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ARNOUX-RAUZY INTERVAL EXCHANGE TRANSFORMATIONS

PIERRE ARNOUX, JULIEN CASSAIGNE, SÉBASTIEN FERENCZI, AND PASCAL HUBERT

ABSTRACT. The Arnoux-Rauzy systems are defined in [5], both as symbolic systems on three let-
ters and exchanges of six intervals on the circle. In connection with a conjecture of S.P. Novikov,
we investigate the dynamical properties of the interval exchanges, and precise their relation with the
symbolic systems, which was known only to be a semi-conjugacy; in order to do this, we define a
new system which is an exchange of nine intervals (it was described in [3] for a particular case). Our
main result is that the semi-conjugacy determines a measure-theoretic isomorphism under an explicit
(sufficient) condition, which is satisfied by almost all Arnoux-Rauzy systems for a suitable measure;
but, under another condition, the interval exchanges are not uniquely ergodic and the isomorphism
does not hold for all invariant measures; finally, we give conditions for these interval exchanges to
be weakly mixing.

Acknowledgement: this research was born from a discussion with V. Delecroix during the
FWF/JSPS project meeting in Salzburg; a part of it was carried out when the second and third
authors participated in the meeting organized by S. Brlek in Murter (Croatia) in april 2018, and
another part in july 2018 while the first author was in Unité Mixte IMPA-CNRS (Institut Jean-
Christophe Yoccoz) in Rio de Janeiro and the third author was a temporary visitor of IMPA through
the Réseau Franco-Brésilien en Mathématiques.

Arnoux-Rauzy dynamical systems were introduced in [5] in order to generalize the very fruitful
triple interaction between Sturmian sequences and rotation of the 1-torus through the Euclid con-
tinued fraction approximation. Arnoux-Rauzy sequences are defined through word-combinatorial
conditions, see Section 2.1 below, and what everybody would like to get is a geometric represen-
tation of the associated symbolic dynamical system, the preferred one being as a natural coding of
a rotation of the 2-torus. The set of possible angles of this rotation is known as the Rauzy gasket,
and defined in Section 2.3 below. A very famous particular case, the Tribonacci sequence, was
shown in [17] to be a natural coding of a rotation of the 2-torus, and thus the corresponding sys-
tem is measure-theoretically isomorphic to that rotation. This was generalized to a larger class of
Arnoux-Rauzy systems in [4], and recently to almost all Arnoux-Rauzy systems [9], in the same
sense as in Theorem 4.11 below. On the other hand, [11] provides counter-examples where this
isomorphism cannot hold, see Section 5 below. For a general Arnoux-Rauzy system, one has to
be content with what looks like a second-best geometric representation built in [5], a coding of a
six-interval exchange on the circle, see Section 2.3 below.

However, these six-interval exchanges have been recently understood to represent by themselves
a very interesting family of systems, as, though the number of intervals is six, they are interval ex-
changes of rank three (not to be confused with the rank defined by Rokhlin towers which will be
used in Section 4.4 below), meaning that the set of lengths of the intervals has dimension three
over the rationals. This kind of interval exchanges was pointed out (in a very different context
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and language) by S. P. Novikov [16], which prompted several authors to make deep studies of the
Rauzy gasket in [6] [7] [8], solving partially a conjecture in [16], and to look at everything we
can find about this particular family. But indeed, a priori not much is known, as these six-interval
exchanges (called AR6 in the present paper) are only semi-conjugate to the original Arnoux-Rauzy
systems (called AR3 in the present paper): namely, an AR6 interval exchange admits a coding by
a partition into three sets which is an AR3 symbolic system, but this partition is not known to be
a generating partition, while, as far as we know, the coding by the natural partition into six inter-
vals cannot be built by substitutions, contrarily to its AR3 coding. Hence no property of an AR6
interval exchange can be directly carried out from the underlying AR3 symbolic system. More-
over, deep geometric methods have allowed I. Dynnikov and A. Skripchenko [12] to prove, again
in a completely different language, the existence of minimal non-uniquely ergodic AR6 interval
exchanges, in stark contrast with always minimal and uniquely ergodic AR3.

