The word entropy and how to compute it n log f (n). We define a new quantity, the word entropy E W (f ), as the maximal exponential growth rate of a complexity function smaller than f . This is in general smaller than E 0 (f ), and more difficult to compute; we give an algorithm to estimate it. We use E W (f ) to compute the Hausdorff dimension of the set of real numbers whose expansions in a given base have complexity bounded by f .

Definitions

Let A be the finite alphabet {0, 1, . . . , q -1}, If w ∈ A N , and L(w) the set of finite factors of w; for any non-negative integer n, we write L n (w) = L(w) ∩ A n .

Definition 1.1. The complexity function of w ∈ A N is defined for any non-negative integer n by p w (n) = |L n (w)|.

Our work concerns the study of infinite words w the complexity function of which is bounded by a given function f from N to R + . More precisely, if f is such a function, we put

W (f ) = {w ∈ A N , p w (n) ≤ f (n), ∀n ∈ N}. Definition 1.2. If f is a function from N to R + , we call exponential rate of growth of f the quantity E 0 (f ) = lim n→∞ inf 1 n log f (n)
and word entropy of f the quantity

E W (f ) = sup w∈W (f ) E 0 (p w ).
Of course, if E 0 = 0 then E W is zero also. Thus the study of E W is interesting only when f has exponential growth: we are in the little-explored field of word combinatorics in positive entropy, or exponential complexity.

2 First properties of E 0 and E W If f is itself a complexity function (i.e. f = p w for some w ∈ A N ), then

E W (f ) = E 0 (f ).
But in general E W may be much smaller than E 0 .

Indeed, for each 1 < θ ≤ q, and n 0 ∈ N such that θ n 0 +1 > n 0 + q -1, we define the function

f by f (1) = q, f (n) = n + q -1 for 1 ≤ n ≤ n 0 and f (n) = θ n for n > n 0 .
We have E 0 (f ) = log θ and we can prove that

E W (f ) ≤ 1 n 0 log(n 0 + q -1),
which can be made arbitrarily small, independently of θ.

We define a regularity condition for f . Definition 2.1. We say that a function f from N to R + satisfies the condi-

tions (C * ) if i) for any n ∈ N we have f (n + 1) > f (n) ≥ n + 1 ; ii) for any (n, n ′ ) ∈ N 2 we have f (n + n ′ ) ≤ f (n)f (n ′ ).
But even with (C * ) we may have

E W (f ) < E 0 (f ). Indeed, let f be the function defined by f (n) = ⌈3 n/2 ⌉ for any n ∈ N. Then it is easy to check that f satisfies conditions (C * ) and that E 0 (f ) = lim n→∞ 1 n log f (n) = log( √ 3).
On the other hand, we have f (1) = 2, f (2) = 3; thus the language has no 00 or no 11, and this implies that

E W (f ) ≤ log( 1+ √ 5 2 ) < E 0 (f ).
At least, under that condition, we have the important Theorem 2.2. If f is a function from N to R + satisfying the conditions

(C * ), then E W (f ) > 1 2 E 0 (f ).
We can also show that the constant 1 2 is optimal. Finally, it will be useful to know that Theorem 2.3. For any function f from N to R + , there exists w ∈ W (f )

such that for any n ∈ N we have p w (n) ≥ exp(E W (f )n).

Algorithm

In general E W (f ) is much more difficult to compute than E 0 (f ); now we will give an algorithm which allows us to estimate with arbitrary precision E W (f ) from finitely many values of f , if we know already E 0 (f ) and have some information on the speed with which this limit is approximated.

We assume that f satisfies conditions C * . We don't loose generality with this assumption, since we may always change a function f which satisfies conditions C by the function f given recursively by

f (n) := min{f (n), min 1≤k<n f (k) f (n -k)}, which satisfies conditions C * , such that f (n) ≤ f (n), ∀n ∈ N and W ( f ) = W (f ).
Theorem 3.1. There is an algorithm which gives, starting from f and ε,

a quantity h such that (1 -ε)h ≤ E W (f ) ≤ h. h depends explicitely on ε, E 0 (f ), N , f ( 
1), ..., f (N ), for an integer N which depends explicitely on ε, E 0 (f ), and an integer n 0 . larger than an explicit function of ε and E 0 (f ), and such that

log f (n) n < (1 + E 0 (f )ε 210(4 + 2E 0 (f )) )E 0 (f ), for n 0 ≤ n < 2n 0 .
We shall now give the algorithm. f is given and henceforth we omit to mention it in E 0 (f ) and E W (f ). ε ∈ (0, 1) is also given.

