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In this paper, we continue the discussion of the question of essential self-adjointness for the discrete Laplacian acting on 3-simplicial complex. We establish a new criterion using Stieltjes vectors approach.

Introduction

In the last few years, the question of the essential self-adjointness of discrete Laplacian acting on graph drew a lot interest, see for instances [START_REF] Milatovic | Essential self-adjointness of magnetic Schrodinger operators on locally …nite graphs[END_REF][START_REF] Golénia | Unboundedness of adjacency matrix of locally …nite grphs[END_REF][START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF][START_REF] De Verdière | Essential self-adjointness for combinatorial Schrodinger operators II, Magnetic …elds[END_REF]. Graphs can be regarded as 1-dimensional simplicial complex. Simplicial complexes represent useful and accurate models of complex networks and complex systems in general. In this paper, we will focus on weighted 3-simplicial complex as 3dimensional complex such that all 3-simplexes are tetrahedrons. The concept of 3-simplicial complex was investigated by us in [START_REF] Azeddine | The discrete Laplacian of 3-Simplicial complex[END_REF][START_REF] Azeddine | The discrete Laplacian acting on 3-forms[END_REF] as generalization of graphs. We refer to [START_REF] Lim | Hodge Laplacians on graphs, Geometry and Topology in Statistical Inference[END_REF] for this point of view and applications to game theory and ranking. The weighted 3-simplicial complex permits to de…ne two discrete Laplacian: The discrete 3-Laplacian L 3 and the discrete 2-Hodge Laplacian L 2 = L fu 2 + L lo 2 , where L fu 2 is the full Laplacian and L lo 2 is the lower Laplacian. In the case of 2-simplicial complex, the weight of the 3-simplexes equal 0 and thus L 2 = L fu 2 . Recently, the 1-Hodge Laplacian was visited in [18c]. The question of the selfadjointness was visited by us in [START_REF] Azeddine | The discrete Laplacian of 3-Simplicial complex[END_REF][START_REF] Azeddine | The discrete Laplacian acting on 3-forms[END_REF]. More speci…cally, in [START_REF] Azeddine | The discrete Laplacian of 3-Simplicial complex[END_REF], we are given a relation between the geometric hypothesis for the 3-simplicial complex and the self-adjointness for L 3 . In [START_REF] Azeddine | The discrete Laplacian acting on 3-forms[END_REF], we are given a criterion of essential self-adjointness using the Nelson lemma. In this paper, we continue the discussion of the question of essential self-adjointness for L 2 and L 3 . Note that the two Laplacian depends on the weight of verticesm, weighted edge E, weighted face F and weighted tetrahedron 3 . Let d (x) be the degree of vertices, d (x; y) be the weight degree of edges and d (x; y; z) be the weight degree of faces, where (x; y; z) 2 V 3 , we refer to Section 2 for precise de…nitions. The article is organized as follows: In Section 2, we present general de…nitions about graphs and simplicial complex. In Section 3, we de…ne two di¤erent types of discrete operators (The discrete 3-Laplacian and the discrete 2-Hodge Laplacian). In Section 4, we provide a new criterion of essential self-adjointness for L 2 and L 3 using Stieltjes vectors approach.

Preliminaries

2.1. The basic concepts. A graph K is a pair (V; E), where V is the countable set of vertices and E the set of oriented edges, considered as a subset of V V . When two vertices x and y are connected by an edge e, we say they are neighbors. We denote x y and e = (x; y) 2 E. We assume that E is symmetric, ie.

(x; y) 2 E =) (y; x) 2 E. An oriented graph K is given by a partition of E: E = E [ E + (x; y) 2 E , (y; x) 2 E + .
In this case for e = (x; y) 2 E , we de…ne the origin e = x, the termination e + = y and the opposite edge e = (y; x) 2 E + . Let c : V ! (0; 1) the weight on the vertices. We also have r : E ! (0; 1) the weight on the oriented edges with 8e 2 E; r( e) = r(e). A path between two vertices x; y 2 V is a …nite set of oriented edges e 1 ; :::; e n ; n 1 such that e 1 = x, e + n = y and, if n 2, 8j; 1 j n 1 =) e + j = e j + 1. The path is called a cycle or closed when the origin and the end are identical, ie. e 1 = e + n , with n 3. If no cycles appear more than once in a path, the path is called a simple path. The graph K is connected if any two vertices x and y can be connected by a path with e 1 = x and e + n = y. We say that the graph K is locally …nite if each vertex belongs to a …nite number of edges. The graph K is without loops if there is not the type of edges (x; x), ie.8x 2 V =) (x; x) = 2 E. (x 0 ; :::; x n ) 2 V n such that x 0 = x, x n = y and r(x i ; x i+1 ) > 0 for all i 2 f0; :::; n 1g. The minimal possible n is denoted by V (x; y) and called the distance between x and y. The set of neighbors of x 2 V is denoted by V (x) = fy 2 V : y xg. The degree of x 2 V is by de…nition d(x), the number of neighbors of x. In the sequel, we assume that K is without loops, connected, locally …nite and oriented. Simplicial complex generalize the notion of a graph of higher dimensions. Let V be a countableset. Any nonempty subset