The relation between AR6 interval exchanges and underlying AR3 symbolic systems was par-
tially tackled in [3], though only in the particular case of Tribonacci, and with a certain lack of
details: that paper defines yet another Arnoux-Rauzy interval exchange, this time on nine intervals
(called AR9 in the present paper), where an AR3 appears again as a coding by a partition into three
sets, and where the coding by the natural partition into nine intervals can be explicitly generated by
a substitution. This is the key for studying ergodic properties of AR9 interval exchanges, and ex-
tending them to the AR6 interval exchanges which appear as factors of AR9. The only one stated in
[3] is the measure-theoretical isomorphism between the three corresponding systems (AR3, AR6,
AR9) in the Tribonacci case, though no proof is offered.

In the present paper, we generalize the construction of AR9 systems to every set of parameters
in the Rauzy gasket, and use them to derive dynamical properties of AR6 and AR9 systems. Our
main result is an explicit sufficient condition for measure-theoretical isomorphism between the
corresponding AR9, AR6 and AR3 systems, which implies unique ergodicity for the AR6 and
AR9. This condition is satisfied by almost all Arnoux-Rauzy systems in the sense of [9], and many
explicit examples including Tribonacci; proving at last the isomorphism in that case provides the
backbone of the answer to Question 9 (asked by G. Forni) in [14] where the Tribonacci AR6 (or
AR9) provide nontrivial examples of rigid self-induced interval exchanges, and this was another
motivation for the present paper. Then we give a class of examples of non-uniquely ergodic AR9
(or AR6) which may be somewhat more explicit than those in [12], and give both examples and
counter-examples to the isomorphism problem: these AR9 are measure-theoretically isomorphic
to their AR3 coding if we equip them with an ergodic invariant measure, but of course this cannot
hold if we take one of the many non-ergodic measures. Then we show that weak mixing is also
present in the class of AR9 (or AR6) systems.

1. BASIC DEFINITIONS

We look at finite words on a finite alphabet A = {1, ...k}. A word w1...wt has length |w| = t.
The concatenation of two words w and w′ is denoted by ww′.

Definition 1.1. A word w = w1...wt occurs at place i in a word v = v1...vs or an infinite sequence
v = v1v2... if w1 = vi, ...wt = vi+t−1. We say that w is a subword of v.

Definition 1.2. A language L over A is a set of words such if w is in L, all its subwords are in L,
aw is in L for at least one letter a of A, and wb is in L for at least one letter b of A.
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A language L is minimal if for each w in L there exists n such that w occurs in each word of L of
length n.
The language L(u) of an infinite sequence u is the set of its finite subwords.

Definition 1.3. A substitution ψ is an application from an alphabet A into the set A? of finite
words on A; it extends naturally to a morphism of A? for the operation of concatenation.

Definition 1.4. The symbolic dynamical system associated to a language L is the one-sided shift
S(x0x1x2...) = x1x2... on the subset YL ofAN made with the infinite sequences such that for every
t < s, xt...xs is in L.

Note that the symbolic dynamical system (XL, S) is minimal (in the usual sense, every orbit is
dense) if and only if the language L is mimimal.

Definition 1.5. For a dynamical system (X ′, U) and a finite partition {P1, . . . Pl} of X ′, the tra-
jectory of a point x in X ′ is the infinite sequence (xn)n∈IN defined by xn = i if Unx falls into Pi,
1 ≤ i ≤ l.
Then if L is the language made of all the finite subwords of all the trajectories, (YL, S) is called
the coding of (X ′, U) by the partition {P1, . . . Pl}.

2. CLASSICAL ARNOUX-RAUZY SYSTEMS

2.1. AR3 symbolic systems. These systems are the “genuine” Arnoux-Rauzy systems; we take
here as a definition their constructive characterization, derived in [5] from the original definition,
and modified in the present paper by a renaming of letters and words. We choose to name a, b, c,
the letters of the alphabet, in such a way that the words of length 2 are aa, ab, ac, ba, ca; then the
following definition is equivalent to the original one.

