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GENERALIZED VEECH 1969 AND SATAEV 1975 EXTENSIONS OF ROTATIONS
UNFINISHED VERSION

SÉBASTIEN FERENCZI AND PASCAL HUBERT

ABSTRACT. We look at d-point extensions of a rotation of angle α with r marked points, generaliz-
ing the examples of Veech 1969 and Sataev 1975, together with the square-tiled interval exchanges
of [4]. We give conditions for minimality, solving the problem of minimality for Veech 1969, and
show that minimality implies unique ergodicity when α has bounded partial quotients. Then we
study the property of rigidity, in function of the Ostrowski expansions of the marked points by α:
the most interesting case is when α has bounded partial quotients but the natural coding of the rota-
tion with marked points is not linearly recurrent; it is only partially solved but allows us to build the
first examples of non linearly recurrent and non rigid interval exchanges.

In a famous paper of 1969 [9], much ahead of its time, W.A. Veech defines an extension of a
rotation of angle α to two copies of the torus with a marked point β, the change of copy occurring
on the interval [0, β[ (resp. [β, 1[ on a variant, thus there are two types of Veech 1969 systems,
see Definition 2.1 below): for particular α with big partial quotients, these provide examples of
minimal non uniquely ergodic interval exchanges. These were defined again independently, in a
generalized way, by E.A. Sataev in 1975, in a beautiful but not very well known paper [8]: by
taking r marked points and r + 1 copies of the torus, he defines minimal interval exchanges with
a prescribed number of ergodic invariant measures. A more geometric model of Veech 1969 was
given later by H. Masur and J. Smillie, where the transformation appears as a first return map of a
directional flow on a surface made with two tori glued along one edge, see Lemma 2.1 below. In
the present paper, we study slightly more general systems, by marking r points and taking d copies
of the torus, for any r ≥ 1, d ≥ 2; also, though in general our marked points are not in Z(α),
we allow one of them to be 1 − α, so that our systems generalize also the square-tiled interval
exchanges we define in [4]. The geometric model generalizes also, to d glued tori.

We study first the minimality of Veech 1969: it is proved in [9] that if β is not in Z(α), T is
minimal; for the remaining cases, Veech could prove only (p. 6 of [9]) that if α and β are irrational,
at least one of the two types of Veech 1969 defined by α and β is minimal. As far as we know, this
result has not been improved in the last fifty years; we can now give a rather unexpected necessary
and sufficient condition which implies it, see Theorem 3.1 below. In the general case, we give a
sufficient condition for minimality, and prove, in contrast with Veech’s cases, that whenever α has
bounded partial quotients T is uniquely ergodic.

We turn now to the measure-theoretic property of rigidity, meaning that for some sequence qn the
qn-th powers of the transformation converge to the identity (Definition 1.7 below). Experimentally,
in the class of interval exchanges, the absence of rigidity is difficult to achieve (indeed, by Veech
[10] it is true only for a set of measure zero of parameters) and all known examples satisfy also the
word-combinatorial property of linear recurrence (Definition 1.6 below) for their natural coding.
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2 S. FERENCZI AND P. HUBERT

Indeed, for the present class of systems, we prove that T is rigid (and not linearly recurrent) when
α has bounded partial quotients, and that T is not rigid (and linearly recurrent) when the natural
coding of the underlying rotation with marked points is linearly recurrent (under an extra condition
on the permutations, we prove also that T is not of rank one); this linear recurrence requires α to
have bounded partial quotients and the marked points to satisfy some conditions in their Ostrowski
expansions by α: under these conditions, we can suitably adapt the techniques used in [4], where,
for another class of extensions of rotations, we proved rigidity is equivalent to α having unbounded
partial quotients.

But, in sharp contrast with [4], there is no such equivalence in the present class of systems,
and this leaves an interesting grey zone, when α has bounded partial quotients but the Ostrowski
expansions of the marked points do not satisfy the conditions required for linear recurrence. In
these cases we prove some partial results, namely a sufficient condition for non-rigidity (Theorem
5.5) and a sufficient condition for rigidity (Theorem 5.8): the latter puts all the grey zone on the
rigid side for Veech 1969, while, with two (or more) marked points, the former allows us to build
the first known examples of non linearly recurrent and non rigid interval exchanges, answering
Question 8 of [4]. These conditions are enough to give a full characterization of rigidity for the
simplest generalizations of Veech 1969, when we take two copies of the torus and a small number
of marked points (for higher numbers of marked points, the question is not untractable but the
results become extremely tedious to state). In general, the grey zone seems quite complicated,
with many different cases using different techniques, and we seem to be far from a complete
characterization of rigidity in our class.

1. DEFINITIONS

1.1. Word combinatorics. We begin with basic definitions. We look at finite words on a finite
alphabet A = {1, ...k}. A word w1...ws has length |w| = s (not to be confused with the length of
a corresponding interval). The empty word is the unique word of length 0. The concatenation of
two words w and w′ is denoted by ww′.

Definition 1.1. A word w = w1...ws occurs at place i in a word v = v1...vs′ or an infinite sequence
v = v1v2... if w1 = vi, ...wt = vi+s−1. We say that w is a factor of v.

Definition 1.2. A language L over A is a set of words such if w is in L, all its factors are in L, A
language L is minimal if for each w in L there exists n such that w occurs in each word of L with
n letters.
The language L(u) of an infinite sequence u is the set of its finite factors.

Definition 1.3. A word w is called right special, resp. left special if there are at least two different
letters x such that wx, resp. xw, is in L. If w is both right special and left special, then w is called
bispecial.

1.2. Symbolic dynamics and codings.

Definition 1.4. The symbolic dynamical system associated to a language L is the one-sided shift
S(x0x1x2...) = x1x2... on the subsetXL ofAN made with the infinite sequences such that for every
s′ < s, xs′ ...xs is in L.
For a word w = w1...ws in L, the cylinder [w] is the set {x ∈ XL;x0 = w1, ...xs−1 = ws}.

Note that the symbolic dynamical system (XL, S) is minimal (in the usual sense, every orbit is
dense) if and only if the language L is mimimal,
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Definition 1.5. For a system (X,T ) and a finite partition Z = {Z1, . . . Zρ} of X , the trajectory of
a point x in X is the infinite sequence (xn)n∈IN defined by xn = i if T nx falls into Zi, 1 ≤ i ≤ ρ.
Then L(Z, T ) is the language made of all the finite factors of all the trajectories, and XL(Z,T ) is
the coding of X by Z.

Definition 1.6. A language L or the symbolic system (XL, S) is linearly recurrent if there exists
K such that in L, every word of length n occurs in every word of length Kn.

The following result is due to M. Boshernitzan, and written by T. Monteil in [5], Exercise 7.14.

Proposition 1.1. For an invariant measure µ on XL, S, let en(L, µ) be the smallest positive mea-
sure of the cylinders of length n. Then T is linearly recurrent if and only if there exists an invariant
measure on (XL, S) such that lim infn→+∞ nen(L, µ) > 0.

1.3. Measure-theoretic properties. Let (X,T, µ) be a probability-preserving dynamical system.

Definition 1.7. (X,T, µ) is rigid if there exists a sequence qn →∞ such that for any measurable
set A µ(T qnA∆A)→ 0.

Definition 1.8. In (X,T ), a Rokhlin tower is a collection of disjoint measurable sets called levels
F , TF , . . . , T h−1F . F is the basis of the tower.
If X is equipped with a partition P such that each level T rF is contained in one atom Pw(r), the
name of the tower is the word w(0) . . . w(h− 1).
A symbolic systems is generated by families of Rokhlin towers Fi,n, ..., T hi,n−1Fi,n, 1 ≤ i ≤ K,
n ≥ 1, if each level in each towers is contained in a single atom of the partition into cylinders
{x0 = i}, and for any word W in L(T ) there exist i and n such that W occurs in the name (for
this partition) of the tower of basis Fi,n.

If a symbolic system is generated by families of Rokhlin towers, then, for any invariant measure,
any measurable set can be approximated in measure by finite unions of levels of towers.

Definition 1.9. (X,T, µ) is of rank one if there exists a sequence of Rokhlin towers such that the
whole σ-algebra is generated by the partitions {Fn, TFn, . . . , T hn−1Fn, X \ . ∪hn−1j=0 T jFn}.

Throughout the paper, except when we need more precision, we use C as a generic notation for
constants.

2. VEECH AND SATAEV EXAMPLES

In the famous paper [9], W.A. Veech defines (in a slightly different terminology) a two-point
extension of the rotation of angle α on the torus: thus it is defined on two copies of the torus, the
change of copy occurring when x is in the interval [0, β[; the main results are stated for this map,
but the alternative one for which the change of copy occurs when x is in the interval [β, 1[ is used
also in the paper. Thus here we define the two types of Veech 1969, on the usual fundamental
domain.

Definition 2.1. The Veech 1969 systems are defined, if Rx = x + α modulo 1, by T (x, s) =
(Rx, σ(x)s), s = 1, 2, where

• σ(x) = σ0 if x is in the interval [0, β[,
• σ(x) = σ1 if x is in the interval [β, 1[,
• in the first type of Veech 1969, σ0 is is the exchange E, σ1 is the identity I ,
• in the second type of Veech 1969, σ0 = I , σ1 = E.
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0 β 1− α 1 1 1 + β 2− α 2

11 12 13 21 22 23

0 α α + β 1 1 1 + α 1 + α + β 2

T13 T21 T12 T23 T11 T22

FIGURE 1. Veech 1969 (first type)

β′ β′ β′ β′

1− α

1− α + β′

α

FIGURE 2. Geometrical model for Veech 1969

We can assimilate [0, β[×{s} with [s − 1, s − 1 + β[, [β, 1[×{s} with [s − 1 + β, s[. Then T
appears as a six-interval exchange as in Figure 1.

We define now the Masur-Smillie geometrical model for T :

Lemma 2.1. For a given β′, we glue two tori by identifying the dashed, resp. dotted, edges, in
Figure 2, and take the directional flow of slope α, going from one torus to the other when crossing
the gluing lines. Its first return map T ′ on the union of the two left vertical sides is conjugate to the
first type of Veech 1969 if β′ = β, the second type if β′ = 1− β.

