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RIGIDITY OF SQUARE-TILED INTERVAL EXCHANGE TRANSFORMATIONS

SÉBASTIEN FERENCZI AND PASCAL HUBERT

ABSTRACT. We look at interval exchange transformations defined as first return maps on the set
of diagonals of a flow of direction θ on a square-tiled surface: using a combinatorial approach, we
show that, when the surface has at least one true singularity both the flow and the interval exchange
are rigid if and only if tan θ has bounded partial quotients. Moreover, if all vertices of the squares
are singularities of the flat metric, and tan θ has bounded partial quotients, the square-tiled interval
exchange transformation T is not of rank one. Finally, for another class of surfaces, those defined by
the unfolding of billiards in Veech triangles, we build an uncountable set of rigid directional flows
and an uncountable set of rigid interval exchange transformations.

To the memory of William Veech whose mathematics were a constant source of inspiration for
both authors, and who always showed great kindness to the members of the Marseille school,

beginning with its founder Gérard Rauzy.

Interval exchange transformations were originally introduced by Oseledec [30], following an
idea of Arnold [2], see also Katok and Stepin [24]; an exchange of k intervals is given by a positive
vector of k lengths together with a permutation π on k letters; the unit interval is partitioned into k
subintervals of lengths α1, . . . , αk which are rearranged according to π.

The history of interval exchange transformations is made with big generic results: almost ev-
ery interval exchange transformation is uniquely ergodic (Veech [36], Masur [28]), almost every
interval exchange transformation is weakly mixing (Avila-Forni [6]), while other results like sim-
plicity [37] or Sarnak’s conjecture [34] are still partly in the future. In parallel with generic re-
sults, people have worked to build constructive examples, and, more interesting and more difficult,
counter-examples. In the present paper we want to focus on two less-known but very important
measure-theoretic generic results, both by Veech: almost every interval exchange transformation
is rigid [37], meaning that for some sequence qn the qn-th powers of the transformation converge
to the identity (see Definition 14 below); almost every interval exchange transformation is of rank
one [38], meaning that there is a generating family of Rokhlin towers, see Definition 16 below.

These results are not true for every interval exchange transformation. The last result admits
already a wide collection of examples and counter-examples, as indeed the first two papers ever
written on interval exchange transformations provide counter-examples to a weaker property (Os-
eledec [30]) and examples of a stronger property (Katok-Stepin [24]); in more recent times, many
examples were built, such as most of those in [19] [16], and also a surprisingly vast amount of
counter-examples, as, following Oseledec, many great minds built interval exchange transforma-
tions with given spectral multiplicity functions, for example Robinson [33] or Ageev [1] and this
contradicts rank one as soon as the latter is not constantly one (simple spectrum); let us just remark
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2 S. FERENCZI AND P. HUBERT

that these brilliant examples, built on purpose, are a little complicated and not very explicit as inter-
val exchange transformations. We know of only one family of interval exchange transformations
which have simple spectrum but not rank one, these were built in [8] but only for 3 intervals.

As for the question of rigidity, it has been solved completely for the case of 3-interval exchange
transformations in [17], where a necessary and sufficient condition is given, see also [43] where a
different approach is developped. For more than three intervals, examples of rigidity can again be
found in [19] [16].

But of course, possibly the main appeal of interval exchange transformations is the fact that
they are closely linked to linear flows on translation surfaces, which are studied using Teichmüller
dynamics. Generic results are obtained applying the SL(2,R) action on translation surfaces. After
all the efforts made to classify SL(2,R) orbit closures in the moduli spaces of abelian differentials,
especially after the work of Eskin, Mirzakhani and Mohammadi [11, 12], it is quite natural to want
to solve these ergodic questions on suborbifolds of moduli spaces. The celebrated Kerckhoff-
Masur-Smillie Theorem [26] solved the unique ergodicity question for every translation surface
and almost every direction. Except for this general result, very little is known on the ergodic
properties of linear flows and interval exchange transformations obtained from suborbifolds. Avila
and Delecroix recently proved that, on a non arithmetic Veech surface, in a generic direction, the
linear flow is weakly mixing [7].

In the present paper, we shall study two families of Veech surfaces, the square-tiled surfaces,
and the surfaces built by unfolding billiards in Veech triangles.

In Teichmüller dynamics, square-tiled surface play a special role since they are integer points in
period coordinates. Moreover, the SL(2,R) orbit of a square-tiled surface is closed in its moduli
space. The main part of the present paper studies families of interval exchange transformations
associated with square-tiled surfaces. Our main results are:

Theorem 1. 1 Let X be a square-tiled surface of genus at least 2. The linear flow in direction θ on
X is rigid if and only if the slope tan θ has unbounded partial quotients.

Remark 1. The new and more difficult statement in Theorem 1 is the non rigidity phenomenon
when the slope has bounded partial quotients.

Theorem 1 can be restated in terms of interval exchange transformations. Given a square-tiled
surface and a direction with positive slope tan θ, defining α = 1

1+tan θ
, there is very natural way to

associate an interval exchange transformation Tα, namely the first return map on the union of the
diagonals of slope −1 of the squares (the length of diagonals is normalized to be 1). It is a finite
extension of a rotation of angle α, and an interval exchange transformation on a multi-interval. We
call it a square-tiled interval exchange transformation.

Theorem 2. LetX be a square-tiled surface of genus at least 2. The square-tiled interval exchange
transformation Tα is rigid if and only if α has unbounded partial quotients2.

Remark 2. To our knowledge, these examples are the first appearance of non rigid interval ex-
change transformations on more than 3 intervals, together with the examples defined simultane-
ously by Robertson [32], where a different class of interval exchanges is shown to have the stronger
property of mild mixing (no rigid factor). Our examples are not weakly mixing, and therefore not

1Unpublished partial results based on geometric ideas were obtained by Forni.
2α has bounded partial quotients if and only if tan θ has bounded partial quotients
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mildly mixing. Note also that Franczek [20] proved that mildly mixing flows are dense in genus at
least two, and that Kanigowski and Lemańczyk [23] proved that mild mixing is implied by Ratner’s
property, which thus our examples do not possess.

Thus we can ask

Question 1. Do there exist interval exchanges which are weakly mixing, not rigid but not mildly
mixing?

Question 2. Find interval exchanges satisfying Ratner’s property (note that the examples of Robert-
son are likely candidates).

Remark 3. Also, as was pointed out by one of the referees, the examples of non-rigid interval
exchanges in our Theorem 2 are all linearly recurrent, which corresponds to bounded Teichmüller
geodesics; this is the case also for all known examples, either Robertson’s or those on three inter-
vals. Moreover, all known examples of rigid interval exchanges, except those which are rotations,
are not linearly recurrent.

Thus the referee suggests these two natural questions:

Question 3. Does there exist a non-rigid and non-linearly recurrent interval exchange or transla-
tion flow?

Question 4. 3 An important subclass of linearly recurrent interval exchanges is the class of self-
induced ones, which correspond to periodic Teichmüller geodesics, and to natural codings which
are substitution dynamical systems (see Section 1.3 below). Thus one can ask whether there exist
rigid self-induced interval exchange transformations, outside the trivial case of the rotation class.