Description of the algorithm

Let

δ := E 0 ε 105(4 + 2E 0 ) < ε 210 , K := ⌈δ -1 ⌉ + 1.
We choose a positive integer

n 0 ≥ K ∨ 4K 2 420 3 E 0 such that log f (n) n < (1 + δ 2 )E 0 , ∀n ≥ n 0 ; in view of conditions C * , this last condition is equivalent to log f (n) n < (1 + δ 2 )E 0 , n 0 ≤ n < 2n 0 .
We choose intervals which will be so large that all the lengths of words we manipulate stay in one of them. Namely, for each t ≥ 0, let

n t+1 := exp(K((1 + δ) 2 E 0 n t + E 0 )).
We take

N := n K .
We choose now a set

Y ⊂ A N : for a given Y , L n (Y ) = ∪ γ∈Y L ( γ), we define q n (Y ) := |L n (Y )|, for 1 ≤ n ≤ N .
We look at those Y for which Henceforth we omit to mention Y in the q n (Y ).

q n (Y ) ≤ f (n), ∀n ≤ N ,
Proposition 3.2.

min 1≤n≤N log q n n ≥ E W .
Proof. We know by Theorem ?? that there is ŵ ∈ W (f ) with p n ( ŵ) ≥ exp(E W n), ∀n ≥ 1. For such a word ŵ, let X := L N ( ŵ) ⊂ A N . We have, for

each n with 1 ≤ n ≤ N , L n (X) = L n ( ŵ) and f (n) ≥ #L n ( ŵ) = p n ( ŵ) ≥ exp(E W n).
Thus X is one of the possible Y , and the result follows from the maximality of min 1≤n≤N log qn n .

On one of the large intervals we have defined, log qn n will be almost constant:

Lemma 3.3. There exists r < K, such that log q nr n r < (1 + δ) log q n r+1 q n r+1 .

Proof. Otherwise

log qn 0 n 0 ≥ (1 + δ) K log qn K qn K
: as K > 1 δ , (1 + δ) K would be close to e for δ small enough, and is larger than 9 4 as δ < 1 2 ; thus, as

log qn K n K ≥ E W
by Proposition ??, we have

log qn 0 n 0 ≥ 9 4 E W , but q n 0 ≤ f (n 0 ) hence log qn 0 n 0 < (1 + δ
2 )E 0 , and this contradicts E 0 ≤ 2E W , which is true by Theorem ??.

Let h := log q nr n r .

By Proposition ?? we have

h ≥ E W .
What remains to prove is the following proposition (which, understandably, does not use the maximality of min 1≤n≤N log qn n ).

Proposition 3.4.

(1 -ε)h ≤ E W .
Proof. Our strategy is to build a word w such that, for all n ≥ 1,

exp((1 -ε)hn) ≤ p n (w) ≤ f (n),
which gives the conclusion by definition of E W . To build the word w, we shall define an integer m, and build successive subsets of L m (Y ); for such a subset Z, we order it (lexicographically for example) and define w(Z) to be the Champernowne word on Z: namely, if Z = {β 1 , β 2 , ..., β t }, we build the infinite word

w(Z) := β 1 β 2 . . . β t β 1 β 1 β 1 β 2 β 1 β 3 . . . β t-1 β t β 1 β 1 β 1 . . . β t β t β t . . .
made by concatenation of all words in Z followed by the concatenations of all pairs of words of Z followed by the concatenations of all triples of words of Z, etc...

The word w(Z) will satisfy exp((1 -ε)hn) ≤ p n (w(Z)) for all n as soon as

|Z| ≥ exp((1 -ε)hm),
since, for every positive integer k, we will have at least |Z| k factors of length km in w(Z).

The successive (decreasing) subsets Z of L m (Y ) we build will all have cardinality at least exp((1 -ε)hm), and the words w(Z) will satisfy p n (w(Z)) ≤ f (n) for n in an interval which will increase at each new set Z we build, and ultimately contains all the integers.