Proof
T ′ is a two-point extension of the rotation by α on [0, 1[, where the intervals [1 − α, 1 − α + β′[
are those sent to the opposite copy of [0, 1[ in the first type, the same copy in the second type. We
do not change T ′ (just changing the fundamental domain for the rotation) if we cut the left parts
[0, 1−α[ in each copy, and paste them on the left of 0, then translate the intervals by α− 1 to have
again [0, 1[; then the change of copy occurs for the interval [0, β′[, thus what we get is the first type
of T for β = β′. For the second type, we cut the right parts [1− α+ β′, 1[ in each copy, and paste
them on the left of 0, then translate the intervals by α − β′ to have again [0, 1[, then the change of
copy occurs for the interval [0, 1− β′[. �

We can generalize Veech 1969 naturally by marking several points βi, and taking more than two
copies of the intervals: thus we take r + 1 different permutations on {1, ..., d}, changing permuta-
tion each time we cross a point βi: these transformations have been defined by Sataev [8] in 1975
for d = r + 1 (apparently without knowledge of Veech’s work). In general the βi will be chosen
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0 β1 βj βj+1 βr 1

σ0 σ1 σj σr

FIGURE 3. Generalized Veech - Sataev

to be rationally independent from α, but if there is only one β and it is equal to 1 − α, we get
the square-tiled interval exchanges of [4] (though the geometrical model is not the same); thus,
to generalize both Veech 1969, Sataev 1975, and the square-tiled interval exchanges, we keep the
possibility of choosing one of the βi to be 1− α.

Throughout this paper we take α irrational, 0 < β1 < .... < βr < 1 irrational, with possibly
βt = 1 − α; more precisely, if the index t exists, then βt = 1 − α; otherwise βi 6= 1 − α for all i.
We choose σ0, ..., σr, permutations of {1, ..., d}. We always suppose σj 6= σj+1, 0 ≤ j ≤ r − 1,
as otherwise we could delete some βi. Except for Theorem 3.1 below, we take all the βi, i 6= t,
and all the βi−βj not in Z(α). We shall need sometimes another inequality, which generalizes the
non-commutation condition used in [4], and which we call the product inequality: namely, when t
exists we ask that σrσt−1 6= σ0σt, otherwise we ask that σr 6= σ0.

Definition 2.2. The generalized Veech - Sataev system is defined, if Rx = x + α modulo 1, by
T (x, s) = (Rx, σ(x)s), 1 ≤ s ≤ d. where

• σ(x) = σj if βj ≤ x < βj+1, 1 ≤ j ≤ r − 1,
• σ(x) = σ0 if 0 ≤ x < β1,
• σ(x) = σr if βr ≤ x < 1.

T can be seen also as a d(r + 1) interval exchange, or with the following geometric model: we
build a surface by gluing d tori, the interval [βi, βi+1[ in the right edge of the s-th torus being glued
with the same interval in the left edge of the σis-th tours, and mutatis mutandis for the intervals
[0, β1[ and [βr, 1[. Then we take the directional flow of slope α, going from one torus to the other
when crossing the gluing lines, and Its first return map on the union of the d left vertical sides.

3. MINIMALITY AND UNIQUE ERGODICITY

As mentioned in the introduction, the following NCS for minimality of Veech 1969 seems com-
pletely new.

Theorem 3.1. Let α 6∈ Q, β 6∈ Q;

• the first type of Veech 1969 is not minimal if and only if

β = 2mα + 2n

for some m ∈ Z, n ∈ Z,
• the second type of Veech 1969 is not minimal if and only if

β = 2mα + 2n+ 1

for some m ∈ Z, n ∈ Z.
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η2

η1

ζ2

ζ1

β′ β′ β′ β′

FIGURE 4. The base of H1

Proof
We use the geometrical model of Lemma 2.1: because of this lemma, what we need only to prove
is that the directional flow is not minimal if and only if 2mα = ±β′ + 2n for integers m, n. The
non-minimality of the flow is equivalent to the existence of connections whose union separate the
surface Σ into several connected components. As α is not rational, there is no connection from
0 or β′ to itself; the only possible connections are from 0 to β′ or β′ to 0. We show now that if
β′ is irrational, both cases cannot happen simultaneously. Indeed, by unfolding the trajectories,
a connection from 0 to β′ gives a straight line from (0, 0) to (m,n + β′), of slope α = n+β′

m
,

while a connection from β′ to 0 gives a line from (0, β′) to (q, p), and has slope α = p−β′
q

; thus
n+β′

m
= p−β′

q
, and β′ is rational.

We suppose mα = n + β′. Then we have a connection γ from 0 to β′, and, by symmetry, a
connection γ′ from β′ to 0, of slope−α. γ0 = γ∪γ′ is a closed curve on the surface, and separates
it into two parts whenever it has zero homology, [γ0] = 0 in H1(Σ,Z). A base of H1(Σ,Z) is made
with (ζ1, ζ2, η1, η2), one vertical and one horizontal curve in each torus; [γ0] = 0 if and only if the
(algebraic) intersection of γ0 with ζ1, ζ2, η1, η2 is zero.

We look first at the sufficient condition for minimality: if n is odd, γ hits an odd number of
verticals, thus is more often in the first than in the second copy, and by symmetry γ′ is more often
in the second than in the first copy (resp. the reverse), thus i(γ0, ζ1) 6= 0, [γ0] 6= 0; and similarly if
m is odd. Thus if n or m is odd the flow is minimal.

We look now at the necessary condition. Let n = 2n′, m = 2m′; we have to show that γ hits
each copy the same number of times. We unfold γ in a segment from (0, 0) to (2m′, 2n′ + β′),
denoted by Γ; this segment is symmetric with respect to (m′, n′ + β′/2). Γ changes copy at the
point (x, y) if and only if {y} < β′. The key point now is that if (x′, y′) = (2m′−x, 2n′+β′− y),
the symmetric of (x, y), then {y′} < β′ if and only if {y} < β′: indeed, if a = [y],

{y} < β′ ⇐⇒ a ≤ y < a+ β′ ⇐⇒ 2n′ − a ≤ y < 2n′ − a+ β′ ⇐⇒ {y′} < β′.

Thus if a piece of γ is in a copy, its symmetric is in the other one, and γ hits each copy the same
number of times. �

Theorem 3.1 implies that, for α and β irrational, at least one of the two types of Veech 1969 is
minimal, which was proved in [9]. Note that if β = p

q
∈ Q, by cutting the tori into squares of side
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1
q
, we are in the case of square-tiled surfaces, studied in [4].

For generalized Veech - Sataev systems, we shall be content with the following standard condi-
tion.

Proposition 3.2. If α and all the βi are irrational, all the βi, i 6= t, and all the βi − βj are not in
Z(α), an NCS for minimality is that no strict subset of {1 . . . d} is invariant by all the σi.

Proof
If a strict subset A of {1 . . . d} is invariant by all the σi, then ∪i∈A[0, 1[×{i} is invariant par T , and
T is not minimal.

In the other direction, we use the geometrical model after Definition 2.2. The condition on the
permutations ensures that the surface is connected, and the flow is minimal as the conditions on
the βi ensure there is no connection, except possibly (if t exists) d connections between 1 − α
and 0, each one staying inside one torus; as in the proof of Theorem 3.1, these connections do not
separate the surface into several parts. . �

Theorem 3.3. Minimality implies unique ergodicity for T when α has bounded partial quotients..

Proof
Masur’s criterion... �

4. THE ROTATION WITH MARKED POINTS AND THE OSTROWSKI EXPANSION

4.1. Rokhlin towers. The dynamical behavior of the rotation R is linked with the Euclid contin-
ued fraction expansion of α. We assume the reader is familiar with the notation α = [0, a1, a2, ...];
we define in the classical way the convergents pn

qn
by p−1 = 1, q−1 = 0, p0 = 0, q0 = 1,

pn+1 = an+1pn + pn−1, qn+1 = an+1qn + qn−1. Let αn = |qnα− pn|. We recall

Definition 4.1. α has bounded partial quotients if the ai are bounded.

The rotation R can be coded either by the partition Z of the interval into [0, 1−α[ and [1−α, 1[,
or by the partition Z ′ of the interval by the points β1, .., .βr. This gives two languages L and L′,
and two symbolic systems. The first one is the natural coding of R: it is assimilated to R itself
and denoted by (X,R). The second one is called the rotation with marked points and denoted by
(X ′, S).

It is well known, and written for example in [6], that for the rotation R its natural coding is
generated by two families of Rokhlin towers, made of intervals. We shall now describe precisely
the towers at stage n, or n-towers.

At each stage n ≥ 1, there are one large tower made of qn intervals (or levels) of length αn−1
and one small tower made of qn−1 intervals (or levels) of length αn.. These are described in Figure
3 if n is odd, we make all our comments in that case; the case when n ≥ 2 is even can be deduced,
mutatis mutandis, from Figure 4. Namely, the large tower is represented by the lower rectangle,
and the small tower by the upper rectangle.The rotationR sends the basis [−αn−1+αn+α, αn+α[
to an interval which we put just above it, and call a level of the large tower; this interval is sent by
R just above, and so on until, by Rqn−1 applied to the basis of the large tower, we reach the top of
the large tower, [−αn−1, 0[. Then the left part of this top, [−αn−1,−αn−1 + αn[ is sent by R onto
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(0)

(0)

(1) (an+1 − 1) (an+1)

α

0

0
αn

−αn−1
α− αn−1

αn

0
−αn+1

αn + α

1− α

1− α

FIGURE 5. Rokhlin n-towers for the rotation, n odd

he basis [−αn−1 + α,−αn−1 + αn + α[ of the small tower, and we go up in the small tower until,
by Rqn−1−1 applied to the basis of the small tower, we reach the top of the small tower, [0, αn[.
Where we go next from [0, αn[ or [−αn−1 + αn, αn[ is shown at the bottom of the picture, one
application of R goes to the point just above, in the basis of the large tower. For any x, Rqnx is the
point situated at distance αn to the left of x (extending the intervals if one of these points is not in
the picture). Note that the three points 1 − α, 0 and α can be considered as very close together in
the n-towers.

Each level of each tower is included in one atom of the partition Z. At the beginning, if α > 1
2
,

the large 1-tower has one level, the interval [1 − α, 1[ and he small 1-tower has one level, the
interval [0, 1 − α[, Figure 3 is still valid. .If α < 1

2
, the 1-towers, which are still given by Figure

3, are more complicated, but we can define 0-towers: the large 0-tower has one level, the interval
[0, 1− α[ and he small 0-tower has one level, the interval [1− α, 1[

The large tower is partitioned from left to right into an+1 + 1 columns, of width αn except for
the last one which is of width αn+1, and except for α < 1

2
, n = 0, where there are only a1 columns

and thus Figure 4 does not apply. We denote the columns as in Figure 3 or 4, and include the
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(0)

(0)

(1)(an+1 − 1)(an+1)

α

0

0
−αn

αn−1

αn−1 + α

−αn

0
αn+1

−αn + α

1− α

1− α

FIGURE 6. Rokhlin n-towers for the rotation, n even

whole small tower in column (0). The description of R defines immediately the next towers: to
get the large n + 1-tower we stack the columns of the n-tower above each other, with the column
(an+1 − 1) at the bottom, then (an+1 − 2), ..., (0), and the small n-tower at the top, while the
n-column (an+1) becomes the small n+ 1-tower.

Note that all levels are semi-open intervals, closed on the left, open on the right, and thus each
column includes its left vertical side and not its right one.