The Arnoux-Yoccoz interval exchange transformation is a self-induced linearly recurrent inter-
val exchange transformation, which is semi-conjugate to a rotation of the two dimensional torus
(see [5], [3]). The rotation is rigid, thus the Arnoux-Yoccoz interval exchange will be rigid if the
semi-conjugacy gives a full conjugacy in the measure-theoretic sense. This property seems widely
assumed to be satisfied, a fact which is stated without proof in [4], Section 3.1.1; a (far from trivial)
proof was recently proposed by J. Cassaigne (private communication, 2018), and thus this example
does answer the question.

Our Theorem 2, in the direction of non-rigidity, constitutes the main result of the paper; its proof
relies on the word combinatorics of the natural coding of the interval exchange. Indeed, rigidity of
a symbolic system translates, through the ergodic theorem, into a form of approximate periodicity
on the words: the iterates by some sequence qn of a very long word x = x1 . . . xk should be words
arbitrarily close to x in the Hamming distance d̄ (Definition 8 below); to deny this property, the
known methods consist either in showing that there are many possible T qnx (thus for example
strong mixing contradicts rigidity), but this will not be the case here, or else, in showing that d̄-
neighbours are scarce, and thus our approximate periodicity forces periodicity, which is then easy
to disprove.

Indeed, a notion we choose now to call d̄-separation was introduced first (but not formalized)
by del Junco [22], who showed that it is satisfied by the Thue - Morse subshift: it requires that two
close enough d̄-neighbours must actually coincide on a connected central part (Definition 9 be-
low), and is used in [22] to contradict the rank one property; d̄-separation is also known to hold for
Chacon’s map [13]. Then Lemańczyk and Mentzen [27] proved that d̄-separation is equivalent to

3This question was asked by G. Forni
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non-rigidity in the particular class of substitution dynamical systems systems when the substitution
is of constant length (Definitions 10 and 12 below). It was not known whether this equivalence still
holds in the larger class of all substitution dynamical systems or in other classes of non-strongly
mixing systems such as interval exchanges. The systems of our Theorem 2 are good candidates for
d̄-separation, so it came as a surprise that in general they do not satisfy it; indeed, they do provide
counter-examples to the above -mentioned equivalence in both classes, of interval exchanges and
of substitutions, see Proposition 9 and Corollary 10 below. However, all the systems in Theorem
2 do satisfy a weaker property on scarcity of d̄-neighbours, which we call average d̄-separation,
see Definition 18 and Proposition 8 below; this property seems completely new and is sufficient to
complete the proof of non-rigidity.

The property of d̄-separation is still satisfied in some particular cases, and we use it to prove

Theorem 3. If all vertices of the squares are singularities of the flat metric, and α has bounded
partial quotients, the square-tiled interval exchange transformation Tα is not rank one.

Remark 4. This condition is very restrictive and only holds for a finite number of square-tiled
surfaces in each stratum.

In the last part, we exhibit an uncountable set of rigid directional flows (see Proposition 15) and
an uncountable set of rigid interval exchange transformations (see Proposition 14) associated with
the unfolding of billiards in Veech triangles; in these examples, the directions are well approxi-
mated by periodic ones.

Remark 5. The proof of Proposition 15 works mutatis mutandis for every Veech surface.

Question 5. On a primitive Veech surface, is the translation flow in a typical direction rigid?

0.1. Organization of the paper. In Section 1 we recall the classical definitions about interval
exchange transformations, coding, square-tiled surfaces and some facts in ergodic theory. Section
2 presents square-tiled interval exchange transformations and their symbolic coding. In Section
3, we give a proof of Theorem 2 using combinatorial methods; the main tool is Proposition 8. In
Section 4, we deduce from Theorem 2 a proof of Theorem 1. We also prove Theorem 3. In Section
5, we tackle the case of billiards in Veech triangles.

1. DEFINITIONS

1.1. Interval exchange transformations. For any question about interval exchange transforma-
tions, we refer the reader to the surveys [41] [44]. Our intervals are always semi-open, as [a, b[.

Definition 1. A k-interval exchange transformation T with vector (α1, α2, . . . , αk), and permuta-
tion π is defined on [0, α1 + . . . αk[ by

Ix = x+
∑

π−1(j)<π−1(i)

αj −
∑
j<i

αj.

when x is in the interval [∑
j<i

αj,
∑
j≤i

αj

[
.

We put γi =
∑

j≤i αj , and denote by Di the interval [γi−1, γi[ if 2 ≤ i ≤ k − 1, while D1 = [0, γ1[

and Dk = [γk−1, 1[.
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An exchange of 2 intervals, defined by the permutation π(1, 2) = (2, 1) and the normalized
vector (1 − α, α) is identified with the rotation of angle α on the 1-torus. Its dynamical behavior
is linked with the Euclid continued fraction expansion of α. We assume the reader is familiar with
the notation α = [0, a1, a2, ...], and recall

Definition 2. α has bounded partial quotients if the ai are bounded.

A useful criterion for minimality of an interval exchange is the infinite distinct orbit condition
(or i.d.o.c.) of [25]:

Definition 3. A k-interval exchange T satisfies the i.d.o.c. condition if the k − 1 negative orbits
{T−nγi}n≥0 ,1 ≤ i ≤ k − 1, of the discontinuities of T are infinite disjoint sets.

1.2. Word combinatorics. We begin with basic definitions. We look at finite words on a finite
alphabet A = {1, ...k}. A word w1...wt has length |w| = t (not to be confused with the length of
a corresponding interval). The empty word is the unique word of length 0. The concatenation of
two words w and w′ is denoted by ww′.

Definition 4. A word w = w1...wt occurs at place i in a word v = v1...vs or an infinite sequence
v = v1v2... if w1 = vi, ...wt = vi+t−1. We say that w is a factor of v. The empty word is a factor of
any v. Prefixes and suffixes are defined in the usual way.

Definition 5. A language L overA is a set of words such if w is in L, all its factors are in L, aw is
in L for at least one letter a of A, and wb is in L for at least one letter b of A.
A language L is minimal if for each w in L there exists n such that w occurs in each word of L
with n letters.
The language L(u) of an infinite sequence u is the set of its finite factors.

Definition 6. A word w is called right special, resp. left special if there are at least two different
letters x such that wx, resp. xw, is in L. If w is both right special and left special, then w is called
bispecial.

Definition 7. A word Z is called a first return word of a word w if w occurs exactly twice in wZ,
once as a prefix and once as a suffix.

We define now a distance on finite words, which is also called the Hamming distance:

Definition 8. For two words of equal length w = w1 . . . wq and w′ = w′1 . . . w
′
q, their d̄-distance is

d̄(w,w′) = 1
q
#{i;wi 6= w′i}.

As mentioned in the introduction, we shall be interested in the scarcity of neighbours for the d̄-
distance; in a given nontrivial language, there will generally be arbitrarily long bispecial words
such that awa′ and bwb′ are both in L, for letters of the alphabet A, a 6= a′, b 6= b′; thus
d̄(awa′, bwb′) will be small. The following notion, whose history is told in the introduction, and
which is defined here formally for the first time, states that d̄-neighbours can only be of this or a
slightly more general form.

Definition 9. A language L is d̄-separated if there exists C such that for any two words w and w′ of
equal length q in L, if d̄(w,w′) < C, then {1, . . . q} is the disjoint union of three (possibly empty)
integer intervals I1, J , I2 (in increasing order) such that

• wJ = w′J
• for j = 1, 2, d̄(wIj , w

′
Ij

) = 1 if Ij is nonempty,
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where wH denotes the word made with the h-th letters of the word w, h ∈ H .

Substitutions are mentioned in the introduction, and will appear in Corollary 10 below.

