenever the set tp : p is prime and p|λ t for some tu is nite. Indeed, the result follows from Corollaries 4.9 and 4.10 and the proof of Theorem 5.4.

Remark 5.8. Theorem 5.4 also holds for the Rudin-Shapiro type sequences considered in [? ]. These are 0-1-sequences x P t0, 1u N such that xrns is equal to the mod 2 frequency of the block 1 ˚. . . ˚1 (with xed number of ˚) in the block given by the binary expansion on n. 11 As shown in [? ], the corresponding subshift is given by a Toeplitz type Z{2Z-extension of the dyadic odomoter, and the whole method applies. Indeed, since pS, Xpxqq has Lebesgue component of multiplicity 2 k in the spectrum in the orthocomplement of the space generated by eigenfunctions [? ], it follows that its sth and rth power also have Lebesgue components in the spectrum, of multiplicity s2 k and r2 k , respectively. Thus, these powers cannot be isomorphic, unless s " r.

6 Spectral approach and other methods Let pS, Xq with X Ă A Z be a subshift over a nite alphabet A with |A| " r ě 2.

6.1 First remarks Lemma 6.1. Suppose that (1) holds for arbitrary x P X, for each function f " 1 B , where B P A k is a block of nite length (k ě 1 is arbitrary) that appears on X. Then Sarnak's conjecture holds for pS, Xq.

Proof. It suces to show (1) for a linearly dense family of functions in CpXq: e.g. functions which depend on a nite number of coordinates. The space of (continuous) functions depending on coordinates r´k, ks in the full shift has dimension r 2k`1 , which is at the same time the number of possible blocks of length 2k `1. In a similar way, for a subshift, we just need to count the number of distinct p2k `1q-blocks appearing on X. Moreover, the family of their characteristic functions is linearly independent.

11 We can also consider 1 ˚. . . ˚0.

Remark 6.2. There are other choices of nite families of functions than those in Lemma 6.1 which also yield the validity of Sarnak's conjecture. For example, when r " 2 we can use the so called Walsh basis: for each K ě 1, we consider the characters of the group t0, 1u 2K`1 : f C pxq " p´1q ř iPC xris for C Ă t´K, . . . , Ku and x P X Ă A Z . Remark 6.3. In [? ? ] the convergence in ( 1) is proved at any point for f pyq " p´1q yr0s (f " f t0u in the notation from Remark 6.2) for Kakutani sequences.12 A natural question arises whether this is sucient to obtain Sarnak's conjecture for the corresponding dynamical system. In general, it does not seem to be automatic that (1) for functions depending on one coordinate implies (1) for functions depending on more coordinates. E.g. in [? ], where Sarnak's conjecture is proved for the 0-1-subshift generated by the Thue-Morse sequence, (1) for f pyq " p´1q yr0s is proved by completely dierent methods than for continuous functions invariant under the map y Þ Ñ r y, where r yrns " 1 ´yrns.13 We note that the method from Corollary 4.7 does not apply to Kakutani systems since their centralizer can be uncountable: there are Kakutani sequences for which the corresponding dynamical systems are rigid [? ]. However, in Section 6.2 we provide an argument which in Section 6.3 will be used to show that [? ? ] yield Sarnak's conjecture for the dynamical systems given by Kakutani sequences.

Remark 6.4. We have already shown that Sarnak's conjecture holds for the dynamical system given by the Rudin-Shapiro sequence, see Remark 5.8. Recall also that in this case (1) was show earlier in [? ] for f pyq " p´1q yr0s (at any point). Here the situation is more delicate if we want to apply the method from Section 6.2: we need more functions, see Section 6.3 for more details.

6.2 Spectral approach Lemma 6.5. Assume that T is a uniquely ergodic homeomorphism of a compact metric space X. Denote the unique T -invariant measure by µ. Assume that the unitary operator U T : L 2 pX, B, µq Ñ L 2 pX, B, µq, U T g :" g ˝T , has simple spectrum. Assume that the maximal spectral type of U T is realized by F P CpXq.