The following lemma will be fundamental in our computations: we shall use it when α has
bounded partial quotients, as it quantifies the linear recurrence of the natural coding of the rotation,
but we can state and prove it in the general case.

Lemma 4.1. Suppose x or y, or both, are in the basis of the large n-tower, and x = y + z,
αn+1 ≤ z ≤ αn. Then the smallest k > 0 such that α lies between Rkx and Rky, with α 6= Rkx,
is at least qn + qn−1 and at most qn+2 + qn+1 + qn.

Proof
y is at a distance z to the left of x; then for all mRmy is at the same distance of Rmx on the circle.
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We make all computations with n odd, the even case is similar. To simplify notations, we write
them for x and y which are not on the sides of any n-columns, thus excluding a countable set.
However, we notice they are still valid on this countable set, because of our conventions that the
columns are closed on the left, open on the right and we allow α = Rky when saying α appears
between the two orbits.

• (i) Suppose first x is in the basis of the large n-tower and not y. Then x is at a distance at
most αn from the left of the large tower, thus in column (0); y is to the left of the large tower
and at less than αn from it, thus between−αn−1 +α and−αn−1 +αn+α, thus in the basis
of the small tower (see Figure 7 below). y is at a distance d1 from the left of this basis, x is
at a distance 0 < d2 < z from the left of the large tower, with d1 + z = d2 + αn. We make
qn + qn−1 iterations of R. The orbit of x goes up through the large and small towers, and at
the qn + qn−1-th iteration hits the basis of the large tower, at a point situated d2 to the right
of α, The orbit of y goes up through the small tower, at the qn−1-th iteration hits the basis
of the large tower at a point situated d1 to the right of α, then at the qn + qn−1-th iteration
hits this basis again, αn left of the previous hit, thus left of α as d1−αn = d2− z < 0; and
before the qn + qn−1-th iteration α does not appear between the two orbits.
• (ii) Suppose x and y are in the basis of the large tower and in two different columns. Then

these columns must be adjacent, and, after at most an+1qn iterations of R, during which α
does not appear between the two orbits, we are in the situation of case (i).
• (iii) Suppose x and y are in the basis of the large tower and in the same column. This

column cannot be column (an+1), and x is at distance d3 from the right of its column. After
at most an+1qn + qn−1 = qn+1 iterations of R, during which α does not appear between
the two orbits, the orbit of x hits the basis of the large tower, at a point situated d3 from
its right end, and y also, at distance d3 + z from the right. At this moment, if d3 < αn+1,
then the orbit of x is in column (an+1) and the orbit of y is in column (an+1 − 1) and
we are in the situation of case (ii). If d3 > αn+1, the orbits of x and y are in column
(an+1 − 1), and we are again in case (iii), but with d3 replaced by d3 − αn+1. As d3 < αn
and αn = an+2αn+1 + αn+2, after at most an+2 such laps, during which α does not appear
between the two orbits, we are in the situation of case (ii).
• (iv) Suppose finally y is in the basis of the large n-tower and not x. Then x is to the right

of the large tower and at less than αn from it, and y is to the right of α; after qn iterations of
R, during which α does not appear between the two orbits, we are in the situation of case
(ii) or (iii).

Thus, by taking case (i) for the minimum, and summing our estimates for the maximum, we get
the required result. �

Corollary 4.2. Let β and β′ be any two points on the circle. Suppose x = y + z, αn+1 ≤ z ≤ αn,
and β lies between x and y, with β 6= x. Then the smallest k > 0 such that β′ lies between Rkx
and Rky, with β′ 6= Rkx, is at most qn+2 + qn+1 + qn.

Proof
By Lemma 4.1 this is true for β′ = α and any β, just because β is in one of the n-towers and is the
image of some point in the basis of the large one. As R commmutes with every translation, this is
true also for any β and β′. �
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FIGURE 7. Rokhlin n-towers for the rotation with marked points

4.2. Ostrowski. We now put the points βi, i 6= t, in the picture. By partitioning the two towers
for R as in Figure 5 (for odd n), we get r + 2 towers generating the rotation with marked points
S, for which each level of each tower is included in one atom of the partition Z ′ (if t exists, only
r + 1 towers are needed as 1− α is on the side of one tower).

For each 1 ≤ i ≤ r, i 6= t, and n ≥ 1 we define bn+1(βi) as an integer between 0 and an+1.

Definition 4.2. bn+1(βi) is b 6= 0 if βi is in column (b) of the large n-tower (for R), and 0 if βi is
either in column (0) of the large n-tower or in the small n-tower.
For odd n (resp. even n ≥ 2) let xn(βi) be the (positive) distance of βi to the left (resp. right) side
of the large and small n-towers in Figure 3 (resp. 4).

Proposition 4.3. For each i, the bn(βi) are given by a form of alternating Ostrowski expansion of
βi by α, where the Markovian condition is bn(βi) = an implies bn+1(βi) = 0. For i 6= t, βi is in
Z(α) if and only if either bn(βi) = an − 1 for all n large enough, or b2n(βi) = a2n for all n large
enough, or b2n+1(βi) = a2n+1 for all n large enough. For i 6= t, j 6= t, βi − βj is in Z(α) if and
only if bn(βi) = bn(βj) for all n large enough.
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Proof
We fix an i 6= t. Then

bn+1(βi) =

[
xn(βi)

αn

]
.

Now, xn+1(βi) is the distance of βi to the right (resp. left) side of its n-column if n is odd (resp.
even). Thus we get xn(βi) = bn+1(βi)αn + αn − xn+1(βi) if βi is not in column (an+1), xn(βi) =
bn+1(βi)αn + αn−1 − xn+1(βi) if βi is in column an+1. Because αn−1 = an+1αn + αn+1, we get

xn+1(βi) = −xn(βi) + ((bn+1(βi) + 1)αn) ∧ αn−1.

Note that if βi is in column (an+1) in the large n-tower, then it is in the small n + 1-tower. Thus
bn+1(βi) = an+1 implies bn+2(βi) = 0, and this is the only Markovian condition they have to
satisfy.

Thus when xn(βi) = bn+1(βi)αn + αn−1 − xn+1(βi), then xn+1(βi) = αn+1 − xn+2(βi) and
xn(βi) = an+1αn − xn+2(βi). Together with the formula when bn+1(βi) < an+1, this gives an
expansion x1(βi) =

∑
n≥1(−1)n+1b̄n+1αn with b̄n = bn(βi) + 1 if bn(βi) < an, b̄n = bn if

bn(βi) = an. Thus the b̄n satisfy he Markovian condition b̄n−1 = an−1 if b̄n = 0.
Thus we identify the b̄n with the alternating Ostrowski expansion of x1(βi) by α defined in

[1]. If α > 1
2
, x1(βi) is either βi or βi + α − 1; if α < 1

2
, using the 0-towers, we can define

0 ≤ b1(βi) ≤ a1−1 and x0(βi) in the usual way, so that x1(βi) = −x0(βi)+((b1(βi)+1)α)∧(1−α),
and x0(βi) is either 1 − βi or 1 − α − βi. In both cases, we get an expansion of βi by α, which
is βi =

∑
n≥0(−1)n+1b̄n+1αn with a suitable b̄1, thus our bn(βi) do provide a form of alternating

Ostrowski expansion of βi by α.
The last conditions come from the fact that if βi = Rkα for k > 0 then βi is in the same column

as α, namely column an − 1, in the n − 1-towers for all n large enough, while if βi = Rkα for
k < 0 then βi is in the same column as 0, and this alternates between 0 (in the small tower) and an,
and in both cases the converse is true by construction of the towers, as the vertical distance from
βi to α (resp. 0) in the n − 1-towers is ultimately constant while the horizontal distance tends to
zero with n. Similarly, βi = Rkβj if and only if in the n− 1-towers βi is in the same column as βj
for all n large enough. �

As a consequence, we can build βi with any prescribed sequence 0 ≤ bn(βi) ≤ an satisfying the
Markovian condition.

4.3. Linear recurrence. To prove the next theorem, we need some new notations.

Definition 4.3. For a given n, each βi, i 6= t, appears in a single position in the n-towers as in
Figure 6; it is determined by xn(βi), from Definition 4.2. We shall use also

• yn(βi) = y if βi = Ryβ′i where β′i is in the basis of the large n-tower,
• x′n(βi) = αn−1 − xn(βi),
• xn(βi, βj) = xn(βj, βi) = |xn(βi)− xn(βj)|,
• xn(βi, α) = xn(α, βi) = |x′n(βi)− α|.,
• y′n(βi) = qn − yn(βi) if βi is in the large n-tower, y′n(βi) = qn + qn−1 − yn(βi) if βi is in

the small n-tower,
• when βi is in the small tower, y”n(βi) = yn(βi)− qn,
• yn(βi, βj) = yn(βj, βi) = |yn(βi)− yn(βj)|.
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α
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y′n(β1)
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yn(β1, β2)

xn(β1, β2)xn(β1)

x′n(β2)

FIGURE 8. Positioning the βi in the n-towers

It is worth mentioning that βi and βj are close to each other in the n-towers vertically either
if yn(βi, βj) is small or if yn(βi) + y′n(βj) is small, and βi and βj are close to each other in the
n-towers horizontally either if xn(βi, βj) is small or if xn(βi) + x′n(βj) is small. Though this will
not be mentioned explicitly, each time we claim βi and βj are far from each other in one of these
senses, this means that we have checked both conditions.

Theorem 4.4. The symbolic system (X ′, S) is linearly recurrent if and only all the following con-
ditions are satisfied

• α has bounded partial quotients,
• for each i 6= t, the number of consecutive n such that bn(βi) = an − 1 is bounded,
• for each i 6= t, the number of consecutive n such that b2n(βi) = a2n and the number of

consecutive n such that b2n+1(βi) = a2n+1 are bounded,
• for each i 6= t, j 6= t with j 6= i, the number of consecutive n such that bn(βj) = bn(βi) is

bounded.

Proof
We suppose first our conditions are not satisfied.

If α has unbounded partial quotients, there exists n such that qnαn is arbitrarily small. In the
large n-tower, with α in the basis and 1−α just below 0, we see a cylinder, for the natural coding,
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of length qn− 1 and Lebesgue measure αn; this is a union of cylinders for the coding with marked
points, of the same length and of smaller measure. As the Lebesgue measure is the only invariant
measure by R, this contradicts linear recurrence by Proposition 1.1.

If bn+1βi) = an+1−1, then by construction of the towers xn+1(βi, α) = xn(βi, α) and yn+1(βi) =
yn(βi). If this holds for all M ≤ n ≤ M + N , then xM(βi, α) = xM+N(βi, α) ≤ αM+N and
yM+N(βi) = yM(βi) ≤ qM . Thus, for example, in the large M + N -tower we see a cylinder (for
the coding with marked points) of measure xM+N(βi, α) and length yM+N(βi). The product of
these quantities is at most qMαM+N ≤ θ−NqM+NαM+N ≤ θ−NC, where θ is the golden ratio.
Thus, if N is allowed to be arbitrarily large, this contradicts linear recurrence by Proposition 1.1.