Definition 10. A substitution ψ is an application from an alphabetA into the setA? of finite words
on A; it extends naturally to a morphism of A? for the operation of concatenation.
ψ is of constant length if all the words ψa, a ∈ A, have the same length.
A fixed point of ψ is an infinite sequence u with ψu = u.
A language defined by ψ is any L(u) where u is a fixed point of ψ.

1.3. Symbolic dynamics and codings.

Definition 11. The symbolic dynamical system associated to a language L is the one-sided shift
S(x0x1x2...) = x1x2... on the subsetXL ofAN made with the infinite sequences such that for every
t < s, xt...xs is in L.
For a word w = w1...ws in L, the cylinder [w] is the set {x ∈ XL;x0 = w1, ...xs−1 = ws}.

Note that the symbolic dynamical system (XL, S) is minimal (in the usual sense, every orbit is
dense) if and only if the language L is mimimal,

Definition 12. A substitution dynamical system is a symbolic dynamical system associated to a
language defined by a substitution

Definition 13. For a system (X,T ) and a finite partition Z = {Z1, . . . Zr} of X , the trajectory of
a point x in X is the infinite sequence (xn)n∈IN defined by xn = i if T nx falls into Zi, 1 ≤ i ≤ r.
Then L(Z, T ) is the language made of all the finite factors of all the trajectories, and XL(Z,T ) is
the coding of X by Z.
For an interval exchange transformation T , if we take for Z the partition made by the intervals Di,
1 ≤ i ≤ k, we denote L(Z, T ) by L(T ) and call XL(T ) the natural coding of T .

1.4. Measure-theoretic properties. Let (X,T, µ) be a probability-preserving dynamical system.

Definition 14. (X,T, µ) is rigid if there exists a sequence qn → ∞ such that for any measurable
set A µ(T qnA∆A)→ 0.

Definition 15. In (X,T ), a Rokhlin tower is a collection of disjoint measurable sets called levels
F , TF , . . . , T h−1F . If X is equipped with a partition P such that each level T rF is contained in
one atom Pw(r), the name of the tower is the word w(0) . . . w(h− 1).

Definition 16. (X,T, µ) is of rank one if there exists a sequence of Rokhlin towers such that the
whole σ-algebra is generated by the partitions {Fn, TFn, . . . , T hn−1Fn, X \ . ∪hn−1j=0 T jFn}.
1.5. Translation surfaces and square-tiled surfaces. A translation surface is an equivalence
class of polygons in the plane with edge identifications: Each translation surface is a finite union of
polygons in C, together with a choice of pairing of parallel sides of equal length. Two such collec-
tions of polygons are considered to define the same translation surface if one can be cut into pieces
along straight lines and these pieces can be translated and re-glued to form the other collection of
polygons (see Zorich [46], Wright [42] for surveys on translation surfaces). For every direction
θ, the linear flow in direction θ is well defined. The first return map to a transverse segment is an
interval exchange.

Recall that closed regular geodesics on a flat surface appear in families of parallel closed geodesics.
Such families cover a cylinder filled with parallel closed geodesic of equal length. Each boundary



RIGIDITY 7

of such a cylinder contains a singularity of the flat metric.

A square-tiled surface is a finite collection of unit squares {1, . . . , z}, the left side of each square
is glued by translation to the right side of another square. The top of a square is glued to the bottom
of another square. A baby example is the flat torus R2/Z2. In fact every square-tiled surface is
a covering of R2/Z2 ramified at most over the origin of the torus. A square-tiled surface is a
translation surface, thus linear flows are well defined. Combinatorially, a square-tiled surface
is defined by two permutations acting on the squares: τ encodes horizontal identifications, σ is
responsible for the vertical identifications. For 1 ≤ i ≤ z, τ(i) is the square on the right of i and
σ(i) is the square on top of i. The singularity of the flat metric are the projections of some vertices
of the squares with angles 2kπ with k > 1. The number k is explicit in terms of the permutations
τ and σ. The lengths of the orbits of the commutator [τ, σ](i) give the angles at the singularities.
Consequently τ and σ commute if and only if there is no singularity for the flat metric which
means that the square-tiled surface is a torus. When τ and σ do not commute, only the i such that
στi 6= τσi give rise to singularities. Moreover the surface is connected if and only if the group
generated by τ and σ acts transitively on {1, 2, . . . , z}. A very good introduction to square-tiled
surfaces can be found in Zmiaikou [45].

Example 1. The simplest connected square-tiled surface is defined by z = 3, τ(1, 2, 3) = (2, 1, 3)
and σ(1, 2, 3) = (3, 2, 1); it is shown in Figure 1 below. Note that σ ◦ τi 6= τ ◦ σi for all i.

a

a

b

b

c c

d d

1 2

3

FIGURE 1. Square-tiled surface of Example 1
Letters a, b, c, d describe the sides identifications.

Example 2. Another connected example we shall use is defined by z = 4, τ(1, 2, 3, 4) = (2, 1, 3, 4)
and σ(1, 2, 3, 4) = (3, 2, 4, 1). As σ ◦ τ(1, 2, 3, 4) = (3, 1, 4, 2) and τ ◦ σ(1, 2, 3, 4) = (2, 3, 4, 1),
there is one “false” singularity as σ ◦ τ3 = τ ◦ σ3 .

2. INTERVAL EXCHANGE TRANSFORMATION ASSOCIATED TO SQUARE-TILED SURFACES

2.1. Generalities. As we already noticed in the introduction, a square-tiled interval exchange
transformation is the first return map on the diagonals of slope −1 of the linear flow of direction
θ on a square-tiled surface. Let α = 1

1+tan θ
; this square-tiled interval exchange transformation

T = Tα has the following combinatorial definition.
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Definition 17. A square-tiled 2z-interval exchange transformation with angle α and permutations
σ and τ is the exchange on 2z intervals defined by the positive vector (1− α, α, 1− α, α, . . . , 1−
α, α) and permutation defined by π(2i− 1) = 2σ(i), π(2i) = 2τ(i)− 1, 1 ≤ i ≤ z.

Note that everything in this paper remains true if we replace the D2i−1 = [i − 1, i − α[ by
[ai, ai + 1 − α[ and the D2i = [i − α, i[ by [ai + 1 − α, ai + 1[ for some sequence satisfying
ai ≤ ai+1 − 1, and reorder the intervals in the same way. To avoid unnecessary complication, we
shall always use ai = i− 1 as in the definition.

Thus the discontinuities of T are some (not necessarily all, depending on the permutation) of
the γ2i−1 = i − α, 1 ≤ i ≤ z, γ2i = i, 1 ≤ i ≤ z − 1, the discontinuities of T−1 are some of
β2i−1 = i− 1 + α, 1 ≤ i ≤ z, β2i = i, 1 ≤ i ≤ z − 1.

Henceforth it will be convenient to change the usual notation: we denote by il the number 2i−1
and by ir the number 2i, 1 ≤ i ≤ z. With this notation, Figures 2 and 3 show the interval exchange
defined by Example 1 for a given α ≤ 1

2
.

1l

1r

2l

2r

3l

3r

√
2α

FIGURE 2. Building an interval exchange associated to the surface in Example 1

0

α

1− α 1

0 1 + α

2− α

1

2 3− α 3

2 2 + α 3

D1l D1r D2l D2r D3l D3r

TD3r TD2l TD2r TD1l TD1r TD3l

FIGURE 3. The square-tiled interval exchange we get in Example 1

We recall a classical result on minimality.
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Proposition 4. Let T be a square-tiled interval exchange transformation with irrational α; T is
aperiodic, and is minimal if and only if there is no strict subset of {1 . . . z} invariant by σ and τ .