If F satises (1) at each point x P X then pT, Xq satises Sarnak's conjecture.

Proof. Observe rst that if F satises (1) at each point then the same is true for each function ppU T qF of F (where ppzq " ř K "´K a z is a trigonometric polynomial). By the simplicity of the spectrum of U T , functions of the form ppU T qF are dense in L 2 pX, B, µq. We now repeat the argument from Lemma 7 in [? ]. Fix G P CpXq, x P X and ε ą 0. Find a trigonometric polynomial p so that }ppU T qF ´G} 2 ă ε. Let N 0 be such that for N ě N 0 , | 1 N ř nďN ppU T qF pT n xqµpnq| ă ε for all N ą N 0 . Then (since T is uniquely ergodic and |µ| ď 1)

(14) ˇˇˇˇ1 N ÿ nďN GpT n xqµpnq ˇˇˇď 1 N ÿ nďN |pG ´ppU T qF qpT n xq||µpnq| `ˇˇˇˇ1 N ÿ nďN pppU T qF qpT n xqµpnq ˇˇˇď 1 N ÿ nďN |pG ´ppU T qF qpT n xq| `ε Ñ }G ´ppU T qF } 1 `ε when N Ñ 8. Since }G ´ppU T qF } 1 ď }G ´ppU T qF } 2 ă ε, the result follows.
Remark 6.6. (A) The assertion of Lemma 6.5 remains true if we take any bounded arithmetic function λ : N Ñ C instead of µ (both in (1) and in Sarnak's conjecture). The proof is the same.

(B) Fr¡czek [? ] showed that for each automorphism T on pX, B, µq, where X is a compact metric space, the maximal spectral type of U T is always realized by a continuous function. However, in order to prove Sarnak's conjecture using Lemma 6.5, we look for natural continuous functions realizing the maximal spectral type for which we can show that (1) holds.

(C) Suppose that the continuous and discrete part of the maximal spectral type of U T are realized by f P CpXq and g P CpXq, respectively. Then, by elementary spectral theory, F " f `g P CpXq realizes the maximal spectral type of U T and, clearly, it suces to check that (1) holds both for f and g (at each point) to see that it holds for F (at each point).

(D) Lemma 6.5 has a natural extension to uniquely ergodic homeomorphisms T such that U T has non-trivial multiplicity. All we need to know is that L 2 pX, B, µq has a decomposition into cyclic spaces: L 2 pX, B, µq " À kě1 Zpf k q with f k P CpXq and check (1) for these generators. 14 We will nd such functions in the next section in case of the dynamical systems given by the Rudin-Shapiro type sequences. 15 6.3 Applications 14 Recall however that it is open whether for an arbitrary automorphism T on pX, B, µq,

where X is a compact metric space there are continuous functions f k , k ě 1 such that L 2 pX, B, µq " À kě1 Zpf k q and σ f k`1 ! σ f k , k ě 1, see e.g. [? ] for more details.

15 Recall that in the general case of dynamical systems given by the Rudin-Shapiro type sequences, this multiplicity is of the form 2 k , k ě 1 [? ].

f pyq " p´1q yr0s realizes the continuous part of the maximal spectral type of U S (on L 2 pXpxq, µ x q). Moreover, the discrete part is given by the equicontinuous factor of pS, Xpxqq, which is the odometer determined by λ t , t ě 0. It follows that the eigenfunctions g i , i ě 1, are continuous. If g " ř iě1 a i g i , each a i ‰ 0, ř iě1 |a i | ă `8, then g is a continuous function realizing the discrete part of the maximal spectral type of U S . Since each odometer is a topological inverse limit of systems dened on nitely many points, and for nite systems Sarnak's conjecture holds because of the PNT in arithmetic progressions, therefore g satisifes (1). Thus, in view of Lemma 6.5 and Remark 6.6 (C), it suces to prove (1) for f to obtain the validity of Sarnak's conjecture. Corollary 6.8. Sarnak's conjecture holds for the dynamical systems given by Kakutani sequences.