V of the form = fv 0 ; v 1 ; :::; v n g is called a n-dimensional simplex or n-simplex. A simplicial complex X is a collection of simplexes of various dimension that is closed under taking subsets; that is, for any set 2 X and any subset Y , we have Y 2 X. Let X be a simplicial complex. We denote the set of n-simplexes of X as X n . We say that X is m-dimensional or that X is a m-complex if X m 6 = ; and X m+1 = ;. Graphs can be regarded as 1-dimensional simplicial complex. An oriented triangular face of K is a surface limited by a simple closed path of lenght equals 3, considered as an element of E 3 , i. e $ is an oriented triangular face ) $ = (e 1 ; e 2 ; e 3 ) 2 E 3 such that fe i g 1 i 3 E is a simple closed path. Let F be the set of all oriented faces of K. In the sequel we will represent the oriented faces by their vertices For a face $ = [(x; y; z)] 2 F . Let us set $ = (x; y; z) = (y; z; x) = (z; x; y) 2 F ) $ = (y; x; z) = (x; z; y) = (z; y; x) 2 F . A triangulation T is a 2-simplicial complex such that all the faces are triangular. To de…ne weighted triangulations we need weights, let us give s : F ! (0; 1) the weight on oriented faces such that for all $ 2 F , s( $) = s($). The weighted triangulation (T; c; r; s) is given by the triangulation T = (V; E; F ). We say that T is simple if the weights of the vertices, the edges and faces equals 1.

For an edge e 2 E, we also denote the oriented face (e ; e + ; x) by (e; x), with x 2 V (e ) \ V (e + ).The set of vertices belonging to the edge e 2 E is given by

F e = fx 2 V; (e; x) 2 F g = V (e ) \ V (e + ).
When is simple, the degre of edges is d(x; y) = #F (x;y) . An oriented tetrahedron of K is a volume limited by four oriented triangular faces of F , considered as an element of V 4 , i. e is an oriented tetrahedron ) = (x; y; z; v) 2 V 4 . Let 3 be the set of all oriented tetrahedron of K. We consider the pair (T; 3 ) as a 3-simplicial complex, we denote it by . We can denote also = (V; E; F; 3 ). Odd permutation means we exchange the position of any two vertices an odd number of times. Even permutation means we exchange the position of any two vertices an even number of times. For a ; 2 2 3 we have :

= ()
is obtened from by an even permutation. = () is obtened from by an odd permutation.

To de…ne weighted 3-simplicial complex we need weights, let us give t : 3 ! (0; 1) the weight on oriented tetrahedrons such that for all 2 3 , t( ) = t( ):The weighted 3-simplicial complex (V; c; r; s; t) is giving by the 3-simplicial complex = (V; E; F; 3 ). We say that is simple if the weights of the vertices, the edges, the triangular faces and tetrahedrons equals 1. The set of vertices belonging to the tetrahedron where (x; y; z) 2 F is an oriented triangular face si giving by: 3 (x; y; z) = fv 2 V; (x; y; z; v) 2 3 g = V (x) \ V (y) \ V (z). When is simple, the degre of faces is d(x; y; z) = # 3 (x; y; z). From [yc] we have 1 (x; y) = 1 r(x;y) P z2V s (x; y; z) (x; y; z) with 2 C c skew (F ).

2.2. Functions spaces. We denote the set of 0 cochains or functions on V by:

C(V ) = ff : V ! Cg
and the set of functions of …nite support by C c (V ). Similarly, we denote the set of 1 cochains or 1 forms on E by:

C(E) = f' : E ! C; '( e) = '(e)g
and the set of 1 forms of …nite support by C c (E). Moreover, we denote the set of 2 cochains or 2-forms on F by:

C skew (F ) = f : F ! C; ( $) = ($)g
and the set of 2 forms of …nite support by C c skew (F ). Further, we denote the set of 3 cochains or 3 forms on E by:

C skew ( 3 ) = f : 3 ! C; ( ) = ( )g
and the set of 3 forms of …nite support by C c skew ( 3 ). Let us de…ne the Hilbert spaces l 2 (V ), l 2 (E), l 2 skew (F ) and l 2 skew ( 3 ) as the sets of cochains with …nite norm, we have

l 2 (V ) = ( f 2 C(V ); X x2V c(x)jf (x)j 2 < 1 )
, with the inner product

hf; gi l2(V ) = X x2V c(x)f (x) g(x). l 2 (E) = ( ' 2 C(E); X e2E
r(e)j'(e)j 2 < 1