Definition 2.1. An AR3 symbolic system is the symbolic system on {a, b, c} generated by the three
substitutions

• σI: a→ ab, b→ ac, c→ a,
• σII: a→ ab, b→ a, c→ ac,
• σIII: a→ a, b→ ab, c→ ac,

and a directing sequence rn, n ∈ GN?, in ∈ {I, II, III}, taking the value I infinitely many times.
Namely, it is the symbolic system (Y3, S) whose language is generated by the words Ak =

σr1 ...σrka, Bk = σr1 ...σrkb,, Ck = σr1 ...σrkc, k ≥ 1. The respective lengths of the words Ak, Bk,
Ck will always be denoted by ha,k, hb,k, hc,k.

(Y3, S) is minimal [5] and uniquely ergodic (by Boshernitzan’s result [10] using the fact that the
language complexity is 2n+ 1) with a unique invariant probability measure µ.

Note that our modification of the rules changes the usual condition of [5], that each substitution
is used infinitely often, to the present condition that σI is used infinitely often. The most famous
particular case is the Tribonacci system, where rn = I for all n.

2.2. Partial quotients and multiplicative rules. These quantities are defined in [11], but we
redefine them here as the notations are different.

Definition 2.2. We write the directing sequence (rn) in a unique way as k1 − 1 ≥ 0 times the
symbol III followed by one symbol I or II , then k2 − 1 ≥ 0 times III followed by one I or II
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etc.... the kn ≥ 1 are then called the partial quotients of the system.
The multiplicative times are m0 = 0, mn = k1 + ...kn, n ≥ 1.

Then the words Amn , Bmn , Cmn can be built by the following multiplicative rules, which could
also be expressed by substitutions but would need a countable set of them:

• if rmn+1 = I , we say that the n+ 1-th multiplicative rule is a rule Im, and we have
– Amn+1 = Akn+1

mn
Bmn ,

– Bmn+1 = Akn+1
mn

Cmn ,
– Cmn+1 = Amn;

• if rmn+1 = II , we say that the n+ 1-th multiplicative rule is a rule IIm, and
– Amn+1 = Akn+1

mn
Bmn ,

– Bmn+1 = Amn ,
– Cmn+1 = Akn+1

mn
Cmn .

For Tribonacci, we have kn = 1 for all n, and all multiplicative rules are of type Im.
We recall that in [11], where we de not use the same substitutions (called “(additive) concatena-

tion rules” in that paper), the sequence of multiplicative rules (as defined in that paper) corresponds
to the successive number of times we use each substitution, and the n + 1-th multiplicative rule is
of type 1 whenever the mn−1-th and mn+1-th substitutions are different. Then the Hn, Gn and Jn
of [11] are exactly the same as respectively Amn , Bmn and Cmn in the present paper, and types 1
and 2 of [11] correspond to our rules Im and IIm.

We shall use the inequalities proved in Lemma 7 of [11] at the multiplicative times: namely
hb,mn ≤ 2ha,mn and hc,mn ≤ 2ha,mn . These are not true in general at other (additive) times
p 6= mn.

2.3. AR6 interval exchanges. These exchanges of six intervals on a circle are defined in [5].

Definition 2.3. The Rauzy gasket Γ is the set of triples of positive real numbers (a0, b0, c0),
such that, if we define recursively the numbers an, bn, cn by taking the triple (an−1 − bn−1 −
cn−1, bn−1, cn−1) and reordering it, then for each n ≥ 0 we have an > bn > cn > 0.

Definition 2.4. An AR6 nterval exchange (X6, T ) is defined in the following way from any triple
(a0, b0, c0) in Γ: X6 is a circle of length 2a0 + 2b0 + 2c0. The circle is partitioned into three
intervals of respective lengths 2a0, 2b0, 2c0, then each one is cut into two halves; the action of
T first exchanges by translations respectively the two intervals of length a0, the two intervals of
length b0, the two intervals of length c0, then translates everything by a0 +b0 +c.0, i.e. a half-circle.