Proof. Let X be the square-tiled surface corresponding to T . As we already remarked in Section
1.5, the hypothesis on the permutations means that the surface X is connected. A square-tiled
surface satisfies the Veech dichotomy (see [40]). Thus the flow in direction θ is either periodic or
minimal and uniquely ergodic. For square-tiled surfaces, periodic directions have rational slope.
thus we get the result for the interval exchange transformation. �

Remark 6. For square-tiled surfaces the whole strength of the Veech dichotomy is not needed
and the result is already contained in [39]. Also notice that for square-tiled interval exchange
transformations minimality implies unique ergodicity by [9]; we denote by µ the unique invariant
measure for T , namely the Lebesgue measure, and it is ergodic for T .

Let T be a square-tiled interval exchange transformation. If we denote by (x, i) the point i−1+x,
then the transformation T is defined on [0, 1[×{1, . . . z} by T (x, i) = (Rx, φx(i)) where Rx =
x + α modulo 1, and φx = σ if x ∈ [0, 1 − α[, φx = τ if x ∈ [1 − α, 1[. Thus T is also a
z-point extension of a rotation. This implies that T has a rotation as a topological factor and thus
a continuous eigenfunction, either for the topology of the interval or for the natural coding.

Remark 7. For any irrational α, the rotation R is rigid. We do not know who proved this first, but
it is immediate that Definition 14 is satisfied when the qn are the denominators of the convergents
of α for the Euclid continued fraction algorithm.

Remark 8. In general our square-tiled interval exchanges, even when they are minimal, do not
satisfy the i.d.o.c. condition of Definition 3, because integer points may be discontinuities of both
T and T−1.
However, it may happen that not all the γi and βj are discontinuities, as in Figure 3 where D2l

and D2r always remain adjacent, as well as D1l and D1r; thus a square-tiled interval exchange on
2z intervals may indeed be an i.d.o.c. interval exchange on a smaller number of intervals; to our
knowledge this was first remarked by Hmili [21], who uses some square-tiled interval exchanges
(though they are not described as such) to provide examples of i.d.o.c. interval exchanges with
continuous eigenfunctions; indeed, her simplest example is the one in Figure 2 above, with the sur-
face as in Example 1 and any irrational α < 1

2
, which is also an i.d.o.c. 4-interval exchange with

permutation π(1, 2, 3, 4) = (4, 2, 1, 3); as 3-interval exchanges are topologically weak mixing, this
ranks among the counter-examples to that property with the smallest number of intervals.
To get new examples of non i.d.o.c. minimal interval exchanges, take the surface in Example 2 and
any irrational α; after deleting one “false” discontinuity, we get such an example on 7 intervals.

2.2. Coding of a square-tiled interval exchange transformation. We look now at the natural
coding of T , which we denote again by (X,T ), . For any (finite or infinite) word u on the alphabet
{il, ir, 1 ≤ i ≤ z}, we denote by φ(u) the sequence deduced from u by replacing each il by l,
each ir by r. For a trajectory x for T under our version of the natural coding, φ(x) is a trajectory
for R under the coding by the partition into two atoms [l] = [0, 1 − α[×{1, . . . z}, [r] = [1 −
α, 1[×{1, . . . z}, thus it is a trajectory forR under its natural coding (as an exchange transformation
of two intervals), and that is called a Sturmian sequence. The d̄ distance is defined in Definition 8
above.

Lemma 5. For any word w in L(T ), there are exactly z words v such that φ(w) = φ(v), and for
each of these words either v = w or d̄(w, v) = 1.
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Proof. Using the definition of T , we identify the words of length 2 in L(T ):
• if α < 1

2
, for 1 ≤ i ≤ z, il can be followed by (τ−1i)l and (τ−1i)r, ir can be followed by

(σ−1i)l;
• if α > 1

2
, for 1 ≤ i ≤ z, ir can be followed by (σ−1i)r and (σ−1i)l, il can be followed by

(τ−1i)r.
If w = w1 . . . wt, then wi = (ui)si with ui ∈ {1, . . . z} and si ∈ {l, r}, and ui+1 = πi(ui) with
πi ∈ {σ−1, τ−1}. The above list of words of length 2 implies that πi depends only on si; thus two
homologous (= having the same image by φ) words which have the same si, have also the same πi.
Thus the words v = v1 . . . vt homologous to w are such that v1 = xs1 , vi = (πi−1 . . . π1(x))si for
i > 1, thus there are as many such words as possible letters x, and if x 6= u1 then vi 6= wi for all i
as πi−1 . . . π1 are bijections. �

Henceforth we shall make all computations for α < 1
2
; the complementary case gives exactly

the same results, mutatis mutandis.

To understand the coding of T , we need a complete knowledge of the Sturmian coding of R; the
one we quote here uses a different version of the classic Euclid algorithm, which is the self-dual
induction of [18] in the particular case of two intervals; all what we need to know is contained in
the following proposition, which can also be proved directly without difficulty.

Proposition 6. Let α = [0, a1 + 1, a2, ...], (see Section 1.1 above). We build inductively real
numbers ln and rn and words wn, Mn, Pn in the following way: l0 = α, r0 = 1 − α, w0 is the
empty word, M0 = l, P0 = r. Then

• whenever ln > rn, ln+1 = ln − rn, rn+1 = rn, wn+1 = wnPn, Pn+1 = Pn, Mn+1 = MnPn;
• whenever rn > ln, ln+1 = ln, rn+1 = rn−ln, wn+1 = wnMn, Pn+1 = PnMn, Mn+1 = Mn.

Then rn > ln for 0 ≤ n ≤ a1− 1, rn < ln for a1 ≤ n ≤ a1 + a2− 1, and so on. For n ≥ 1, the wn
are all the nonempty bispecial words of L(R), wn+1 being the shortest bispecial word beginning
with wn; moreover, Mn and Pn constitute all the first return words of wn (see Definition 7 above).

Example 3. Take α = 3−
√
5

2
= [0, 2, 1, 1...]. Because L(R) is minimal, it can be described as

L(w), where w is the infinite word beginning by wn for each n; the successive wn are l, lrl, lrllrl,
lrllrlrllrl, ..., and we recognize w as the Fibonacci word, fixed point of the substitution l → lr,
r → l. However, in the present context it will be more useful to generate L(R) with the Mn or
Pn, given by the rules in Proposition 6; if we group these rules two by two, we generate M2n and
P2n by repetition of the rule Mn+2 = MnPnMn, Pn+2 = PnMn, thus L(R) is (also) defined by the
substitution l→ lrl, r → rl.