) , with the inner product

h'; i l 2 (E) = 1 2 X e2E
r(e)'(e) (e).

l 2 skew (F ) = ( 2 C skew (F ); X $2F s($)j ($)j 2 < 1
) , with the inner product

h 1 ; 2 i l 2 skew (F ) = 1 6 X (x;y;z)2F
s(x; y; z) 1 (x; y; z) 2 (x; y; z).

l 2 skew ( 3 ) = 8 < : 2 C skew ( 3 ); X 2 3 t( )j ( )j 2 < 1 9 =
; , with the inner product

h 1 ; 2 i l 2 skew ( 3) = 1 24 X (x;y;z;v)2 3
t(x; y; z; v) 1 (x; y; z; v) 2 (x; y; z; v).

Operators

In this section, we recall the concept of exterior derivative operator associated to a tetrahedrons space, that we are de…ned in [START_REF] Azeddine | The discrete Laplacian of 3-Simplicial complex[END_REF][START_REF] Azeddine | The discrete Laplacian acting on 3-forms[END_REF]. This permits to de…ne the discrete Laplacian acting on 3-forms.

The skew-symmetric discrete Laplacian operator acting on 3-forms.

We start with de…ning the operators in the skew-symmetric case. The skewsymmetric exterior operator is the operator We are proved that both operators d 2 skew and 2 skew are closable in [START_REF] Azeddine | The discrete Laplacian of 3-Simplicial complex[END_REF]. We denote their closure by the same symbol. We are proved in [5 and 18] that the skew-symmetric discrete Laplacian operator acting on 3-forms is given by

d 2 skew : C c skew (F ) ! C c skew ( 
L 3 (x; y; z; v) = d 2 skew 2 skew (x; y; z; v) = 1 s (y; z; v) X u2 3(y;z;v) t(u; y; z; v) (u; y; z; v) + 1 s (v; z; x) X w2 3(v;z;x) t(w; v; z; x) (w; v; z; x) + 1 s (x; y; v) X b2 3(x;y;v) t(b; x; y; v) (b; x; y; v) + 1 s (z; y; x) X a2 3(z;y;x)
t(a; z; y; x) (a; z; y; x) . with 2 C c skew ( 3 ).

the 2-Hodge

Laplacian on a 3-simplicial complex. We are proved in [5 and 18] that the discrete Laplacian acting on 2-forms in 3-simplicial complex is given by With ' 2 C c skew (F ). De…nition 1. We de…ne the discrete 2-Hodge Laplacian of a 3-simplicial complex by

L 2 ' (x; y; z) = d 1 skew 1 skew + 2 skew d 2 skew ' (x; y; z) = d 1 skew 1 skew ' (x; y; z) + 2 skew d 2 skew ' (x; y; z) = 1 skew ' (x; y) + 1 skew ' (y; z) + 1 skew ' (z; v) + 2 skew d 2 skew ' (x; y; z) . With ' 2 C c skew (F ). We put L fu 2 '(x; y; z) = d 1 skew 1 skew ' (x; y; z) . Then L fu 2 '(x; y; z) = d 1 skew 1 skew ' (x; y; z) = 1 skew ' (x; y) + 1 skew ' (y; z) + 1 skew ' (z; v) = 1 r (x;
L h 2 = L fu 2 + L lo 2 .
In [START_REF] Azeddine | The discrete Laplacian of 3-Simplicial complex[END_REF] we have proved that the operators L 2 and L 3 are closable and symmetric. We denote their closure by the same symbol, its domain by Dom (L 2 ) (resp Dom (L 3 )) and its adjoint by L 2 (resp L 3 ).

Essential self-adjointness

Let

= (V; E; F; 3 ) be a weighted 3-simplicial complex. The ball of radius r 2 N around a vertex 2 V is the set B r ( ) = fx 2 V : V ( ; x) rg .