If bn+1(βi) = an+1, then βi is in the small n+ 1-tower, with x′n+1(βi) = xn(βi) and y′n+1(βi) =
y′n(βi), and then x′n+1(βi) = xn+2(βi) and y′n+1(βi) = y′n+2(βi). If this holds for all M ≤ n ≤
M + 2N , y′M+2N(βi) = y′M(βi) ≤ qM . In the large M + 2N -tower we see a cylinder of measure
xM+2N(βi) ≤ αM+2N and length y′M+2N(βi). If N is allowed to be arbitrarily large, we conclude
as in the previous case.

If bn+1(βi) = bn+1(βj), then xn+1(βi, βj) = xn(βi, βj) and yn+1(βi, βj) = yn(βi, βj). If this
holds for all M ≤ n ≤M +N , then yM+N(βi, βj) = yM(βi, βj) ≤ qM . In the M +N -towers we
see a cylinder of measure xM+N(βi, βj) ≤ αM+N and length yM+N(βi, βj). If N is allowed to be
arbitrarily large, we conclude as in the previous cases.

We suppose now all our conditions are satisfied. In particular, α has bounded partial quotients.
If bn+1βi) 6= an+1 − 1, then xn(βi, α) ≥ αn+2. Otherwise, xn(βi, α) = xm(βi, α) for the first

m > n for which bm+1(βi) 6= am+1 − 1, and we know m ≤ n+K. Thus we get that for all n,

xn(βi, α) ≥ αn+K+2 ≥ Cαn.

If bnβi) 6= an − 1, then by construction of the towers yn(βi) ≥ qn−1. Otherwise, yn(βi) = ym(βi)
for the last m < n for which bm(βi) 6= am − 1, and we know m ≤ n−K. Thus we get that for all
n,

yn(βi) ≥ qn−K−1 ≥ Cqn.

If bn−1βi) 6= an−1 − 1, by construction of the towers the result yn−1(βi) ≥ Cqn−1 implies, when
y”n(βi) is defined, that

y”n(βi) ≥ Cqn.

If bn+1βi) 6= an+1, then x′n(βi) ≥ αn+1. Otherwise, x′n(βi) = x′m(βi) for the first m > n such that
m− n is even and bm+1(βi) 6= am+1, and we know m ≤ n+K. Thus we get that for all n,

x′n(βi) ≥ αn+K+1 ≥ Cαn.

If bn+2βi) 6= an+2, then x′n+1(βi) ≥ αn+2 and by construction of the towers xn ≥ αn+2 (βi being
far from one side of the n + 1-towers, is far from the opposite side of the n-towers). Otherwise,
x′n+1(βi) = x′m+1(βi) for the first m > n such that m − n is even and bm+2(βi) 6= am+2, and we
know m ≤ n+K. Thus we get that for all n,

xn(βi) ≥ αn+K+2 ≥ Cαn.

If bn−1βi) 6= an−1, then βi is not in the small n − 1-tower, thus far from the top in the n-towers:
we have y′n ≥ qn−1. Otherwise, yn(βi) = ym(βi) for the last m < n such that n −m is even and
bm−1(βi) 6= am−1, and we know m ≤ n−K. Thus we get that for all n,

y′n(βi) ≥ qn−K−1 ≥ Cqn.
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If bn+1βi) 6= bn+1(βj), then βi and βj are not in the same column in the n-towers. Because of the
previous results on xn and x′n, each of them is at a distance greater than Cαn from the sides of their
column, thus xn(βi, βj) ≥ Cαn. Otherwise, xn(βi, βj) = xm(βi, βj) for the first m > n for which
bm+1(βi) 6= bm+1(βj), and we know m ≤ n+K. Thus for all n,

xn(βi) ≥ Cαn+K ≥ Cαn.

If bnβi) 6= bn(βj), then by construction of the towers yn(βi, βj)) ≥ qn−1. Otherwise, yn(βi; βj) =
ym(βi, βj) for the last m < n for which bm(βi) 6= bm(βj), and we know m ≤ n−K. Thus we get
that for all n,

yn(βi, βj) ≥ qn−K−1 ≥ Cqn.

A cylinder H of length h (for the coding with marked points) is an interval [y, x[ for which each
iterate by R−m, 1 ≤ m ≤ h − 1, is in a single atom of Z ′. For a given measure µ(H) = x − y,
the minimal value of h is reached when either x and R−h+1y, or y and R−h+1x, are endpoints of
atoms of Z ′ (otherwise the interval [y, x[ could be extended to the left or to the right). We take n
such that µ(H) is smaller than αn; then as in the proof of Lemma 4.1 we see H in the n-towers or
less than αn from the right or left of Figure 5. Then the above computations imply that h is at least
Cqn and µ(H) at least Cαn. Hence we get the linear recurrence from Proposition 1.1. �

The following lemma will be used later.

Lemma 4.5. If (X ′, S) is linearly recurrent, whenW is a bispecial word in L(T ), of length greater
than an initial constant C0, then if WU is in L(T ) with fixed |U | ≤ C|W |, then U can only be one
of two words U1 and U2, where the first letters of U1 and U2 are different, possibly the second letters
of U1 and U2 are different, and then the l-th letters of U1 and U2 are the same for l ≤ |U1| ∧ |U2|.

Proof
This is proved by looking in the towers for S, using the fact that, by the proof of Theorem 4.4, all
yn(βi), y′n(βi), y”n(βi) and yn(βi, βj) are at least Cqn. Then W corresponds to a set of trajectories
which coincides on |W | consecutive symbols, but some (in particular, the leftmost and rightmost
ones) are different on the letter before and the letter after. If all these trajectories are at a distance
between αn+1 and αn for some n ≥ 2, then W can be seen in the n-towers.

As W is right special, it must end just before we see either a βi, i 6= t, or 1 − α between the
leftmost and rightmost trajectories in W (as in Lemma 4.1 the rightmost one is allowed to hit the
considered βi or 1−α but not the leftmost). In the first case, these two trajectories disagree on the
level containing βi; in the second case, the two trajectories disagree left and right of 1− α, and on
the next letter as they are left and right of 0; in both cases, then they agree again until we see again
1 − α or some βj between the leftmost and rightmost trajectories in W , thus for a length at least
Cqn. As W is left special, it begins just after we see either a βi, i 6= t, or 0 between the leftmost
and rightmost trajectories inW , thus by Corollary 4.2 its length is at most qn+qn+1+qn+2 ≤ C ′qn,
and thus the claimed property is proved. �

5. RIGIDITY FOR GENERALIZED VEECH -SATAEV

5.1. The natural coding of T . We look now at the natural coding of T , by the partition into the
d(r + 1) intervals used to define it, and we call it (Y, T ). We denote by si the i-th interval in the
s-th copy of [0, 1[. A trajectory x of T under this natural coding projects on a trajectory φ(x) of the
rotation with marked points (X ′, S), by applying the map φ(si) = i letter to letter. Because all the
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σi are bijective, and their compositions also, as in Lemma 5 of [4] for any word w in L(T ), there
are exactly d words v such that φ(w) = φ(v), and for each of these words either v = w or on the
letters vi 6= wi for all i.

As (X ′, S) is generated by the r+ 2 towers in Figure 5, (Y, T ) is generated by d(r+ 2) Rokhlin
towers. More precisely, by construction of the towers, for all n, the trajectories of the natural
coding of R are covered by disjoint occurrences of Mn and Pn, the names of the large and small
n-towers. The trajectories of the coding with marked points S are covered by the names of the
towers in Figure 5: these are denoted by Pn,i, 1 ≤ i ≤ r1 < r + 2, and Mn,j , r1 + 1 ≤ j ≤ r + 2,
r1 depending on n (we number them from right to left if n is odd, from left to right otherwise).
The trajectories of T are covered by d(r + 2) words Pn,i,j and Mn,i,j , 1 ≤ j ≤ d which are all the
words which project on on Pn,i and Mn,i by φ.

Proposition 5.1. (Y, T ) is linearly recurrent if and only if (X ′, S) is linearly recurrent.

Proof
Let [w] be a cylinder for (Y, T ): for the Lebesgue measure µ on both sets we have µ[w] = 1

d
µ[φw],

and, for any invariant measure ν on (Y, T ), on (X ′, S) ν projects on µ, the unique invariant mea-
sure, thus µ[φw] =

∑
φv=φw ν[v] ≥ ν[w]. Hence the result in both directions comes from Proposi-

tion 1.1. �

5.2. The non-exotic cases. We use now all the preliminary work to derive results generalizing
those in [4], We do consider these generalizations as non-trivial but do not claim them to be unex-
pected.

Proposition 5.2. If α has unbounded partial quotients, (Y, T ) is rigid for any invariant measure.

Proof
In trajectories of R, by construction of the towers we have Pn+1 = P an+1

n Mn, Mn+1 = Pn for all
n. Thus Pn+2 = (P an+1

n Mn)an+2Pn, Mn+2 = Pn+1 = P an+1
n Mn. As Mn is shorter than Pn disjoint

occurrences of the word P an+1
n fill a proportion at least 1− 2

an+1+1
of the length of both Mn+2 and

Pn+2.
In trajectories of S, the construction of the towers and the above remark imply that a proportion

at least 1− 2
an+1+1

of the length of all Mn+2,j and Pn+2,j is covered by concatenations of the type
Pn,j1 ...Pn,jan+1

of length qnan+1. Moreover, all these concatenation contain, at the same place,
cycles of the form P

cn,j

n,ij
, where the cn,j , 1 ≤ j ≤ r2 ≤ r+1 (r2 depending on n) are the successive

numbers of n-columns containing no βl, between two column containing at least one βl or between
the sides of the towers and a column containing at least one βl (here column (0) is replaced by its
intersection with the large tower). Thus

∑r2
j=1 cn,j ≥ an+1 − r.

In trajectories of T , we look at the words which project by φ on cycles P c
n,i. n and i being

fixed, each Pn,i,j can be followed by exactly one Pn,i,j , and thus the Pn,i,j , 1 ≤ j ≤ d, are grouped
into at most d disjoint strings, each one containing at most d words Pn,i,j . After the last Pn,i,j
of each string, the only Pn,i,j′ we can see is the first one of the same string. Then, if we move
by T d!qn inside one of the words which project on the cycle P cn,j

n,ij
, we go to the same level in the

same tower of name Pn,i,j , except if we are in the last d! words projecting on this cycle. In each
concatenation Pn,j1 ...Pn,jan+1

mentioned above, these “good” words represent
∑r2

j=0(cn,j−d!)∨0 ≥
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an+1 − r− (r + 1)d! of the words in L(T ) projecting on that concatenation, and thus a proportion
at least 0 ∨ (1− 2rd!

an+1
) of the length of all Mn+2,i,j and Pn+2,i,j .