Example 4. Take now z = 3 and the surface in Example 1, with α = 3−
√
5

2
. We use Lemma 5 to

build L(T ). The three words of length 2 in L(R) are ll, lr, rl, and they lift to nine words in L(T ),
namely 1l2l, 2l1l, 3l3l, 1l2r, 2l1r, 3l3r, 1r3l, 2r2l, 3r1l.
To generate L(T ), which is minimal, we can use any infinite sequence of the words Mn,i and
Pn,i, n ≥ 0, i = 1, 2, 3, where Mn,i is the word projecting by φ on Mn and beginning with il,
Pn,i is the word projecting by φ on Pn and beginning with ir. These are given by rules which
project on the rules of Proposition 6; these rules actually depend only on the last letters of the
words Mn,i and Pn,i, as for each one the knowledge of the words of length 2 gives a unique word
which can be concatenated after it; as there is a finite number of possibilities, these rules must
be eventually periodic. Indeed, hand computations show that these last letters are identical for
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n = 1 and n = 7; the rules giving the M7,i and P7,i define a substitution ψ on the new alphabet
{M1,i, i = 1, 2, 3, P1,i, i = 1, 2, 3}. Thus L(T ) is deduced from the language defined by ψ by
replacing M1,i and P1,i by their actual expressions in the original alphabet, respectively 1l, 2l, 3l,
1r3l, 2r2l, 3r1l; this is called a substitutive language..

Example 5. We take now z = 4 and the surface in Example 2, with α = 3−
√
5

2
. We generate

L(T ) as in Example 4, mutatis mutandis: the periodicity of the rules giving the Mn,i and Pn,i,
i = 1, 2, 3, 4, appears as the last letters of these words are the same for n = 1 and n = 19.
The rules giving the M19,i and P19,i define a substitution ψ′ on the new alphabet {ig = M1,i, i =
1, 2, 3, 4, id = P1,i, i = 1, 2, 3, 4}; L(T ) is deduced from the language defined by ψ′ by replacing
ig and id by their actual expressions in the original alphabet, namely 1l, 2l, 3l, 4l, 1r4l, 2r2l, 3r1l,
4r3l. We shall use this example in Corollary 9 below.

The following lemma is also well known, but we did not find a proof in the existing literature;
it says that in general two Sturmian trajectories, if they coincide along some letters then become
different, will differ only along two letters, and then be the same again along a number of letters
which, if α has bounded partial quotients, is comparable to the previous one.

Lemma 7. For all n ≥ 1 the words defined in Proposition 6 satisfy
• |Pn|+ |Mn| = |wn|+ 2,
• PnMn and MnPn are right extensions of P1M1 and M1P1 by the same word.

For n ≥ a1 + 1, wn has exactly two extensions of length |wn| + min(|Pn|, |Mn|), and these are
wnlrVn and wnrlVn for the same word Vn.
If α has bounded partial quotients, there exists a constant C1 such that min(|Pn|, |Mn|) > C1|wn|
for all n.

Proof. The first two assertions come from the recursion formulas giving Mn and Pn in Proposition
6. These formulas ensure also that, when n > a1, |Mn| and |Pn| are at least 2; hence, because
by Proposition 6 Mn and Pn are first return words of wn, two possible extensions of wn of length
|wn|+ min(|Pn|, |Mn|) are the prefixes of that length of wnMn and wnPn, hence of wnMnPn and
wnPnMn, thus they are of the form wnlrVn and wnrlVn. Moreover, as by Proposition 6 there are
no right special words in L(R) sandwiched between wn and wnMn or wnPn, there are only two
extensions of that length of wn, which proves the third assertion.

Let C0 be the maximal value of the partial quotients of α; because of the recursion formulas in
Proposition 6, at the beginning of a string of n with ln < rn, we have |Pn| < |Mn|, then for every
n in that string except the first one, and for the n just after the end of that string, |Mn| < |Pn| <
(C0 + 1)|Mn|, and mutatis mutandis for strings of n with ln > rn. Thus we get the last assertion
from the first one. �

3. PROOF OF THEOREM 2

As will be seen in Proposition 8, when α has bounded partial quotients, our interval exchanges
satisfy the d̄-separation property of Definition 9 if στi 6= τσi for all i, and a weaker property if
στ 6= τσ. We define now this property, which will be used in a forthcoming paper for another class
of systems; it depends on an integer e, and is just d̄-separation when e = 1.

Definition 18. A language L on an alphabet A is average d̄- separated for an integer e ≥ 1 if
there exists a language L′ on an alphabet A′, a K to one (for some K ≥ e) map φ from A to A′,
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extended by concatenation to a map φ from L to L′, such that for any word w in L, there are exactly
K words v such that φ(w) = φ(v), and for each of these words either v = w or d̄(w, v) = 1, and
a constant C, such that if vi and v′i, 1 ≤ i ≤ e, are words in L, of equal length q, satisfying

•
∑e

i=1 d̄(vi, v
′
i) < C,

• φ(vi) is the same word u for all i,
• φ(v′i) is the same word u′ for all i,
• vi 6= vj for i 6= j.

Then {1, . . . q} is the disjoint union of three (possibly empty) integer intervals I1, J1, I2 (in in-
creasing order) such that

• vi,J1 = v′i,J1 for all i,
•
∑e

i=1 d̄(vi,I1 , v
′
i,I1

) ≥ 1 if I1 is nonempty,
•
∑e

i=1 d̄(vi,I2 , v
′
i,I2

) ≥ 1 if I2 is nonempty,

where wi,H denotes the word made with the h-th letters of the word wi for all h in H .
This implies in particular that #J1 ≥ q(1−

∑e
i=1 d̄(vi, v

′
i)).

Proposition 8. If α has bounded partial quotients, the language L(T ) is average d̄-separated for
any integer e with 1 + #{i;στi = τσi} ≤ e ≤ z.

Proof. In this case, the language L′ of Definition 18 is L(R) and φ is the map defined before
Lemma 5, with K = z.

Let vi and v′i be as in Definition 18. The three integer intervals in the end will be built as fol-
lows: J1 is the first (in increasing order) integer interval on which u and u′ agree, I1 and I2 are
then defined so that {1, . . . q} is the disjoint union of I1, J1, I2 in increasing order. We shall prove
that they do satisfy Definition 18.

We compare first u and u′; note that if we see l, resp. r, in some word φ(ω) we see some il, resp.
jr, at the same place in ω; thus d̄(ω, ω′) ≥ d̄(φ(ω), φ(ω′)) for all ω, ω′; in particular, if d̄(u, u′) = 1,
then d̄(vi, v

′
i) = 1 for all i and our assertion is proved.

Thus we can assume d̄(u, u′) < 1. We partition {1, . . . q} into successive integer intervals where
u and u′ agree or disagree: we get intervals I1, J1, . . . , Is, Js, Is+1, where s is at least 1, the
intervals are nonempty except possibly for I1 or Is+1, or both, and for all j, uJj = u′Jj , and, except
if Ij is empty, uIj and u′Ij are completely different, i.e. their distance d̄ is one.

Then for i ≤ s− 1, the word uJi = u′Ji is right special in the language L(R) of the rotation, and
this word is left special if i ≥ 2.

(H0) We suppose first that uJ1 = u′J1 is also left special and uJr = u′Jr is also right special.

Then all the uJi = u′Ji are bispecial; thus, for a given i, uJi = u′Ji must be some wn of Propo-
sition 6; then Lemma 7 implies that either #Jj is smaller than a fixed m1, which is the length of
wa1 , or #Ij+1 = 2 and

#Ij+1 + #Jj+1 > C1|wn| ≥ C1#Jj,

Similar considerations for R−1 imply that for j > 1 either #Jj < m1, or #Ij = 2 and #Jj−1 +
#Ij > C1#Jj .
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Note that this does not give any conclusion on d̄(u, u′), and indeed by Remark 7 R is rigid, and
thus admits a lot of d̄-neighbours.

We look now at the words vi and v′i for some i; by the remark above, vi,Ij and v′i,Ij are completely
different if Ij is nonempty. As for vi,Jj and v′i,Jj , they have the same image by φ, thus by Lemma
5 they are equal if they begin by the same letter, completely different otherwise.