Proof. In view of the above proposition, it suces to prove (1) for f which was done in [? ? ] (cf. Remark 6.3).

Rudin-Shapiro type sequences Recall that the classical Rudin-Sharpiro sequence x P t0, 1u N is dened in the following way:

• take the xed point of the substitution a Þ Ñ ab, b Þ Ñ ac, c Þ Ñ db and d Þ Ñ dc,

• use the code a, b Þ Ñ 0 and c, d Þ Ñ 1 to pass to the space of 0-1-sequences (the map arising from this code yields a topological isomorphism of the relevant subshifts on four and two letters).

The multiplicity of the corresponding dynamical system on the continuous part of the spectrum is equal to 2 [? ? ]. It follows from [? ] and Remark 6.6 (D) that, in order to obtain Sarnak's conjecture for the corresponding subshift, we need to check (1) for two continuous functions f ¨1D 2 0 and f ¨1D 2 1 (cf. Remark 3.12).

It follows immediately from the denition of D 2 0 and the recognizability of sub- stitutions [? ] that 1 D 2 0 is a continuous function depending on a nite number of coordinates. Therefore, to obtain Sarnak's conjecture for the subshift given by the Rudin-Shapiro sequence, we would have to check (1) for the elements of the Walsh basis of order 4M , where M is the constant of recognizability, see Remark 3.14. Recall that (1) was already shown for f in [? ? ]. Notice that this approach to prove Sarnak's conjecture is completely dierent from the one presented in the preceding sections (cf. Remark 5.8). The above applies to all Rudin-Shapiro type sequences.

Results of Veech [? ]

In the recent preprint [? ], Veech considers a class of systems for which Sarnak's conjecture holds. We will now briey present his work and then compare it with our results. Assume that λ n ě 2 for n ě 0, then set n 0 :" 1 and n t :" ś t´1 k"0 λ k , t ě 1 and dene X :" liminv tÑ8 Z{n t Z " tx " px t q : 0 ď x t ă n t , x t`1 " x t mod n t , t ě 1u. This is a compact, Abelian, monothetic group on which we consider T x " x `θ with θ " p1, 1, . . .q. It is not hard to see that the systems obtained this way are

Figure 1 :

 1 Figure 1: Morse and Toeplitz dynamical systems on a diagram. Plain and dashed lines denote topological and measure-theoretical maps, respectively (all depicted systems are uniquely ergodic).

  ple 3.1 was considered in [? ? ]. The dynamical systems corresponding to the Rudin-Shapiro type sequences (see Section III.2 in [? ]) are in this class.

  Proof. It follows by Lemma 3.19 that it is enough to prove (12) for the dynamical system pS, Xpθqq corresponding to the group cover substitution θ of θ. Moreover, in view of Lemma 3.8, we can study instead its topologically isomorphic model pS ϕ , Xpp xq ˆGq.Fix f b j with f P CpXpp xqq, where j P CpGq, ş j dm G " 0. In view of Theorem 1.1, Lemma 3.17, Corollary 5.2 and Proposition 4.5, Remark 4.6 and Remark 5.3, for each py, gq P Xpp xq ˆG, ϕ q n py, gqqλpnq Ñ 0 for each multiplicative function λ, |λ| ď 1. If we now x λ, then we have the relevant convergence (against this xed λ) for a linearly dense set of functions in CpXpp xq ˆGq, hence for all functions in CpXpp xq ˆGq and the result follows. Remark 5.5. Let j :" 1 G . Using (13), for each y P Xpp xq, we have 1 N ÿ nďN f pS n yqλpnq Ñ 0

  If no such k ě 1 exists, the multiplicity of U T is innite. If k " 1, U T is said to have simple spectrum. Recall that T has discrete spectrum if the maximal spectral type of U T is purely discrete. Equivalently, L 2 pX, B, µq is generated by the eigenfunctions of U T . By the Halmos-von Neumann theorem, T is, up to isomorphism, an ergodic rotation on a compact monothetic group. If, additionally, all eigenvalues of U T are roots of unity, T is said to have rational discrete spectrum.