Note that the order between the intervals of lengths 2a0, 2b0, 2c0 is not mentioned in Definition
2.4 (the fact that it is not always the same is somewhat understated in [5]); but it follows from this
definition that two AR6 interval exchanges defined with the same (a0, b0, c0) but different orders
of these intervals are conjugate by a map which is continuous except on a finite number of points,
and hence measure-theoretically isomorphic for any invariant measure, in the sense that any in-
variant measure on one of them can be carried to the other one, and the two measure-theoretic
systems are isomorphic. Similarly, the location of the origin on the circle does not change the sys-
tem up to topological conjugacy and measure-theoretically isomorphism for any invariant measure.

For example, when the intervals of lengths 2a0, 2b0, 2c0 are successive intervals of the circle in
that order, T is shown in Figure 1, where on the left circle a−, a+, b−, ... denote the intervals of
length a0, a0, b0 ... while on the right circle the letters correspond to the images of these intervals
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b−
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c−

c+

a+

a−

b+

b−

c+

c−

FIGURE 1. AR6 interval exchange

by the transformation. If in Figure 1 we choose to put the origin at the left end of the interval
denoted by a−, [0, a0) is sent to [a0 + a0 + b0 + c0, 2a0 + a0 + b0 + c0) modulo 2a0 + 2b0 + 2c0,
[a0, 2a0) is sent to [a0 + b0 + c0, a0 + a0 + b0 + c0) modulo 2a0 + 2b0 + 2c0, etc...

The link between AR3 symbolic systems and AR6 interval exchanges, studied in [5], will be
described in Section 3.4 below. But, as pointed out in the introduction, we do not know any
constructive way to build directly he language of the natural coding of the AR6 interval exchange,
that is its coding by the partition into its six defining intervals. That is why we need to introduce
one more type of Arnoux-Rauzy systems.

2.4. Note on endpoints. One recurring problem when dealing with interval exchanges is what to
do with interval endpoints? A satisfying answer to this question is given by M. Keane in Section
5 of [15]: by carefully doubling the endpoints and their orbits, he defines a Cantor set on which
the transformation becomes an homeomorphism, and show this is equivalent to taking the natural
coding by the partition into defining intervals. In the present paper, to make definitions easier, we
do not use Keane’s construction, and all intervals are closed on the left, open on the right; but that
will introduce technical difficulties, see Remark 3.1 below.

3. THE NEW SYSTEMS: ARNOUX-RAUZY ON NINE SYMBOLS

3.1. AR9 interval exchanges. These are defined for the particular case of Tribonacci in [3]. Here
we define them in full generality, in a deliberately pedestrian way, which does not reveal how they
were devised; the grand geometry underlying and motivating the construction, generalizing the
geometry in [3], will appear in a further paper. Note that we use the same symbol T for AR9 and
AR6 interval exchanges in view of Proposition 3.2 below.

An AR9 interval exchange is defined by a point (a0, b0, c0) in Γ and three auxiliary parameters,
real numbers d0, e0, f0, satisfying the compatibilty rules.

• either (first order) d0 + a0 + b0 ≤ e0 < e0 + b0 + c0 ≤ f0,
• or (second order) e0 + b0 + c0 ≤ f0 < f0 + a0 + c0 ≤ d0,
• or (third order) f0 + a0 + c0 ≤ d0 < d0 + a0 + b0 ≤ e0,
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• or (reversed first order) f0 + a0 + c0 ≤ e0 < e0 + b0 + c0 ≤ d0,
• or (reversed second order) d0 + a0 + b0 ≤ f0 < f0 + a0 + c0 ≤ e0,
• or (reversed third order) e0 + a− c0 + b0 ≤ d0 < d0 + b0 + a0 ≤ f0.