In [START_REF] Baloudi | The adjacency matrix and the discrete Laplacian acting on forms[END_REF], they prove that L fu 1 is essentially self-adjoint on C c (E) when

+1 P r=1 Q i r sup x2Bi( ) d (x) ! 1 2r = 1.
The technique of the proof is based on the Stieltjes vectors approach. In the following theorem, we adapt this approach for L h 2 . Theorem 1. Let = (V; E; F; 3 ) be a weighted 3-simplicial complex and let 2 V . Assume that

+1 P r=1 r Q k=1 sup x2B k ( ) d (x) + sup (x;y)2B k ( ) 2 \E d (x; y) + sup (x;y;z)2B k ( ) 3 \F d (x; y; z) !! 1 2r = 1, where B k ( ) 2 = B k ( ) B k ( ) and B k ( ) 3 = B k ( ) B k ( ) B k ( ). Then L h 2 is essentially self-adjoint on C c skew (F ). Proof. Let r 2 N and 2 C c skew (F ). Then ; 1 B 3 r ( )\F L h 2 1 B 3 r ( )\F = 1 B 3 r ( )\F ; L fu 2 1 B 3 r ( )\F + 1 B 3 r ( ) ; L lo 2 1 B 3 r ( )
By repeating the proof of [2, Theorem 6.15], we have skew (F ) . Therefore,

1 B 3 r ( )\F ; L fu 2 1 B 3 r ( )\F sup x2B k ( ) d (x) 1 B 2 r ( ) 2 l 2 skew (E) + sup (x;y)2B k ( ) 2 \E d (x; y) 1 B 3 r ( ) 2 
1 B 3 r ( )\F L h 2 1 B 3 r ( )\F sup x2B k ( ) d (x) + sup (x;y)2B k ( ) 2 \E d (x; y) + sup (x;y;z)2B k ( ) 3 \F d (x; y; z) ! Let ' 2 C c skew (F ). There is p 2 N such that supp(') B 3 p (o) \ F , where supp(') = f(x; y; z) 2 F : '(x; y; z) 6 = 0g. Note that supp L h 2 r ' B 3 p+r . Therefore, L h 2 r+1 ' l 2 skew (F ) 1 B 3 p+r+1 ( )L h 2 1 B 3 p+r+1 ( ) l 2 skew (F ) L h 2 r ' l 2 skew (F ) 1 3 sup x2Bp+r+1( ) d (x) + sup (x;y)2Bp+r+1( ) 2 d (x; y) + sup (x;y;z)2Bp+r+1( ) 3 d (x; y; z) ! L h 2 ' l 2 skew (F )
Hence, we have +1 P r=1

1 2r q k(L h 2 ) r 'k = +1.
Applying [START_REF] Nussbaum | Quasi-analytic vectors[END_REF] or [START_REF] Masson | Classes of C1 vectors and essential self-adjointness[END_REF], then L h 2 is essentially self-adjoint on C c skew (F ). In the next theorem, we adapt the previous approach for L 3 .

Theorem 2. Let = (V; E; F; 3 ) be a weighted 3-simplicial complex and let 2 V . Assume that Applying [START_REF] Nussbaum | Quasi-analytic vectors[END_REF] or [START_REF] Masson | Classes of C1 vectors and essential self-adjointness[END_REF], then L 3 is essentially self-adjoint on C c skew ( 3 ).
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  skew ( )(y; z; v) = 1 s(y; z; v) X x2 3(y;z;v) t(x; y; z; v) (x; y; z; v).

s

  (x; y; m) '(x; y; m) + 1 r (y; z) P m2V s (y; z; m) '(y; z; m) + 1 r (z; x) P m2V s (z; x; m) '(z; x; m). With ' 2 C c skew (F ). Let L fu 2 '(x; y; z) = 2 skew d 2 skew ' (x; y; z) . x;y;z) t(m; x; y; z)d 2 '(m; x; y; z) = 1 s(x; y; z) X m2 3(x;y;z) t(m; x; y; z)d 2 '(m; x; y; z) = 1 s (x; y; z) P m2 3(x;y;z) t (x; y; z; m) ('(z; y; m) + '(m; x; z) + '(y; x; m) = +'(x; y; z)) .

  y;z)2B k ( ) 3 \F d (x; y; z) 1 B 3

Then L 3 1 3 f l 2 skew ( 3 ) 1 Fp+r+1 L 3 1kL r 3 f k l 2 skew ( 3 )

 313231323 is essentially self-adjoint on C c skew ( 3 ). Proof. We set F r = f(x; y; z; m) 2 3 such that x; y; z; m 2 B r ( )g. Let g 2 l 2 skew ( 3 ). Then, h1 Fr g; L 3 Fr gi = P (x;y;z)2F 1 s(x;y;z) P m2 3(x;y;z) t(x; y; z; m)1 Fr (x; y; z; m)g(x; y; z; m) y; z; m) j1 Fr (x; y; z; m)g(x; y; z; m)j 2 sup (x;y;z)2B 3 r ( )\F d (x; y; z) k1 F k gk l 2 skew ( 3) . Now, let f 2 C c skew ( 3 ). There is p 2 N such that supp(f ) F p . This implies that supp(L 3 f ) F p+1 . Therefore, L r+1 Fp+r+1 sup (x;y;z)2B 3 p+r+1 ( )\F d (x; y; z) kL r 3 f k l 2 skew ( 3) . In this way, we see that