	For more information on the spectral theory see e.g. [? ].

  2.3. Let H Ă G be a closed subgroup. The corresponding factorautomorphism T ψH of pX ˆG{H, µ b m G{H q given by T ψH px, gHq :" pT x, ψpxqgHq is called a natural factor of T ψ . It is called nontrivial if H ‰ G, and it is called normal whenever H is normal.

  Denition 3.3. Let b t P G λt be a block over G of length |b t | " λ t ě 2 and b t r0s " e, t ě 0. The associated (generalized) Morse sequence is dened by ˆC " pB ˝cr0sqpB ˝cr1sq . . . pB ˝cr|C| ´1sq and B ˝g :" pb 0 g, . . . , b |B|´1 gq for B, C blocks over G and g P G. By pS, Xpxqq we denote the subshift corresponding to x (X pxq Ă G Z ).Example 3.2. Generalized Morse sequences for G " Z{2Z were rst studied in[? ]. If b t P t00, 01u, t ě 0, we speak about Kakutani sequences[? ].Proof. The rst part is obvious. For the second, notice that for each t ě 1, we havex " c t ˆzt , where c t " b 0 ˆ. . . ˆbt´1 , z t " b t ˆbt`1 ˆ. . . , whence x is a concatenation of blocks of the form c t ˝g. Moreover, c t rn `1sc t rns ´1 " pc t ˝gqrn `1spc t ˝gqrns ´1 for n " 0, . . . , |c t | ´2.

	(5)
	It follows that
	(7)

x :" b 0 ˆb1 ˆ. . . , where B Denition 3.4

([? ]

). We say that u P G N is a Toeplitz sequence whenever for each n P N, there exists k n ě 1 such that u is constant on the arithmetic progression n `kn N. 8 Lemma 3.6 (cf. Figure

1

). Let x " b 0 ˆb1 ˆ. . . be a Morse sequence. The map (6) y Þ Ñ p y, p yrns :" yrn `1syrns ´1 yields an equivariant map between pS, Xpxqq and pS, Xpp xqq. Moreover, p x is a Toeplitz sequence. p x " p c t ˚p c t ˚p c t ˚. . . , where ˚ stands for the unlled place of p x at the stage t ě 1. Remark 3.7. Toeplitz sequence p x from (7) is regular in the sense of [? ]. Hence pS, Xpp xqq is uniquely ergodic [? ].

  3.13 ([? ? ]). Each substitution θ of constant length, such that pS, Xpθqq is aperiodic, is recognizable. In what follows, we will tacitly assume that we deal with recognizable substitutions.Remark 3.14. Suppose that θ is recognizable. It follows that each function

	1 D t 0	depends on not more than M λ t coordinates.

Denition 3.7 ([? ]

). Substitution θ is called bijective if dpθpaq, θpa 1 qq :" |t0 ď k ď λ ´1 : θpaqrks ‰ θpa 1 qrksu| λ " 1, whenever a ‰ a 1

  Generalized Morse sequences overA " t0, 1u Proposition 6.7. Let x be a generalized Morse sequence over A " t0, 1u. Then Sarnak's conjecture holds for pS, Xpxqq if and only if (1) holds (at each point) for f pyq " p´1q yr0s . Proof. Recall that pS, Xpxqq is uniquely ergodic [? ] (with the unique invariant measure µ x ) and has simple spectrum [? ]. As proved in [? ] (see also [? ])

Here and in what follows, S stands for the left shift on a closed S-invariant subset of the space of two-sided sequences, i.e. pS, Xpθqq is an example of a subshift.

This and other relations between the dynamical systems described in this paragraph are illustrated in Figure1.