d0

d0 e0 f0

1 2 6 7

d0 + a0 + b0

7 8 9 1

5 9

e0 + b0 + c0

2 3 4 5 6

f0 + a0 + c0

8 3 4

f0 + a0 + c0

FIGURE 2. AR9 interval exchange

Definition 3.1. For a point (a0, b0, c0) in Γ and auxiliary parameters d0, e0, f0, an AR9 interval
exchange (X9, T ) is defined on the union of the intervals [d0, d0 + a0 + b0), [e0, e0 + b0 + c0) and
[f0, f0 + a0 + c0) by piecewise translations, in the following way when d0, e0, f0 are in the first,
second or third order:

• we partition the interval [d0, d0+a0+b0), from left to right, into four intervals of successive
lengths b0 − c0, c0, c0, a0 − c0, denoted respectively by I7,0, I8,0, I9,0, I1,0, and into four
intervals of successive lengths a0 − c0, c0, c0, b0 − c0, which we define respectively to be
TI1,0, TI2,0, TI6,0, TI7,0,
• we partition the interval [e0, e0 +b0 +c0), from left to right, into two intervals of successive

lengths c0, b0, denoted respectively by I2,0, I3,0, and into two intervals of successive lengths
b0, c0, which we define respectively to be TI5,0, TI9,0,
• we partition the interval [f0, f0+a0+c0), from left to right, into three intervals of successive

lengths a0 − b0, b0, c0, denoted respectively by I4,0, I5,0, I6,0, and into three intervals of
successive lengths c0, b0, a0 − b0, which we define respectively to be TI8,0, TI3,0, TI4,0.

If d0, e0, f0 are in the reversed first, second or third order, we do as in the previous case, except
that everywhere “from left to right” is replaced by “from right to left” (note that all intervals are
still closed on the left, open on the right).

It is clear from the definition that two AR9 interval exchanges defined with the same (a0, b0, c0)
but different d0, e0, f0 are conjugate by a map which is continuous except on a finite number of
points (it will be continuous everywhere if we suppose no two of the three intervals [d0, d0+a0+b0),
[f0, f0 + a0 + c0), [e0, e0 + b0 + c0) are adjacent), and measure-theoretically isomorphic for any
invariant measure, in the sense of Section 2.3 above. We could choose d0, e0, f0 to start from one
interval, but as we shall see below this will not be conserved by induction, so we keep the auxiliary
parameters, and shall check that all our results, in particular Lemma 4.4 below, which states the
adjacency of certain intervals, is true for any choice of d0, e0, f0.

For example, if d0, e0, f0 are in the first order, we get
• I7,0 = [d0, d0 + b0 − c0), TI7,0 = [d0 + a0 + c0, d0 + b0 + a0),
• I8,0 = [d0 + b0 − c0, d0 + b0), TI8,0 = [f0, f0 + c0),
• I9,0 = [d0 + b0, d0 + b0 + c0), TI9,0 = [e0 + b0, e0 + b0 + c0),
• I1,0 = [d0 + b0 + c0, d0 + b0 + a0), TI1,0 = [d0, d0 + a0 − c0),
• I2,0 = [e0, e0 + c0), TI2,0 = [d0 + a0 − c0, d0 + a0),
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d0 f0 e0

1267 59834

7891 23456

FIGURE 3. AR9 interval exchange in reversed order

• I3,0 = [e0 + c0, e0 + b0 + c0), TI3,0 = [f0 + c0, f0 + b0 + c0),
• I4,0 = [f0, f0 + a0 − b0), TI4,0 = [f0 + b0 + c0, f0 + a0 + c0),
• I5,0 = [f0 + a0 − b0, f0 + a0), TI5,0 = [e0, e0 + b0),
• I6,0 = [f0 + a0, f0 + a0 + c0), TI6,0 = [d0 + a0, d0 + a0 + c0),

and T is shown in Figure 2, where i in the upper part corresponds to Ii,0 and i in the lower part
corresponds to TIi,0. An example in the reversed second order is shown in Figure 3.