Moreover, suppose that Jj has length at least m1, and vi,Jj = v′i,Jj = zi, ending with the letter
si: because of Lemma 7 applied to φ(zi). and taking into account the possible words of length 2 in
L(T ), zi has two extensions of length |zi|+3 inL(T ), and they are zi(τ−1si)l(τ−1τ−1si)r(σ−1τ−1τ−1si)l
and zi(τ−1si)r(σ−1τ−1si)l(τ−1σ−1τ−1si)l, which gives us the first letters of the two words vi,Jj+1

and v′i,Jj+1
.

We estimate c =
∑e

i=1 d̄(vi, v
′
i), by looking at the indices in some set Gj = Jj ∪ Ij+1∪Jj+1, for

any 1 ≤ j ≤ s− 1;

• if both #Jj and #Jj+1 are smaller than m1 the contribution of Gj to the sum c is at least
1

2m1+1
as Ij+1 is nonempty by construction;

• if #Jj ≥ m1, and for at least one i vi,Jj and v′i,Jj are completely different, then the con-
tribution of Gj to c is bigger than min(1

2
, C1

C1+1
) as either #Jj+1 < m1 or #Jj + #Ij+1 >

C1#Jj+1;
• if #Jj ≥ m1 and for all i, vi,Jj = v′i,Jj = yi; then, because the vi are all different and project

by φ on the same word, the last letter (in the alphabet {1, ...z}) si of yi takes e different
values when i varies; thus τ−1σ−1τ−1si 6= σ−1τ−1τ−1si for at least one i, and this ensures
that for this i, vi,Jj+1

and v′i,Jj+1
are completely different. As #Jj+1 + #Ij+1 > C1#Jj ,

the contribution of Gj to c is bigger than C1

C1+1
;

• if #Jj+1 ≥ m1, we imitate the last two items by looking in the other direction.

Now, if s is even, we can cover {1, . . . q} by sets Gj and some intermediate il, and get that c is
at least a constant C2. If s is odd and at least 3, by deleting either I1 and J1, or Js and Is+1, we
cover at least half of {1, . . . q} by sets Gj and some intermediate il, and c is at least C2

2
.

Thus if
∑e

i=1 d̄(vi, v
′
i) is smaller than a constantC3, we must have s = 1; then if

∑e
i=1 d̄(vi, v

′
i) <

1, vi,J1 = v′i,J1 . Thus if c < C = min(C3, 1), we get our conclusion under the extra hypothesis
(H0), with I1, J1, and I2 = Is+1 as defined above, by partitioning {1, . . . q} into successive integer
intervals where u and u′ agree or disagree.

If (H0) is not satisfied, we modify the vi and v′i to ṽi and ṽ′i to get it.
Note that if uJ1 = u′J1 is not left special, then I1 is empty, and u and u′ are uniquely extendable

to the left, and by the same letter; we continue to extend uniquely to the left as long as the extension
of uJ1 = u′J1 remains not left special, and this will happen until we have extended u and u′ (by the
same letters) to a length q0. As for vi,J1 and v′i,J1 , they are either equal or completely different; then

• if for at least one i vi,J1 and v′i,J1 are completely different, we delete the prefix vi,J1 from
every vi, the prefix v′i,J1 from every v′i;



14 S. FERENCZI AND P. HUBERT

• if for all i vi,J1 = v′i,J1; then vi and v′i are uniquely extendable to the left, and by the same
letter, as long as u and u′ are; then for all i, we take the unique left extensions of length q0
of vi and v′i.

If uJs = u′Js is not right special, we do the same operation on the right; thus we get new pairs of
words ṽi and ṽ′i, of length q̃. In building them, we have added no difference (in the sense of counting
d̄) between vi and v′i, but have possibly deleted a set of q1 indices which gave a contribution at least
one to the sum c, while when we extend the words we can only decrease the distances d̄; thus if
c < C ≤ 1,

∑e
i=1 d̄(ṽi, ṽ

′
i) ≤

qc−q1
q−q1 ≤ c. Then our pairs satisfy all the conditions of the part we

have already proved (the ṽi are all different because they are different on at least one letter and
have the same image by φ).

Thus {1, . . . q̃} is partitioned into Ĩ1, J̃1, Ĩ2, with the properties in the end of Definition 18.

We go back now to the original vi and v′i.
• Suppose first that to get the new words we have either shortened or not modified the vi

on the left, and either shortened and not modified the vi on the right: then we get our
conclusion with J1 a translate of J̃1, I1 the union of a translate of Ĩ1 and an interval I0
corresponding to a part we have cut, I2 the union of a translate of Ĩ2 and an interval I3
corresponding to a part we have cut.
• Suppose that to get the new words we have either shortened or not modified the vi on the

left, and lengthened the vi on the right: then we get our conclusion with J1 a translate of a
nonempty subset of J̃1, I1 the union of a translate of Ĩ1 and an interval I0 corresponding to
a part we have cut, I2 empty as Ĩ2.
• A symmetric reasoning applies if to get the new words we have either shortened or not

modified the vi on the right, and lengthened the vi on the left.
• Suppose that to get the new words we have lengthened the vi on the right and on the left:

then we get our conclusion with J1 a translate of a nonempty subset of J̃1, I1 empty as Ĩ1,
I2 empty as Ĩ2.

�

For the surface in Example 1 and any α with bounded partial quotients, Proposition 8 holds
for e = 1 and thus L(T ) is average d̄-separated for the integer e = 1, which means L(T ) is
d̄-separated; but indeed, in most cases this will not be true.

Proposition 9. When α has bounded partial quotients, L(T ) is not average d̄-separated for the
integers e ≤ #{i;στi = τσi}, and thus not d̄-separated if #{i;στi = τσi} > 0.

Proof. if we take vi and v′i such that φ(vi) = wnlryn, φ(v′i) = wnrlyn, and that the |wn|-th letter of
vi and v′i is si where τ−1σ−1τ−1si = σ−1τ−1τ−1si, then the vi and v′i do not satisfy the conclusion
if yn and wn are of comparable lengths, though

∑
d̄(vi, v

′
i) ≤ z 2

|wn|+|yn|+2
may be arbitrarily

small. �

Corollary 10. d̄-separation is not equivalent to non-rigidity in the class of substitutions or in the
class of interval exchanges.

Proof. The surface in Example 2 provides an example where #{i;στi = τσi} = 1. Thus for
any α with bounded partial quotients, T is a non-rigid interval exchange where L(T ) is average
d̄-separated (for e ≥ 2) but not d̄-separated.
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For substitutions, the symbolic dynamical system defined by ψ′ of Example 5 above provides
the required counter-example. Note that ψ′, on the alphabet {ig, id, i = 1, 2, 3, 4}, is explicit, but,
as the images of the letters have lengths 2584 and 4181, we shall not write it here.

By construction, the natural projections on sequences on {g, d} of infinite sequences in this sys-
tem are Sturmian sequences, corresponding to a rotation by an α′ with bounded partial quotients.
Then we can apply the reasonings of Propositions 8 and 9: the only point to check are the transi-
tions from the last letter si of a word vi,Jj = v′i,Jj to the first letters ti and t′i of vi,Jj+1

and v′i,Jj+1
.