All the levels of the same n-tower have the same measure by a given invariant µ, thus if E is
a union of levels of the towers of name Pn,i,j , we have µ(E∆T d!qnE) ≤ 2rd

an+1
. Now for every

set E and n large enough, E can be δn-approximated (for the invariant measure µ) by unions of
levels of the towers of name Pn,i,j or Mn,i,j; but the towers of name Mn,i,j have total measure at
most 2

an+1
since they represent a smaller fraction of the length of all Mn+2,i,j and Pn+2,i,j . Thus

µ(E∆T d!qnE) ≤ 2rd+4
an+1

+ δn. Hence if the an are unbounded T is rigid. �

The notion of average d̄-separation is defined in [4], where comments and explanations on this
and related notions can be found.

Definition 5.1. For two words of equal length w = w1 . . . wQ and w′ = w′1 . . . w
′
Q, their Hamming

or d̄-distance is d̄(w,w′) = 1
Q

#{i;wi 6= w′i}.
A language L on an alphabet A is average d̄- separated for an integer e ≥ 1 if there exists a
language L′ on an alphabet A′, a K to one (for some K ≥ e) map φ from A to A′, extended by
concatenation to a map φ from L to L′, such that for any word w in L, there are exactly K words
v such that φ(w) = φ(v), and for each of these words either v = w or d̄(w, v) = 1, and a constant
C, such that if vi and v′i, 1 ≤ i ≤ e, are words in L, of equal length Q, satisfying

•
∑e

i=1 d̄(vi, v
′
i) < C,

• φ(vi) is the same word u for all i,
• φ(v′i) is the same word u′ for all i,
• vi 6= vj for i 6= j.

Then {1, . . . Q} is the disjoint union of three (possibly empty) integer intervals I1, J1, I2 (in in-
creasing order) such that

• vi,J1 = v′i,J1 for all i,
•
∑e

i=1 d̄(vi,I1 , v
′
i,I1

) ≥ 1 if I1 is nonempty,
•
∑e

i=1 d̄(vi,I2 , v
′
i,I2

) ≥ 1 if I2 is nonempty,
where wi,H denotes the word made with the h-th letters of the word wi for all h in H .
This implies in particular that #J1 ≥ q(1−

∑e
i=1 d̄(vi, v

′
i)).

We call d̄-separation the average d̄-separation with K = e = 1, L = L′, φ the identity.

The proof of next proposition will follow step by step the proof of Proposition 44 of [4]. The
main difference is that in [4] L(T ) projects by φ on L(R), while here it projects on the more
complicated L(S). Hence Lemma 4.5 above will replace Lemma 42 of [4].

Proposition 5.3. If the product inequality before Definition 2.2 and the minimality condition of
Proposition 3.2 are satisfied, and the rotation with marked points (X ′, S) is linearly recurrent,
L(T ) is average d̄-separated with e = d.

Proof
We take L′ = L(S), K = d. Let vi and v′i be as in Definition 5.1.

We compare first u and u′; note that if we see l in some word φ(z) we see some sl at the
same place on z; thus d̄(z, z′) ≥ d̄(φ(z), φ(z′)) for all z, z′; in particular, if d̄(u, u′) = 1, then
d̄(vi, v

′
i) = 1 for all i and our assertion is proved.
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Thus we can assume d̄(u, u′) < 1. We partition {1, . . . Q} into successive integer intervals
where u and u′ agree or disagree: we get intervals I1, J1, . . . , Ig, Jg, Ig+1, where g is at least 1, the
intervals are nonempty except possibly for I1 or Ig+1, or both, and for all j, uJj = u′Jj , and, except
if Ij is empty, uIj and u′Ij are completely different, i.e. their distance d̄ is one.

Then for i ≤ g − 1, the word uJi = u′Ji is right special in the language L(S), and this word is
left special if i ≥ 2.

(H0) We suppose first that uJ1 = u′J1 is also left special and uJg = u′Jg is also right special.

Then, by Lemma 4.5, either #Jj is smaller than a fixed m1, , or 1 ≤ #Ij+1 ≤ 2 and

#Ij+1 + #Jj+1 > C#Jj,

Similar considerations for S−1 imply that for j > 1 either #Jj < m1, or 1 ≤ #Ij ≤ 2 and
#Jj−1 + #Ij > C#Jj .

We look now at the words vi and v′i for some i; by the remark above, vi,Ij and v′i,Ij are completely
different if Ij is nonempty. As for vi,Jj and v′i,Jj , they have the same image by φ, thus are equal if
they begin by the same letter, completely different otherwise.

Moreover, suppose that Jj has length at least m1, and vi,Jj = v′i,Jj = Y (i), projecting on a right
special word Y in L(S) ending with the letter j; then Y (i) ends with the letter s(i)j . Bispecial
words in L(S) are described in the proof of Lemma 4.5; if Y ends just before we see a βi, i 6= t,
after Y in L(R) we see the letters j1 or j2, these denoting the two adjacent intervals around βi,
then the same j3. Thus after Y (i) in L(T ) we see the letters (σs(i))j1 or (σs(i))j2 for some σ,
then the letters (σj4σs(i))j3 or (σj5σs(i))j3 , these two permutations denoting the σ(x) on the two
mentioned intervals. If Y ends just before we see 1 − α, after Y in L(R) we see the letters j6 or
j7, these denoting the two adjacent intervals around 1 − α, then the letters r or 0, denoting the
two adjacent intervals around 0, then the same j10. Thus after Y (j) in L(T ) we see the letters
(σs(i))j6 and (σs(i))j7 for some σ, then the letters (σt−1σs(i))j8 and (σtσs(i))j9 , then the letters
(σ0σt−1σs(i))j10 and (σrσtσs(i))j10 . In both cases, this gives us the first letters of the two words
vi,Jj+1

and v′i,Jj+1
.

We estimate c =
∑d

i=1 d̄(vi, v
′
i), by looking at the indices in some set Gj = Jj ∪ Ij+1∪Jj+1, for

any 1 ≤ j ≤ g − 1;
• if both #Jj and #Jj+1 are smaller than m1 the contribution of Gj to the sum c is at least

1
2m1+1

as Ij+1 is nonempty by construction;
• if #Jj ≥ m1, and for at least one i vi,Jj and v′i,Jj are completely different, then the con-

tribution of Gj to c is bigger than min(1
2
, C1

C1+1
) as either #Jj+1 < m1 or #Jj + #Ij+1 >

C1#Jj+1;
• if #Jj ≥ m1 and for all i, vi,Jj = v′i,Jj = Y (i); then, because the vi are all different

and project by φ on the same word, the s(i) in the last letter of Y (i) takes d different
values when i varies; the hypotheses imply that, in the notations of the previous paragraph
σj4σs(i) 6= σj5σs(i) for at least one i, and σ0σt−1σs(i)) 6= σrσtσs(i) for at least one i. This
ensures that for this i, vi,Jj+1

and v′i,Jj+1
are completely different. As #Jj+1 + #Ij+1 >

C1#Jj , the contribution of Gj to c is bigger than C;
• if #Jj+1 ≥ m1, we imitate the last two items by looking in the other direction.
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Now, if g is even, we can cover {1, . . . Q} by sets Gj and some intermediate il, and get that c
is at least a constant C. If g is odd and at least 3, by deleting either I1 and J1, or Jg and Ig+1, we
cover at least half of {1, . . . Q} by sets Gj and some intermediate il, and c is at least C.

Thus if
∑d

i=1 d̄(vi, v
′
i) is smaller than a constant C, we must have g = 1; then if

∑d
i=1 d̄(vi, v

′
i) <

1, vi,J1 = v′i,J1 . Thus if c is smaller than C, we get our conclusion under the extra hypothesis (H0).

For the end of the proof of d̄-separation, without the hypothesis (H0), we refer the reader to the
end of the proof of Proposition 44 in [4], as there is nothing different. �

As is proved in Theorem 3 of [4], average d̄-separation implies non-rigidity., but we shall not use
that here, as Theorem 5.5 below gives a simpler and more general proof. We use now the stronger
notion of d̄-separation:

Proposition 5.4. If the minimality condition is satisfied, (X ′, S) is linearly recurrent, and, for all
1 ≤ u ≤ d, σj(u) 6= σj+1(u), 0 ≤ j ≤ r − 1, j 6= t, σrσt−1(u) 6= σ0σt(u) (resp. σr(u) 6= σ0(u) if
t does not exist), then L(T ) is d̄-separated and (Y, T ) is not of rank one.

Proof
Then in Proposition 5.3 we can replace e = d by e = 1, with the same proof. Then the proof of
Theorem 10 of [4] applies without modifications. �

This last proposition is satisfied in particular for Veech 1969.

5.3. A general criterion for non-rigidity. As we mentioned above, for our systems non-rigidity
will be implied by weaker conditions than the ones ensuring average d̄-separation.

Definition 5.2. In the Ostrowski expansion of Proposition 4.3, for integers n ≥ 1, M ≥ 1

• for j 6= t, we say that βj is (n,M)-isolated if there exist n −M ≤ m1 ≤ n, n −M ≤
m2 ≤ n, m2 odd, n −M ≤ m3 ≤ n, m3 even, n −M ≤ m′i ≤ n, 1 ≤ i ≤ r, i 6= j,
satisfying bm1(βj) 6= am1 − 1, bm2(βj) 6= am2 , bm3(βj) 6= am3 , bm′i(βj) 6= bm′i(βi), for all
1 ≤ i ≤ r, i 6= j,
• we say that α is (n,M)-isolated if for all 1 ≤ i ≤ r, there exist n − M ≤ mi ≤ n,
n −M ≤ m′i ≤ n, m′i odd, n −M ≤ m”i ≤ n, m”i even, satisfying bmi

(βi) 6= ami
− 1,

bm′i(βi) 6= am′i , bm”i(βi) 6= am”i .

To make statements simpler, we shall write that always one of the βi is isolated to denote there
exists M such that for all m, there exists 1 ≤ j ≤ r, j 6= t such that βj is (m,M)-isolated, and,
mutatis mutandis, we shall write that always one of the βi or α is isolated.

Theorem 5.5. Suppose the minimality condition is satisfied, α has bounded partial quotients, and
there exists M such that

• either for all m, there exists 1 ≤ j ≤ r, j 6= t, such that βj is (n,M)-isolated,
• or the product inequality is satisfied, and for all m, either α is (n,M)-isolated or there

exists 1 ≤ j ≤ r, j 6= t, such that βj is (n,M)-isolated,
then (Y, T ) is not rigid.

Proof
Assume that (X,T ) is rigid; then there exists a sequenceQk tending to infinity such that µ(D∆TQkD)
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tends to zero for each of the d(r + 2) intervals D defining the natural coding of T . We fix ε and k
such that for all these intervals

µ(D∆TQkD) < ε.