This result does not seem to follow by Section 4.

Indeed, this map is continuous as ϕ is continuous, it is onto since p y " z y ˝g, and nally it is 1-1 since yrn `1s is determined by yrns and p yrns.8 For the theory of dynamical systems given by Toeplitz sequences, see e.g. [? ].

This relation is called θ-consistent, see [? ? ].

An automorphism T of pX, B, µq is called coalescent [? ] if each endomorphism commuting with T is invertible.

The uniformity of estimates in these papers yields indeed (1) at any point y P Xpxqq.

E.g. gpyq " p´1q yr0s`yr1s is invariant under this map; notice that g " f t0,1u from Remark 6.2.
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naturally isomorphic to the odometers considered in Section 3.1. The sequence of towers D t , t ě 1, in the new coordinates is determined by D t 0 :" tx P X : x t " 0u,

and we obtain pairwise disjoint sets D t 0 , T D t 0 , . . . T nt´1 D t 0 with Ť nt´1 j"0 T j D t 0 " X. Then dene τ pxq :" mintt ě 1 : x t ‰ n t ´1u.

We have lim xÑ´θ τ pxq " 8 and τ is continuous on Xzt´θu.

Let K be a compact group and take pΨptqq tě1 Ă K. Set f pxq :" Ψpτ pxqq.

Then Ψ is locally constant on Xzt´θu and f P CpXzt´θu, Kq. There are some assumptions on the sequence Ψ made in [? ]:

(i) lim tÑ8 Ψptq does not exist, (ii) tΨptq : t ě 1u generates a dense subgroup of K, (iii) pΨptqq tě1 is recurrent (that is, every initial block of Ψ repeats innitely often).

Remark 6.9. If K " Z{2Z, the conditions (ii) and (iii) are not necessary.

Let M Ψ Ă K Z be the closure of all sequences pf px `nθq nPZ for x P XzZθ. On M Ψ , we consider the usual shift S. Let m : M Ψ Ñ K be given by mpyq " yr0s.

Finally, let S m : M Ψ ˆK Ñ M Ψ ˆK be the skew product dened as S m py, kq " pSy, mpyqkq. Then S m is a homeomorphism of M Ψ ˆK.

Theorem 6.10 ([? ]). Suppose additionally that the set tλ t : t ě 0u is nite. Then, under the above assumptions, pS m , M Ψ ˆKq satises Sarnak's conjecture. Remark 6.11. It is not hard to see that in the language of [? ], the function f is a semicocycle over an odometer (that is, a function continuous on a residual subset of an odometer). It follows from [? ] that the dynamical system given by pS, M Ψ q is a Toeplitz dynamical system (cf. Section 3.1). The system is regular [? ], hence uniquely ergodic and measure-theoretically isomorphic to the odometer pT, Xq.

Notice that if x t " n t ´1 then also x k " n k ´1 for 1 ď k ď t ´1. It follows immediately that τ is constant on each D t i , 0 ď i ď n t ´2. Therefore, the cocycle f : X Ñ K dened above is a Morse cocycle (cf. Section 3.1). It has the following additional property:

Condition (15) yields the class of Morse sequences x " b 0 ˆb1 ˆ. . . , where each block b t , t ě 0, is of the form b t " ek . . . k |b t |´1 (cf. Remark 3.9). In particular, if K " Z{2Z, we have x " b 0 ˆb1 ˆ. . . , where b t " 0 . . . 0, b t " 01 . . . 01 or b t " 010 . . . 10, t ě 0. Notice that Kakutani sequences are of this form. Notice also that pS m , M Ψ ˆKq corresponds to pS ϕ , Xpp xq ˆGq dened in Section 3.1, which is, in turn, topologically isomorphic to pS, Xpxqq.

It follows that Theorem 6.10 yields, in particular, that the dynamical systems given by Kakutani sequences satisfy Sarnak's conjecture (cf. Corollary 6.8).