We give only the main ideas of the remaining proof. In the first stage we define two lengths of words, n and m > n 2ε , which will be both in the interval [n r , n r+1 ], and a set Z 1 of words of length m of the form γθ, for words γ of length n, such that the word γθγ is in L m+n (Y ). This is done by looking precisely at twin occurrences of words.

Let ε = ε 15 = 7(4+2E 0 )δ E 0
> 14δ; then we can get such a set Z 1 with

|Z 1 | ≥ exp((1 -ε)h(m + n)).
In the second stage, we define a a new set Z 2 ⊂ Z 1 in which all the words have the same prefix γ 1 of length 6εhm, and all the words have the same suffix γ 2 of length 6εhm, with

|Z 2 | ≥ |Z 1 | exp(-12εhm -2δhn), and 2δhn 
≤ (1 -ε)n, thus |Z 2 | ≥ exp((1 -13ε)hm).
As a consequence of the definition of Z 2 , all words of Z 2 have the same prefix of length n, which is a prefix γ 0 of γ 1 ; as Z 2 is included in Z 1 , any word of Z 2 is of the form γ 0 θ, amd the word γ 0 θγ 0 is in L m+n (Y ).

At this stage we can prove Claim 3.5.

p w(Z 2 ) (n) ≤ f (n) for all 1 ≤ n ≤ n + 1.
Let us shrink again our set of words.

Lemma 3.6. For a given subset Z of Z 2 , there exists

Z ′ ⊂ Z, |Z ′ | ≥ (1 - exp(-(j -1) E 0
2 )) j |Z|, such that the total number of factors of length n + j of all words γ 0 θγ 0 such that γ 0 θ is in Z ′ is at most f (n + j) -j.

We start from Z 2 and apply successively Lemma ?? from j = 2 to j = 6εm, getting 6εm -1 succssive sets Z ′ ; at the end, we get a set Z 3 such that the total number of factors of length n + j of words γ 0 θγ 0 for γ 0 θ in Z 3 is at most f (n + j) -j for j = 2, . . . , 6εm, and

|Z 3 | |Z 2 | is at least Π 2≤j≤6εm-n (1 -exp(-(j -1) E 0 2 )) j ≥ Π j≥2 (1 -exp(-(j -1) E 0 2 )) j ,
which implies after computations that

|Z 3 | ≥ exp((1 -14ε)hm)).
We can now bound the number of short factors by using the factors we have just deleted and properties of γ 0 , γ 1 and γ 2 .

Claim 3.7. p w(Z 3 ) (n) ≤ f (n) for all 1 ≤ n ≤ 6εm.

We shrink our set again.

Let m ≥ n > 6εm; in average a factor of length n of a word in Z 3 occurs in at most m|Z 3 | f (n) elements of Z 3 . We consider the f (n) mn 2 factors of lemgth n which occur the least often. In total, these factors occur in at most

m|Z 3 | f (n) f (n) mn 2 = |Z 3 | n 2
elements of Z 3 . We remove these words from Z 3 , for all m ≥ n > 6εm, obtaining a set Z 4 with |Z 4 | ≥ exp((1 -15ε)hm).

We can now control medium length factors, using again the missing factors we have just created, and γ 1 and γ 2 , but not γ 0 . Claim 3.8. p w(Z 4 ) (n) ≤ f (n) for all 1 ≤ n ≤ m. For the long factors, we use mainly the fact that there are many missing factors of length m, but we need also some help from γ 1 and γ 2 . Claim 3.9. p w(Z 5 ) (n) ≤ f (n) for all n.

In view of the considerations at the beginning of the proof of Proposition ??, Claim ?? completes the proof of that proposition, and thus of Theorem ??.

Application

We define

C(f ) = {x = n≥0 w n q n+1 ∈ [0, 1], w(x) = w 0 w 1 • • • w n • • • ∈ W (f )}.

Then we have

Theorem 4.1.

The Hausdorff dimension of C(f ) is equal to E W (f )/ log q.
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  and choose one among them such that min 1≤n≤N log q n (Y ) n is maximum.

Finally

  we put Z 5 = Z 4 if |Z 4 | ≤ exp((1 -4ε)hm), otherwise we take for Z 5 any subset of Z 4 with ⌈exp((1 -4ε)hm)⌉ elements. In both cases we have |Z 5 | ≥ exp((1 -ε)hm).