In the proof of Proposition 8, what is between si and ti, resp. t′i, projects on lr, resp. rl; in the
present case, lr and rl are replaced by dg and gd, which, through the explicit value of the words id
and ig, correspond to lrl and rll. Thus the fact that τ−1τ−1σ−1τ−1i = τ−1σ−1τ−1τ−1i for exactly
one i ensures average d̄-separation for e = 2, giving non-rigidity, but not for e = 1. �

Note that the above counter-example could be made with any square-tiled surface on z squares
with 1 ≤ #{i;στi = τσi} < z, and any α with ultimately periodic continued fraction expansion.

We now prove the hard part of Theorem 2 from Proposition 8.

Proof. We look at the 2z intervals Di giving the natural coding.
Assume that α has bounded partial quotients but (X,T ) is rigid; then there exists a sequence qk

tending to infinity such that µ(Di∆T
qkDi) tends to zero for 1 ≤ i ≤ 2z.

We fix ε < C
2z2

, for the C from Definition 18 for L(T ) (with e = z), and k such that for all i

µ(Di∆T
qkDi) < ε.

Let Ai = Di∆T
qkDi; by the ergodic theorem, 1

m

∑m−1
j=0 1T jAi(x) tends to µ(Ai), for almost all

x (indeed for all x because (X,T ) is uniquely ergodic). Thus for all x, there exists m0 such that
for all m larger than some m0 and all i,

1

m

m−1∑
j=0

1T jAi(x) < ε.

By summing these 2z inequalities, we get that

d̄(x0 . . . xm−1, xqk . . . xqk+m−1) < 2zε

for all m > m0. Moreover, given an x, we can choose m0 such that for all m > m0 these inequal-
ities are satisfied if we replace x by any of the z different points xi such that φ(xi) = φ(x).

We choose such an x, and, through Proposition 8, apply Definition 18 to e = z and the words
vi = (xi)0, . . . , (x

i)m−1, v′i = (xi)qk , . . . , (x
i)qk+m−1. As we know that C is smaller than 2z2ε,

we get that for any m > m0, the words (x0 . . . xm−1) and (xqk . . . xqk+m−1) must coincide on
a connected part larger than m multiplied by a constant; thus xl . . . xp−1 and xqk+l . . . xqk+p−1
coincide for some fixed l and all p large enough, but this implies that there is a periodic point,
which has been disproved in Proposition 4.

�

The other direction of Theorem 2 is already known, but we include it with a short proof using
our combinatorial methods.
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Proposition 11. Let T be a minimal square-tiled interval exchange transformation such that α is
irrational and has unbounded partial quotients; then (X,T, µ) is rigid.

Proof. For all n, the trajectories of the rotation are covered by disjoint occurrences of Mn and Pn
(of Proposition 6) as these are the first return words of wn. Suppose for example lm > rm for
bn ≤ m ≤ bn + an − 1; then because of the previous step |Pbn| > |Mbn|; then Pbn+an = Pbn ,
Mbn+an = MbnP

an
bn

, Pbn+an+1 = PbnMbnP
an
bn

, Mbn+an+1 = MbnP
an
bn

. Hence disjoint occurrences
of the word P an

bn
fill a proportion at least an

an+2
of the length of both MN and PN for each N ≥

an + bn + 1. The trajectories for T are covered by the 2z words PN,i and MN,i which project
on PN and MN by φ, and a proportion at least an

an+2
of them are covered by disjoint occurrences

of the z words which project by φ on P an
bn

. For each N , each PN,i can be followed by exactly
one PN,j , and thus the PN,i, 1 ≤ i ≤ z, are grouped into z′r ≤ z cycles PN,iN,j,1 . . . PN,iN,j,cN,j ,
1 ≤ j ≤ z′N , 1 ≤ cN,j ≤ z, where for a given N all the possible PN,iN,j,l are different and the
only PN,h which can follow PN,iN,j,cN,j is PN,iN,j,1 . Let sn ≤ zz the least common multiple of all
the cbn,j , 1 ≤ j ≤ z′bn ,; then if we move by T sn|Pbn | inside one of the words which project on
P an
bn

, we see the same letter. Thus, if E is a fixed cylinder of length L, µ(E∆T sn|Pbn |E) is at most
2
an

+ sn
an

+ L
|Pbn |

. Thus, possibly replacing P by M for the cases lm < rm, we get that if the an are
unbounded T is rigid, as the cylinders for the natural coding generate the whole σ-algebra. �

4. PROOF OF THEOREM 1 AND THEOREM 3

4.1. Rigidity of the flow.

Proposition 12. Let X be a square-tiled surface and θ a direction, St the linear flow in direction
θ and T = Tα the associated interval exchange transformation. The flow St is rigid whenever T is
rigid.

Proof. The key point is that the flow St is a suspension flow over T with constant roof function.
Denote by I the union of the diagonals of slope −1. In fact, if a point belongs to I , the return time
ρ to I is independent of the point since diagonals are parallel (see for instance Figure 2).

Now, suppose T is rigid; if qn is a rigidity sequence for T , then ρqn is a rigidity sequence for the
flow St, and thus St is rigid.

Suppose the flow is rigid, with rigidity sequence Qn; let Qn = ρQ′n. Denote by qn the nearest
integer to Q′n. Since the return time ρ is constant, Q′n is close to the integer qn: looking at the
projection in the torus R2/Z2, a point in I cannot be close to I otherwise. Thus, as Qn is a rigidity
time for the flow, qn is a rigidity time for T .

�

4.2. Rank. We now prove Theorem 3.

Proof. If T is of rank one, its natural coding satisfies the non-constructive symbolic definition of
rank one, see the survey [14]: for every positive ε, for every natural integer l, there exists a word
B of length |B| bigger or equal to l such that, for all n large enough, on a subset of X of measure
at least 1 − ε, the prefixes of length n of the trajectories are of the form Z1B1...ZpBpZp+1, with
|Z1|+ ...|Zp| < εn and d(Bi, B) < ε for all i. But then the d̄-separation of L(T ) implies, possibly
after shortening B by a prefix and a suffix of total relative length at most ε, and lengthening the
Zi accordingly, that the same is true with Bi = B fo all i. By projecting by φ, we get a similar
structure for the trajectories of the rotation R. Such a structure for R implies that the quantity F
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defined in Definition 4 of [10] is equal to 1, and by Proposition 5 of that paper this is impossible
when α has bounded partial quotients. �

Thus we can prove that T is not of rank one for the surface in Example 1 and any αwith bounded
partial quotients, but we do not know how to prove it for the surface in Example 2.

5. INTERVAL EXCHANGE TRANSFORMATIONS ASSOCIATED TO BILLIARDS IN VEECH
TRIANGLES

We consider the famous examples of [40]: unfolding the billiard in the right-angled triangle
with angles (π/2z, π/2, (z − 1)π/2z), one gets a regular double 2z-gon. A path, which starts in
the interior of the polygon, moves with constant velocity until it hits the boundary, then it re-enters
the polygon at the corresponding point of the parallel side, and continues travelling with the same
velocity.

We follow the presentation of [35]. The sides of the 2z-gon are labelled A1, ..., Az from top
to bottom on the right, and two parallel sides have the same label. We draw the diagonal from
the right end of the side labelled Ai on the right to the left end of the side labelled Ai on the left.
There always exists i such that the angle θ between the billiard direction and the orthogonal of this
diagonal is between −π

2z
and π

2z
(see Figure 4) .