3.2. Induction. Now, we take an AR9 system; to fix ideas, we suppose d0, e0, f0 are in the first
order. Let T1 be the induced map of T on I1,0 ∪ I2,0 ∪ I3,0 ∪ I4,0. We define a1 > b1 > c1 as the
triple (a0−b0−c0, b0, c0) after reordering. Then there are three cases, which we tackle by growing
difficulty.

3.2.1. Induction step case III: a1 = a0 − b0 − c0.. Then b1 = b0, c1 = c0.

1

I7,1

1

I8,1

1

I9,1

1

I1,1

2

I2,1

3

I3,1

4

I4,1

4

I5,1

4

I6,1

7 8 9 (1) (1) (4) (4) 5 6

(1) (4) (3) (2, 3) (1)

FIGURE 4. Induction Case III

The situation is essentially described in Figure 4. The induction set I1,0 ∪ I2,0 ∪ I3,0 ∪ I4,0 is cut
into nine new intervals Ii,1, whose respective lengths are, from left to right, b1− c1, c1, c1, a1− c1,
c1, b1, a1 − b1, b1, c1. Then T acts on the picture as a move upwards, until we reach again the
induction set, which is marked by dashed lines. Each interval of the picture is labelled by j above
if it is in Ij,0; the labels are between parentheses for the dashed intervals, as they will not be used
further (note that T1I5,1 = T 2I5,1 is the union of a (full) subinterval of I2,0 with a (left) subinterval
of I3,0, hence the ambiguous label). Thus for example I7,1 is sent by T onto I7,0, then by another
application of T into I1,0, hence T1 = T 2 on I7,1. And we check that T1 is indeed an AR9 interval
exchange defined by (a1, b1, c1). We can also compute d1 = d0 + b0 + c0, e1 = e0, f1 = f0; the
order is still the first one.

3.2.2. Induction step case I: c1 = a0 − b0 − c0.. Then a1 = b0, b1 = c0.
The length of each Ii,1 in Figure 5 is the same as in case III. T1 is an AR9 interval exchange

defined by (a1, b1, c1); d1 = e0, e1 = f0, f1 = d0 + b0 + c0 are in the third order.
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1

I4,1

1

I5,1

1

I6,1

2

I7,1

2

I8,1

3

I9,1

3

I1,1

4

I2,1

4

I3,1

9 (1) (4) 5 5 67 8 9

(3) (2, 3) (3) (1)(1) (4) (3)

FIGURE 5. Induction Case I

3.2.3. Induction step case II: b1 = a0 − b0 − c0.. Then a1 = b0, c1 = c0.

1

I7,1

1

I8,1

1

I9,1

1

I1,1

4

I2,1

4

I3,1

3

I4,1

3

I5,1

2

I6,1

(1)987 655(4)(1)

(3)(4)(1) (2, 3) (1)(3)

FIGURE 6. Induction Case II

The length of each Ii,1 in Figure 6 is the same as in case III. T1 is an AR9 interval exchange, de-
fined by (a1, b1, c1), and where d1 = d0 +b0 +c0, e1 = f0, f1 = e0 are in the reversed second order.

The same computations work if we start from an AR9 when d0, e0, f0 are in the second order:
we get the same pictures except that d1, e1, f1 are in the second order in Case III, the first order in
Case I, the reversed first order in Case II. When d0, e0, f0 are in the third order, we get the same
pictures except that d1, e1, f1 are in the third order in Case III, the reversed third order in Case II,
and the second order in Case I. If we start form a reversed order, just reverse the orientation of the
pictures.

3.3. AR9 symbolic systems.

Definition 3.2. An AR9 symbolic system (Y9, S) is the natural coding of an AR9 interval exchange
(X9, T ), that is its coding by the partition into Ii,0, 1 ≤ i ≤ 9; we denote by ψ the map associating
to each point x ∈ X9 its trajectory in Y9.