Let AD = D∆TQkD; by the ergodic theorem, 1
N

∑N−1
j=0 1T jAD

(z) tends to µ(AD), for almost
all z (indeed for all z because (X,T ) is uniquely ergodic). Thus for all z, there exists N0 such that
for all N larger than N0 and all D,

1

m

m−1∑
j=0

1T jAD
(z) < ε.

By summing these d(r + 2) inequalities, we get that

d̄(z0 . . . zN−1, zQk
. . . zQk+N−1) < d(r + 2)ε

for all N > N0. Moreover, given an x, we can choose N0 such that for all N > N0 these inequali-
ties are also satisfied if we replace z by any of the d different points z′ such that φ(z′) = φ(z).

We shall now show that this is not possible by estimating
∑d

i=1 d̄(xi0 . . . x
i
N−1, y

i
0 . . . y

i
N−1) for

the d points xi such that φ(xi) is a given point x and the d points yi such that φ(yi) is a given point
y. We take n ≥ 1 such that αn+1 ≤ x − y ≤ αn, and N much larger than qn; we shall look at the
trajectories of x and y in the n-towers.

We partition {0, . . . N−1} into successive integer intervals where x and y agree or disagree: we
get intervals I1, J1, . . . , Is, Jh, Ih+1 as in the proof of Proposition 5.3; for all l, xJl = yJl , xIl and
yIl are either empty or completely different, i.e. their distance d̄ is one. Except maybe the first one,
each Jl begins after we see α or a βi, i 6= t, between the trajectories of x and y, and ends before
we see 1− α or a βi, i 6= t, between the trajectories of x and y.

Suppose that for some j 6= t βj is (n,M)-isolated. We group the Il and Jl into intervals
Kg = Il−(g) ∪ Jl−(g) ∪ Il−(g)+1 ∪ Jl−(g)+1)... ∪ Il+(g) ∪ Jl+(g) where Jl−(g) begins after βj , Jl+(g)

ends before βj , and no other Jl inside Kg has any of these two properties. By Corollary 4.2, for
all g #Kg ≤ 2(qn + qn+1 + qn+2) ≤ C1qn, while #Kg ≥ qn because two times where βj is
between the trajectories of x and y are separated by at least qn. Also, by the proof of Theorem
4.4, yn(βj), y′n(βj), y”n(βj) and all yn(βi, βj), i 6= j, are at least C2qn, thus for each g we have
#Jl−(g) ≥ C2qn, #Jl+(g) ≥ C2qn, Now, for each i, xiJl+(g)

and yiJl+(g)
are either equal or completely

different. If for at least one i they are completely different, then
∑d

i=1 d̄(xiJl+(g)
, yiJl+(g)

) ≥ 1 and∑d
i=1 d̄(xiKg

, yiKg
) ≥ C3. Otherwise, we deduce the first letters of xiJl−(g+1)

and yiJl−(g+1)
from

the common last letter of xiJl+(g)
and yiJl+(g)

as in the proof of Proposition 5.3 above, and find that
they must be different for at least one i, because the permutations σj1 which is σ(x) on the in-
terval left of βj and σj2 on the interval right of βj have different values on at least one point.
Then

∑d
i=1 d̄(xiJl−(g+1)

, yiJl−(g+1)
) ≥ 1 and

∑d
i=1 d̄(xiKg+1

, yiKg+1
) ≥ C3. Thus we have always∑d

i=1 d̄(xiKg∪Kg+1
, yiKg∪Kg+1)

≥ C4. We extend {0, ...N − 1} by at most C1qn on the left and

on the right to a set K ′ made with an even number of Kg; then
∑d

i=1 d̄(xiK′ , y
i
K′) ≥ C5 and∑d

i=1 d̄(xi0 . . . x
i
N−1, y

i
0 . . . y

i
N−1) ≥ C5 − 2C1qn

N
.
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Suppose that α is (n,M)-isolated: then we make a similar reasoning. Now our interval Kg are
defined by Jl−(g) begins after α, Jl+(g) ends before 1 − α, and no other Jl inside Kg has any of
these two properties. To get that the first letters of some xiJl−(g+1)

and yiJl−(g+1)
must be different,

we use that σ0σt−1 and σrσt, resp. σ0 and σr if t does not exist, have different values on at least
one point. By the proof of Theorem 4.4, all yn(βji, y′n(βi), y”n(βi), 1 ≤ i ≤ r, are at least C2qn.
And we get again

∑d
i=1 d̄(xi0 . . . x

i
N−1, y

i
0 . . . y

i
N−1) ≥ C5 − 2C1qn

N
.

Under the hypotheses of the theorem, this last relations holds for all n and all x and y with
αn+1 ≤ x− y ≤ αn, thus this contradicts rigidity. �

Theorem 5.5 applies in particular when (X ′, S) is linearly recurrent, even when σ0σt = σrσt−1,
resp. σ0 = σr if t does not exist (as soon as there is at least one βi 6= 1 − α, otherwise we are in
the cases of [4]).

Corollary 5.6. We can build a non rigid non linearly recurrent (Y, T ).

Proof
Suppose the conditions of Theorem 5.5 are satisfied but not those of Theorem 4.4. This is possible
for example if we build β1 6= 1−α and β2 6= 1−αwith prescribed Ostrowski expansions such that,
for a fixed M , for all m β2 is (m,M)-isolated, while there are unbounded strings of consecutive
bn(β1) = an − 1. Then (X ′, S) is not linearly recurrent and (Y, T ) is not rigid, and not linearly
recurrent by Proposition 5.1. �

This gives the first known examples of non rigid non linearly recurrent interval exchanges, an-
swering Question 8 of [4]. The simplest ones are for r = 2 and d = 2, with β1 and β2 as in the
above proof, and where we alternate between the two possible permutations, the identity and the
exchange, changing when we cross β1 and β2; optionally we can add βt = 1− α.

When (X ′, S) is not linearly recurrent, Lemma 4.5 is not satisfied, and we do not know whether
(Y, T ) is average d̄-separated.

5.4. In the grey zone: rigidity. We call grey zone the cases when α has bounded partial quotients,
but (X ′, S) is not linearly recurrent. We could conclude to non-rigidity when the hypotheses of
Theorem 5.5 are satisfied, but there are still many other cases. When Theorem 5.5 does not apply,
then for all n some βi and βj and/or βi, i 6= t, and α are too close in the n-towers. The simplest
case is when all the βi come close to α simultaneously.

Definition 5.3. We say that all the βi cluster on α if there exist two sequences mk and Nk, tending
to infinity, with mk +Nk < mk+1, such that for all 1 ≤ i ≤ r, i 6= t, we have

• either bn(βi) = an − 1 for all mk ≤ n ≤ mk +Nk,
• or bn(βi) = an for all even mk ≤ n ≤ mk +Nk,
• or bn(βi) = an for all odd mk ≤ n ≤ mk +Nk.

We recall that T n(x, s) = (Rnx, ψn(x)s) where

ψn(x) = σ(Rn−1x)...σ(x).

Lemma 5.7. Suppose that for a given n, for all i 6= t, either xn(βi, α) < εαn and yn(βi) < εqn,
or xn(βi) < εαn and y′n(βi) < εqn, or x′n(βi) < εαn and yn(βi) < εqn; for 0 ≤ h ≤ qn − 1
we call τh,n the permutation σ(xh) when if n is odd xh is the leftmost (resp. if n is even xh is the
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0
α

α

0 αn

αn

0

FIGURE 9. All βi cluster on α

rightmost) point of the level h in the large n-tower (the basis being level 0). Then, on a set Ξn of
measure at least 1− 6ε, ψqn(x) = θh,n whenever x is in level h of the large or small n-tower, with
θh,n = τh−1,n...τ0,nτqn−1,n...τh,n.

Proof
We do the proof for n odd. We delete the set Ξn, of small measure as claimed, made with the x in
any of the five following sets:

• the images by Rm, 0 ≤ m ≤ qn − 1, of [αn + α− εαn, αn + α[,
• the images by Rm, 0 ≤ m ≤ qn − 1, of [α− εαn, α + εαn[,
• the images by Rm, 0 ≤ m ≤ εqn, of [α, αn + α[,
• the images by Rm, 0 ≤ m ≤ qn + qn−1 − 1, of [α + αn − αn−1, α + αn − αn−1 + εαn[,
• the images by Rm, qn−1 − εqn ≤ m ≤ qn−1, of [α− αn−1, α− αn−1 + αn[.

In Figure 7, we show the n-towers and what we see less than αn to their left. The set we delete
is between dotted lines, or between dotted line and sides, in the n-towers; the βi are confined to the
small rectangles near α and 0 (remember 1− α is just below 0).
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If x is in the large n-tower but not in column (0), using the above exclusions, we see that
whenever the orbit of x is in level g, there is no βi, 1− α or 0 between this trajectory and xg, and
thus the contribution of level g to ψqn(x) is τg,n, and our formula holds.

If x is in the qn−1 first levels in column (0), the contribution of level g is τg,n until we reach the
top of the large n-tower; then the orbit of x crosses levels 0, 1, ... of the small n-tower, staying to
the right of βi, 1− α or 0. Hence there is no βi, 1− α or 0 between this right part of level g of the
small n-tower and and the left part of level g of the large n-tower, the contribution of this level g
to ψqn(x) is τg,n, and our formula holds.

If x is in column (0) (either in the large or in the small n-tower) above the qn−1 first levels but
below the upper εqn levels (of this column, that is of the small n-tower), we continue the reasoning
of the previous paragraph. The contributions are the expected ones until we reach the top of the
small n-tower, whose contribution is τqn−1−1,n. Then the orbit of x crosses levels 0, 1, ... of the
large n-tower, staying to the right of βi, 1 − α or 0 (because we have excluded that x is in the
leftmost part of width εαn of column (0)), until we reach the qn− 1-th iterate of x, which is still at
least εqn levels below the top. As long as g ≤ qn− qn−1− 1, there is no βi, 1−α or 0 between the
right part of level g of the large n-tower and the left part of level g+ qn−1 of the large n-tower, thus
the contributions are the expected ones until the orbit of x reaches level qn − qn−1 − 1 of the large
n-tower, whose contribution is τqn−1. Then for g ≥ qn + qn−1, there is no βi, 1 − α or 0 between
this right part of level g of the large n-tower and the left part of level g + qn−1 − qn of the small
n-tower, there is no βi, 1−α or 0 in this level g+ qn− qn−1 of the small n-tower because the orbit
of xt has not reached the upper εqn levels, there is no βi, 1−α or 0 between this level g+qn−qn−1
of the small n-tower and the left part of the same level of the large n-tower. Thus the contributions
are still as expected and our result holds. �

Theorem 5.8. If α has bounded partial quotients, all the βi cluster on α, σkσj = σjσk for all j, k,
then (Y, T ) is rigid.