A4

A3

A2

A1A4

A3

A2

A3

A1

FIGURE 4. Regular Octagon

We put on the circle the points−ie ijπz from j = 0 to j = z, which are the vertices of the 2z-gon;
our diagonal is the vertical line from −i to i, we project on it the sides of the polygon which are
to the right of the diagonal, partitioning it into intervals I1, ... Iz, and the sides of the polygon
which are to the left of the diagonal, partitioning it into intervals J1, ... Jz. The transformation
which exchanges the intervals (I1, ...Iz) with the (J1, ...Jz) is identified with the interval exchange
transformation I on [−1, 1[ whose discontinuities are γj = − cos jπ

z
+ tan θ sin jπ

z
, 1 ≤ j ≤ z− 1,

while the discontinuities of I−1 are βj = −γz−j , composed with the map x→ −x if θ < 0. I is a
z-interval exchange transformation with permutation p defined by p(j) = z− j+ 1 (see Figure 5).
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A1A4

A3

A2

A3

A1
I4

I3

I2

I1
J4

J3

J2

J1

FIGURE 5. Interval exchange transformation in the regular octagon

Thus we consider the one-parameter family of interval exchange transformations I, which de-
pend on the parameter θ, −π

2z
< θ < π

2z
or equivalently on the parameter

y =
1

2

(
sin π

z

| tan θ|
−
(

1 + cos
π

z

))
> 0.

5.1. A rigid subfamily of interval exchange transformations. Let λ = 2 cos2 π
2z

= 1 + cos π
z
.

We define an application g by g(y) = y − λ if y > λ, g(y) = y
1−2y if 0 < y < 1

2
(the value of g on

other sets is irrelevant).
From Theorem 11 of [15], in the particular case of Theorem 13 of the same paper, we deduce

the following result.

Proposition 13. If y is such that there exist two sequences mn and qn, with m0 = q0 = 0, and the
iterates g(n)(y) satisfy

• λ < g(n)(y) if m0 + q0 +m1 + q1 + . . .+mk + qk ≤ n ≤ m0 + q0 +m1 + q1 + . . .+mk +
qk +mk+1 − 1 for some k,
• 0 < g(n)(y) ≤ 1

2
if m0 + q0 + m1 + q1 + . . . + mk + qk + mk+1 ≤ n ≤ m0 + q0 + m1 +

q1 + . . .+mk + qk +mk+1 + qk+1 − 1 for some k,
then for all n, the trajectories of I are covered by disjoint occurrences of words Mn,i and Pn,i,
1 ≤ i ≤ z − 1, built inductively in the following way:

• M0,i = i, 1 ≤ i ≤ z − 1, P0,1 = z1, P0,i = i, 2 ≤ i ≤ z − 1;
• if m0 + q0 +m1 + q1 + . . .+mk + qk ≤ n ≤ m0 + q0 +m1 + q1 + . . .+mk + qk +mk+1−1

for some k,
Pn+1,i = Pn,i for 1 ≤ i ≤ z − 1,

Mn+1,i = Mn,iPn,z−i+1Pn,i for 2 ≤ i ≤ z,

Mn+1,1 = Mn,1Pn,1;
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• if m0 + q0 + m1 + q1 + . . . + mk + qk + mk+1 ≤ n ≤ m0 + q0 + m1 + q1 + . . . + mk +
qk +mk+1 + qk+1 − 1 for some k,

Mn+1,i = Mn,i for 1 ≤ i ≤ z − 1,

Pn+1,i = Pn,iMn+1,d−iMn+1,i for 1 ≤ i ≤ z − 1.

We can now state

Proposition 14. There exists two sequences of functions Fn, from N2n−2 to N, and Gn from N2n−1)

to N such that, if for infinitely many n either mn > F (m0, q0,m1, q1, . . . ,mn−1, qn−1) or qn >
G(m0, q0,m1, q1, . . . ,mn−1, qn−1,mn), and y is as in Proposition 13, then I is rigid.

Proof. Ifmn is large, as in Proposition 11 we cover most of the trajectories by words (Pn,z−i+1Pn,i)
mn ,2 ≤

i ≤ z− 1, and Pmn
n,1 . Let sn be the least common multiple of |Pn,z−i+1|+ |Pn,i|, 2 ≤ i ≤ z− 1, and

|Pn,1|; when we move by sn inside these words, we see the same letter; thus sn will give a rigidity
sequence for I if all the mn(|Pn,z−i+1|+ |Pn,i|), 2 ≤ i ≤ z− 1, and mn|Pn,1| are much larger than
sn, which gives a condition as in the hypothesis; and similarly with the M words if qn is large. �

5.2. Rigidity of the flow. Let Xz be the surface obtained from the regular 2d-gon by identifying
parallel sides together. X is a translation surface thus the linear flow is defined in every direction.

Proposition 15. There exists a dense Gδ set of directions θ, of positive Hausdorff dimension, for
which the linear flow on Xz in direction θ is rigid.

Proof. We recall that in every non minimal direction, the linear flow is periodic (see [40]). In a
periodic direction, the surface is decomposed into parallel cylinders of commensurable moduli.
Up to normalization, the vectors of the heights of the cylinders form a finite set. More precisely,
the periodic directions correspond to cusps of a lattice in SL(2,R) (see [40]).

We give a detailed proof in the case z = 4 since one can make explicit computations. We recall
that in a periodic direction, the octagon is decomposed into cylinders. The ratio of the lengths of
these cylinders is

√
2.

Let us fix a direction θ. We approximate θ by periodic directions θn. We denote by ln the
length of the shortest cylinder in direction θn. We say that θ is approximable by (θn) at speed a if
|θ− θn| < 1

l2+an
. Assume that this property holds. Denote by C1,n the cylinder of length ln and C2,n

the cylinder of length ln
√

2. We approximate
√

2 by pn
qn

, with |
√

2− pn
qn
| < 1

q2n
.

Our rigidity sequence will be pnln. As in Figure 5, flowing in direction θ, the subinterval B of
the interval J of the cylinder C1,n that escapes the cylinder C1,n after time ln has length ln|θ− θn|.
Thus the area of the sub rectangle that does not run along the cylinder has measure l2n|θ−θn|. After
time pnln, the part that escapes has measure pnl2n|θ − θn| <

pn
lan

. This measure tends to zero as n
tends to infinity if pn � lan.

When we move by the time pnln of the flow inside C1,n, there is no vertical translation by
construction; inside C2,n, we move by pnln modulo ln

√
2; but pnln = ln(qn

√
2+ xn

qn
) with |xn| < 1,

so we move by less than ln
qn

. Thus rigidity holds if ln � qn or equivalently ln � pn.
Our two conditions ln � pn � lan are compatible if a > 1. Moreover, since the periodic

directions correspond to the cusps of a lattice in SL(2,R), the set of θ approximable at speed a has
positive Hausdorff dimension (see [29]) and is a dense Gδ set of the unit circle. Nevertheless it has
0 measure.
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For general z, we have z− 2 cylinders Cn,i of lengths lnτi with τ1 = 1. By Dirichlet, we find pn
and qn,i, such that | 1

τi
− qn,i

pn
| < 1

p1+bn
for all i > 1 where b = 1

z−3 . Thus pnln = ln(qn,iτi +
xn,iτi
pbn

)

with |xn,i| < 1, thus pnln is a rigidity sequence if both pn � lan and ln � pbn which is possible if
ab > 1 which means that a > z − 3. �

J

B
slope θn

slope θ

J

FIGURE 6. Trajectories in direction θ run along the cylinder from J in direction θn
once unless they are in the subinterval B.
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