Remark 3.1. Because of the way we deal with the endpoints, see Section 2.4 above, ψ is injective
but not surjective; we have Y9 = ψ(X9)∪D9, where D9 is a countable set made with the improper
trajectories of the right endpoints of the intervals Ii,0 and their negative orbits: these are the limits,
in the product topology of {1, ...9}IN, in which Y9 is closed, of trajectories of points approaching
these endpoints from the left, and similarly for their pre-images.

Proposition 3.1. For each (a0, b0, c0) in Γ, the AR9 symbolic system associated to any AR9 in-
terval exchange defined by (a0, b0, c0) is the symbolic system on {1, ...9} generated by the three
substitutions

• σ′I: 1→ 35, 2→ 45, 3→ 46, 4→ 17, 5→ 18, 6→ 19, 7→ 29, 8→ 2, 9→ 3,
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• σ′II: 1→ 17, 2→ 46, 3→ 45, 4→ 35, 5→ 3, 6→ 2, 7→ 1, 8→ 19, 9→ 18,
• σ′III: 1→ 1, 2→ 2, 3→ 3, 4→ 4, 5→ 45, 6→ 46, 7→ 17, 8→ 18, 9→ 19.

and a directing sequence rn, n ∈ GN?, in ∈ {I, II, III}, defined by rn = I if an = an−1−bn−1−
cn−1, rn = II if bn = an−1− bn−1− cn−1, rn = III if cn = an−1− bn−1− cn−1; rn takes the value
I infinitely many times.

Any system defined in this way is an AR9 symbolic system.

Proof
Starting with T0 = T as above, we define Tk as the induced map of Tk−1 on the set ∪4

i=1Ii,k−1,
which we denote by Ja,k−1. It defines nine intervals Ii,k with ∪9

i=1Ii,k = Ja,k−1. We call now ik,
1 ≤ i ≤ 9, the trajectory of any point x in Ii,k between the time 0 and the first return time of x
in Ja,k−1, coded by the partition into Ii,k, 1 ≤ i ≤ 9. The induction steps of Section 3.2 show
that ik = σ′r1 ...σ

′
rk
i, and that, if we iterate the induction infinitely many times, the words 1k to 9k,

k ≥ 0, generate the language of T . As an > bn > cn > 0, rn = I infinitely often.
It is actually proved in [5] that the construction of rn gives a one-to-one correspondence be-

tween the points of Γ and the sequences rn, n ∈ GN?, in ∈ {I, II, III} where rn takes the value
I infinitely many times, which proves our last assertion. �

Thus the AR9 symbolic system does not depend on d0, e0, f0. The common length of the words
1k, 2k, 3k, 4k, is ha,k defined in Section 2.1, hb,k is the common length of the words 5k, 6k, 7k, hc,k
the common length of the words 8k, 9k.

The multiplicative rules of Section 2.2 above extend immediately to AR9 systems, in the fol-
lowing way

• if the n+ 1-th multiplicative rule is a rule Im,
– 1mn+1 = 3mn4kn+1−1

mn
5mn ,

– 2mn+1 = 4kn+1
mn

5mn ,
– 3mn+1 = 4kn+1

mn
6mn ,

– 4mn+1 = 1kn+1
mn

7mn ,
– 5mn+1 = 1kn+1

mn
8mn ,

– 6mn+1 = 1kn+1
mn

9mn ,
– 7mn+1 = 2mn1kn+1−1

mn
9mn ,

– 8mn+1 = 2mn ,
– 9mn+1 = 3mn;

• if the t n+ 1-th multiplicative rule is a rule IIm,
– 1mn+1 = 1kn+1

mn
7mn ,

– 2mn+1 = 4kn+1
mn

6mn ,
– 3mn+1 = 4kn+1

mn
5mn ,

– 4mn+1 = 3mn4kn+1−1
mn

5mn ,
– 5mn+1 = 3mn ,
– 6mn+1 = 2mn ,
– 7mn+1 = 1mn ,
– 8mn+1 = 1kn+1

mn
9mn ,

– 9mn+1 = 1kn+1
mn

8mn .
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3.4. Relations between Arnoux-Rauzy systems. Starting from a point (a0, b0, c0) in Γ, and some
auxiliary parameters, we have defined two geometric systems, (X9, T ) and (X6, T ).