Proof
For any k, we choose n = mk + [Nk

2
]. For a given ε, by the proof of Theorem 4.4, if k is large

enough the hypotheses of Lemma 5.7 are satisfied, and its results hold with Ξn and θh,n.
By definition, for all h and h′, θh′,n is of the form θ′θh,nθ

′−1 where θ′ is some composition of the
σ(x). As all these commute, θh,n is a constant θn for all h, and ψqn(x) = θn for all x in Ξn.

Moreover, if x is in level h in the n-towers, Rqnx is in level h − qn−1 if x is in column (0)
between levels qn−1 and qn + qn−1 − 1, in level h+ qn − qn−1 if x is in the small tower, in level h
if x is in any other level. Thus, again as the σ(x) commute, ψqn(Rqnx) = θn for all x in R−qnΞn,
and similarly ψqn(Rlqnx) = θn for all x in R−lqnΞn, hence ψlqn(x) = θln for all x in ∩l−1l′=0R

−l′qnΞn.
Let 1 ≤ ζn ≤ d! be the order of the permutation θn: then ψζnqn(x) is the identity for x in a set of
measure at least 1− 6d!ε.

As also |Rζnqnx− x| < Cd!
qn

, we get that the sequence ζnqn is a rigidity sequence for (Y, T ). �

The same technique, with more work, applies when the σi do not commute, but only in some
very particular cases.

Proposition 5.9. Suppose d = 3, r = 1, with one marked point β 6= 1 − α, and the two values of
σ(x) are a transposition and a circular permutation. For every α with bounded partial quotients,
we can find β such that T is rigid.
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Proof
For this, we use again the quantity ψn(x) = σ(Rn−1x)...σ(x). For any of our systems with r = 1,
we can define by recursion three quantities:

• if β is in the large n-tower, and n is odd, ψ1,n, resp. ψ2,n, is the value of ψqn on the basis
of the large n-tower left, resp. right, of the vertical of β, ψ3,n is the value of ψqn−1 on the
basis of the small n-tower;
• if β is in the large n-tower, and n is even, ψ1,n, resp. ψ2,n, is the value of ψqn on the basis

of the large n-tower right, resp. leftt, of the vertical of β, ψ3,n is the value of ψqn−1 on the
basis of the small n-tower;
• if β is in the small n-tower, and n is odd, ψ2,n, resp. ψ3,n, is the value of ψqn−1 on the basis

of the small n-tower left, resp. right, of the vertical of β, ψ1,n is the value of ψqn on the
basis of the large n-tower;
• if β is in the small n-tower, and n is even, ψ2,n, resp. ψ3,n, is the value of ψqn−1 on the basis

of the small n-tower right, resp. left, of the vertical of β, ψ1,n is the value of ψqn on the
basis of the large n-tower;

The construction of the towers implies that

• if β is in the large n-tower and bn+1(β) 6= an+1,
ψ1,n+1 = ψ3,nψ

bn+1

1,n ψ
an+1−bn+1

2,n ,
ψ2,n+1 = ψ3,nψ

bn+1+1
1,n ψ

an+1−bn+1−1
2,n ,

ψ3,n+1 = ψ2,n;
• if β is in the large n-tower and bn+1(β) = an+1,
ψ1,n+1 = ψ3,nψ

an+1

1,n = ψ3,nψ
bn+1

1,n ψ
an+1−bn+1

2,n ,
ψ2,n+1 = ψ2,n,
ψ3,n+1 = ψ1,n;
• if β is in the small n-tower,
ψ1,n+1 = ψ3,nψ

an+1

1,n ,
ψ2,n+1 = ψ2,nψ

an+1

1,n ,
ψ3,n+1 = ψ1,n.

Given α, we shall build a β clustering on α, such that for infinitely many n with β close to α in
the n-tower both ψ1,n and ψ1,n−1 are circular permutations, or equivalently have signature 1.

We build β by its bn(β), We put N0 = 0 and choose an M0 > N0 +2; for N0 +1 ≤ n ≤M0−1,
we choose any 0 ≤ bn(β) ≤ an − 1, so that β stays in the large n-tower, which implies in
particular, because of the hypothesis on σ(x) and the definition of T , that ψ1(n) and ψ2(n) have
opposite signatures. If ψ1,M0−1 has signature +1, we put M ′

0 = M0 − 1. Otherwise, we choose
0 ≤ bM0(β) ≤ aM0 − 1; then if ψ1,M0 has signature +1, we put M ′

0 = M0. If both ψ1,M0 and
ψ1,M0−1 have signature −1, ψ3,M0 = ψ2,M0−1 and ψ2,M0 have signature +1, and the signature of
ψ1,M0+1 is (−1)bM0+1; if we choose bM0+1 even this will be +1. We choose an even bM0+1 < aM0+1

(this is always possible as we may take bM0+1 = 0), and put M ′
0 = M0 + 1.

Thus in all cases ψ1,M ′0
has signature +1 and β is in the large M ′

0-tower. If ψ1,M ′0−1 has also
signature +1, we define N ′0 = M ′

0. Otherwise, ψ1,M ′0−1 has signature −1, ψ3,M ′0
= ψ2,M ′0−1 has

signature +1, ψ2,M ′0
has signature −1, and the signature of φ1,M0+1 is (−1)aM0+1−bM0+1 , and we

choose bM1+1(β) so that ψ1,M ′0+1 has signature +1; if aM0+1 > 1, we can do it such that β is in
the large M0 + 1-tower and put N ′0 = M0 + 1. If aM0+1 = 1, we choose bM0+1 = 1 and β is in
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the small M0 + 1-tower. Using the recursion formulas above, we get that ψ2,M ′0+1 has signature
−1, ψ3,M ′0+1 has signature +1, ψ1,M ′0+2 has signature +1, ψ3,M ′0+2 has signature +1, and β is in the
large M ′

0 + 2-tower. We put N ′0 = M0 + 2.
Then we choose N1 > N ′0 and for N ′0 ≤ n ≤ N1 we choose bn(β) = an − 1. The re-

cursion formulas imply that, for all those n, ψ1,n has signature +1, ψ2,n has signature −1, ψ3,n

has signature −1. Then we choose bN1+1 6= aN1+1 − 1 (which may imply that β is in the small
N1+1-tower), and start the same process again withN0 replaced byN1. Thus we define sequences
Nk ≤Mk ≤M ′

k ≤ N ′k < Nk+1, and we choose Nk+1 so that Nk+1 −N ′n tends to infinity.

We can now adapt the proof of Theorem 5.8. For any k, we choose n = [
Nk+1−N ′k

2
]. For a given

ε, by the proof of Theorem 4.4, if k is large enough the hypotheses of Lemma 5.7 are satisfied, and
its results hold with Ξn and θh,n. Moreover, by the proof of Lemma 5.3, θ0,n = ψ1,n. All this is
still true if we replace n by n− 1.

By definition, for all h, θh′,n is of the form θ′θ0,nθ
′−1 where θ′ is some composition of the σ(x).

Thus the signature of θh,n is +1 for all h, and so is the signature of θh,n−1. This implies that all the
θh,n and θh,n−1 are circular permutations, and thus commute.

We conclude as in Theorem 5.8 that ψ3qn(x) is some θ3h,n, and thus the identity, for all x in a set
of measure at least 1− C!ε, and that the sequence 3qn is a rigidity sequence for (Y, T ). �

5.5. The cases d = 2. In these cases, which constitute the most immediate generalizations of
Veech 1969, the two possible permutations are the identity I and the exchange E. Not only they
commute, but, if we have two sequences of such permutations σi,l 6= σi,r for all 1 ≤ i ≤ K, then
σK,l...σ1,l and σK,r...σ1,r are equal if K is even, different if K is odd. Thus, as we shall see in the
two following propositions, a cluster of an even number of marked points (different from 1−α) be-
haves as if there was no marked point at all, and a cluster of an odd number of such marked points
behaves as an isolated marked point. In theory, with both these properties together with Theo-
rems 5.5 and 5.8, we could solve completely the question of rigidity for d = 2 and any number of
marked points. However, as the reader may be convinced by studying Proposition 5.11 below, a
full result would be unduly complicated to state, let alone to prove, so we shall limit ourselves to
a complete study of the cases when 1 ≤ r ≤ 3, and of some examples for r = 4. These examples
in Proposition 5.11 provide non-rigid examples which do not satisfy the hypotheses of Theorem 5.5.

Proposition 5.10. If α has bounded partial quotients and T satisfies the minimality condition, for
d = 2 and at most three marked points different from 1−α, whenever Theorem 5.5 does not apply,
(Y, T ) is rigid.

More precisely:
• if r = 1 (the Veech 1969 case), (Y, T ) is non-rigid if and only if (X ′, S) is linearly recur-

rent;
• if r = 2 and t does not exist, or r = 3 and t exists, (Y, T ) is non-rigid if and only if always

one of the βi is isolated;
• if r = 3 and t does not exist, or r = 4 and t exists, (Y, T ) is non-rigid if and only if always
α or one of the βi is isolated.

Proof
When r = 1, Theorem 5.5 does not apply if and only if (X ′, S) is not linearly recurrent, and then
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we can use Theorem 5.8 to get rigidity. This is true also when r = 2 and t exists, as we change
permutation, from I to E or from E to I , when we cross βi, thus σ0 = σr, σt 6= σt−1, and he
product inequality is satisfied.

When r = 2 and t does not exist, σ0 = σr; when r = 3 and t exists, σt 6= σt−1, σ0 6= σr, hence
in both these cases the product inequality is not satisfied. Thus Theorem 5.5 applies only when
always one of the βi is isolated, and Theorem 5.8 applies when all βi cluster on α. There remains
the case where α is always isolated but β1 and β2 can be very close. In that case, we choose an n
such that xn(β1, β2) < εαn and yn(β1, β2) < εqn. Suppose for example that β2 is higher than β1
in the n-towers; let σi,l, resp. σi, r, be the permutation σ(x) on the left (resp. right) of βi on the
same level of the n-towers, i = 1, 2, let σj1 , ..., σjh be the values of σ(x) on the successive levels
between β1 and β2. Then σi,l 6= σi,r for i = 1, 2, and thus σ2,lσjh , ..., σj1σ1,l = σ2,rσjh , ..., σj1σ1,r
by the remark at the beginning of Section 5.5 and commutation. Hence we can make the same
reasoning as in Lemma 5.7: supposing for example that in the n-towers β2 is higher than β1 and to
its right, βi = Rhiβ′i, i = 1, 2, with β′i in the basis of the large n-tower; we delete a small set made
with the images by Rm, 0 ≤ m ≤ qn− 1, of [β′1, β

′
2[, the images by Rm, h1 ≤ m ≤ h2, of the basis

of the large n-tower, and the upper two levels of the small n-tower. Then for the non-deleted x we
get the same formula as in Lemma 5.7, and, as in Theorem 5.8 we conclude that 2qn is a rigidity
sequence for T .

When r = 3 and t does not exist, σ0 6= σr; when r = 4 and t exists, we have σt 6= σt−1 and
σ0 = σr, hence in both these cases the product inequality is always satisfied. Therefore the only
case when we cannot apply Theorem 5.5 or Theorem 5.8 is when α and the βi are never isolated,
but the βi do not cluster on α; thus infinitely often α is close to one of the βi, for example β3,
while β1 and β2 are very close. For such an n, the reasoning of the last case applies again, and,
by deleting all what we have deleted in this case and all we have deleted in Lemma 5.7, for the
non-deleted x we get the same formula as in Lemma 5.7, and, as in Theorem 5.8 we conclude that
2qn is a rigidity sequence for T . �

In the examples of the next proposition, one of the βi (to make things simpler, we take always
the same one, β1) will be close to α infinitely often, while the other three will be always far from
α and β1 but infinitely often close together. This allows non-rigidity though none of our βi or α is
always isolated.

Proposition 5.11. Suppose d = 2, we have four marked points β1, β2, β3, β4 different from 1− α,
the minimality condition is satisfied, α has bounded partial quotients, there exist M0 and two
sequences mk and Nk, tending to infinity, with mk +Nk < mk+1, such that

• for all k and all mk ≤ n ≤ mk +Nk, bn(β1) = an − 1, bn(β2) = bn(β3) = bn(β4),
• for all k and all mk ≤ n ≤ mk + Nk + M0, there exists n −M0 ≤ m′1 ≤ n such that
bm′1(β2) 6= am′1 − 1,
• for all k and all mk ≤ n ≤ mk + Nk + M0, there exists an even n−M0 ≤ m′2 ≤ n such

that bm′2(β2) 6= am′2 ,
• for all k and all mk ≤ n ≤ mk + Nk + M0, there exists an odd n −M0 ≤ m′3 ≤ n such

that bm′3(β2) 6= am′3 ,
• for all k and all mk +Nk +M0 ≤ n ≤ mk+1, β2 is (n,M0)-isolated.

Then T is not rigid.
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Proof
By the proof of Theorem 4.4, there exists a fixed constant C0, depending only on the size of the
partial quotients of α, such that,

• for any β, if there exist n − 2M0 ≤ m′1 ≤ n, n − 2M0 ≤ m′2 ≤ n, n − 2M0 ≤ m′3 ≤ n
such that m′2 is even, m′3 is odd, bm′1(β) 6= am′1 − 1, bm′2(β) 6= am′2 , bm′3(β) 6= am′3 , then
both yn(β) and y′n(β) are at least C0qn;
• for any β 6= β′, if there exists n − 2M0 ≤ m′4 ≤ n such that bm′4(β) 6= bm′4(β

′), then
yn(β, β′) is at least C0qn.

Our hypotheses ensure that or our system, the first result holds for every n with β = β2, and also
(because of the values of bn(β1), bn(β2), bn(β3), bn(β4) for mk ≤ n ≤ mk + Nk) that both results
hold for β = β2, β = β3, β = β4, β′ = β1 for mk + M0 ≤ n ≤ mk + Nk + M0 (that is why we
have chosen 2M0 to define C0).

Using the other part of the proof of Theorem 4.4, we choose M1 > M0, depending only on the
size of the partial quotients of α, such that,

• for any β 6= β′, if bm′(β) = bm′(β
′) for all n ≤ m′ ≤ n+M1, xn(β, β′) ≤ αn+1

4
(remember

that αn+1 ≥ Cαn),
• for any β 6= β′, if bm′(β) = bm′(β

′) for all n−M1 ≤ m′ ≤ n, yn(β, β′) ≤ C0qn
2

,
• for any β, if bm′(β) = am′ − 1 for all n−M1 ≤ m′ ≤ n, yn ≤ C0qn

2
.

Now we make the beginning of the proof of Theorem 5.5 above: to contradict rigidity, we have to
estimate

∑d
i=1 d̄(xi0 . . . x

i
N−1, y

i
0 . . . y

i
N−1) for the d points xi such that φ(xi) is a given point x and

the d points yi such that φ(yi) is a given point y. We take n ≥ 1 such that αn+1 ≤ ρ = x−y ≤ αn,
and N much larger than qn; we shall look at the trajectories of x and y in the n-towers.

Suppose mk + M1 ≤ n ≤ mk + Nk −M1. For this n, we place β2, β3, β4 in the n-towers. We
call β the one which is lowest, β” the highest, β′ the middle one. As in the proof of Theorem 5.5,
we cut {0, ...N − 1} into intervals Il and Jl and group them into intervals Kg = Il−(g) ∪ Jl−(g) ∪
Il−(g)+1∪Jl−(g)+1)...∪ Il+(g)∪Jl+(g) where Jl−(g) begins after β, Jl+(g) ends before β, and no other
Jl inside Kg has any of these two properties. We have again that for all g #Kg ≤ C1qn. and
#Kg ≥ qn.

The beginning of Jl−(g) and the end of Jl+(g) correspond to a j such that β is between T jx and
T jy, which is equivalent to T jy ∈ [β − ρ, β[; by the ergodic theorem, for N large, there are about
ρN ≥ αn+1N such indices j. We call “bad” those j for which T jy is in [β − αn+1

4
, β[ or T jy is in

[β − ρ, β − ρ + αn+1

4
[, which correspond at most to about N αn+1

2
indices. By deleting all Kg for

which Jl+(g) ends before a bad j, we keep at least half of the intervals Kg. Again, we look at the
transition between Kg and Kg+1 for the non-deleted Kg. The beginning of Jl+(g) is α or a βi; the
possible one making Jl+(g) shortest is either α or β1, which is at least C0qn far (vertically) from β;
thus #Jl+(g) is at least C0qn. For each i, xiJl+(g)

and yiJl+(g)
are either equal or completely different.

If for at least one i they are completely different, this gives a contribution of 1 to the global d̄-sum
on the length of Jl+(g).

Now, by our hypothesis, both β′ and β” are αn+1

4
close (horizontally) to β and C0qn

2
close (ver-

tically) to β. Thus the fact that our Kg has not been deleted guarantees that after seeing β be-
tween T jy and T jx, we shall see β′ between T j′y and T j′x, β” between T j”y and T j”x,, with
j < j′ < j” < j+ C0qn

2
; and we do not see either 1−α or β1 before as we are far enough from the
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top of the towers. Thus Jl−(g+1)+2 begins with β”, and ends before a point which, in the case that
makes it shortest, is either β1 or 1− α and is at least C0qn

2
far (vertically) from β”.

If xiJl+(g)
and yiJl+(g)

are equal for all i, we shall deduce from their common last letter the first
letters of xiJl−(g+1)+2

and yiJl−(g+1)+2
as in the proof of Proposition 5.3 above. For that we use again

the remark at the beginning of Section 5.5: let σ1,l, σ2,l, σ3,l, resp. σ1,r, σ2,r, σ3,r be the permutations
σ(x) on the left (resp. right) of β, β′, β” on the same level of the n-towers. The two permutations
involved in computing the letter we want are, by commutation, σσ3,lσ2,lσ1,l and σσ3,rσ2,rσ1,r for a
fixed σ, and these are different. This gives a contribution of 1 to the global d̄-sum on the length of
Jl−(g+1) + 2.

Thus, for each non-deleted Kg, there is a contribution of 1 to the global d̄-sum on a length at
least C0qn

2
≥ C0

2C1
#Kg. The non-deleted Kg make a proportion at least 1

2C1
of {0, ...N − 1}, thus

the global d̄-sum cannot be close to 0.

Suppose now mk + Nk + M0 ≤ n ≤ mk+1 + M1. Then β2 is (n,M0 + M1) isolated and, after
fixing x and y we conclude as in the proof of Theorem 5.5 that the global d̄-sum cannot be close
to 0.

Suppose now mk + Nk −M1 ≤ n ≤ mk + Nk + M0. For these n, our hypotheses ensure that
there exist n ≤ m′4 ≤ n + M1 + M0 such that bm′4(β2) 6= bm′4(β3), n ≤ m′5 ≤ n + M1 + M0

such that bm′5(β2) 6= bm′5(β4), By the proof of Theorem 4.4, this implies that both xn(β2, β3) and
xn(β2, β4) are at least C2αn.

We fix an n and place β2, β3, β4 in the n-towers. Again, we fix x = y + ρ, define the Il and Jl.

• If β2 is the leftmost of the points β2, β3, β4. By the ergodic theorem, for N large, there
are about ρN ≤ αnN indices j such that β2 ≤ T jy ≤ β2 + ρ, and at least about C2αnN
indices j such that β2 ≤ T jy ≤ β2 + C2αn;
• if β2 is the rightmost of the points β2, β3, β4. By the ergodic theorem, for N large, there

are about ρN ≤ αnN indices j such that β2 − ρ ≤ T jx ≤ β2, and at least about C2αnN
indices j such that β2 − C2αn ≤ T jx ≤ β2;
• If β2 is the middele one of the points β2, β3, β4, suppose for example β3 is the leftmost

one. By the ergodic theorem, for N large, there are about ρN ≤ αnN indices j such that
β3 ≤ T jy ≤ β3 + ρ, and at least about C2αnN indices j such that β3 ≤ T jy ≤ β3 +C2αn.

We group the Il and Jl in intervals Kg, using β = β2 in the first two cases, β = β3 in the last
case. Take the first case for example: for a proportion at least C2 of the Kg, Jl+(g) ends at a j such
that T jx is to the right of β2, and between β2 and the verticals of β3 and β4. Hence for these j we
cannot see β3 or β4 between the trajectories of x and y before j and after the basis of the towers,
or after j and before the top of the towers; thus for these Kg the permutations giving the first letter
of #Jl−(g+1) are the same as when β2 is isolated. The vertical distances from β2 to α, 1−α and β1
being bounded from below as in the previous case, both #Jl+(g) and #Jl−(g+1) are at least C0qn;
thus for this proportion C2 of the Kg there is a contribution of 1 to the global d̄-sum on a length at
least C0qn ≥ C0

C1
#Kg. The other cases are similar, and we conclude that the global d̄-sum cannot

be close to 0. �
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Note that in the particular case of d = 2, two different permutations are different on all points,
so we could make the above reasonings on each d(xi0 . . . x

i
N−1, y

i
0 . . . y

i
N−1), but that would not

simplify significantly the computations.
We can make examples satisfying the hypotheses of Proposition 5.11 for every value of α.

For example, if all an are equal to 1, for mk ≤ n ≤ mk + Nk, bn(β1) will always be 0 while
bn(β2) = bn(β3 = bn(β4) can be successively 1, 0, 0, 1, 0, 0, 1, 0, 0...
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