Proposition 3.2. An AR9 interval exchange defined by (a0, b0, c0) is conjugate to an AR6 interval
exchange defined by (a0, b0, c0) by a map which is continuous except on a finite number of points,
and thus gives a measure-theoretic isomorphism for each invariant measure, and any AR6 interval
exchange is conjugate to an AR9 in this way.

Proof
By gluing together the three intervals [d0, d0 + a0 + b0), [e0, e0 + b0 + c0), [f0, f0 + a0 + c0), we
define a map φ′6 sending X9 to a circle of length 2a0 + 2b0 + 2c0: for example, if d0, e0, f0 are
in the first order, we identify d0 + a0 + b0 with e0, e0 + b0 + c0 with f0, f0 + a0 + c0 with d0.
This conjugates (X9, T ) to a system (X6, T ) which is exactly the AR6 interval exchange defined
in Section 2.3 above: its defining intervals are the φ′6(Jj,0), j ∈ {a−, a+, b−, b+, c−, c+} where
Ja−,0 = I1,0 ∪ I2,0, Ja+,0 = I3,0 ∪ I4,0, Jb−,0 = I5,0, Jb+,0 = I6,0 ∪ I7,0, Jc−,0 = I8,0, Jc+,0 = I9,0. It
is immediate that every AR6 interval exchange can be built in this way. �

As in Proposition 3.1, any point in Γ defines a directing sequence (rn). Each directing sequence
defines two symbolic systems, (Y9, S) and (Y3, S).

Proposition 3.3. The coding of an AR9 symbolic system defined by (a0, b0, c0), by the partition
into three sets Ja,0 = I1,0 ∪ I2,0 ∪ I3,0 ∪ I4,0, Jb,0 = I5,0 ∪ I6,0 ∪ I7,0, Jc,0 = I8,0 ∪ I9,0, is the
AR3 symbolic system defined by the directing sequence in Proposition 3.1, and all AR3 symbolic
systems can be built in this way.

Proof
We define the letter-to-letter map φ by φ(1) = φ(2) = φ(3) = φ(4) = a, φ(5) = φ(6) = φ(7) = b,
φ(8) = φ(9) = c. If we build the words Ak, Bk, Ck in Definition 2.1 with a directing sequence
(rn) and the words 1k to 9k in the proof of Proposition 3.1, we get inductively that for all k,
φ(1k) = φ(2k) = φ(3k) = φ(4k) = Ak, φ(5k) = φ(6k) = φ(7k) = Bk, φ(8k) = φ(9k) = Ck. By
the induction steps of Section 3.2, Ak, resp. Bk, resp. Ck are the trajectory, under the coding by the
partition into three sets, of any point x in Ii,k, 1 ≤ i ≤ 4, resp. 5 ≤ i ≤ 7, resp. 8 ≤ i ≤ 9, between
the time 0 and the first return time of x in Ja,k−1, and the words Ak, Bk, Ck, k ≥ 0, generate the
language of T .

The last assertion comes again from the fact, known from [5], that each directing sequence de-
fines a point in Γ. �

Corollary 3.4. An AR9 symbolic system has an AR3 symbolic system defined by the same directing
sequence as a factor, and all AR3 symbolic systems can be built in this way.

Proof
These are two codings of the same AR9 interval exchange, and the partition into nine intervals is
finer than the partition into three sets. �

The map associating to a point in (X9, S) its coding in (Y3, S) is just φψ, where ψ is defined in
Definition 3.2 and φ in the proof of Proposition 3.3. As in Remark 3.1, we have φψ(X9) = Y3 \D′3
for the countable set D′3 made with improper trajectories; note that D′3 ⊂ D3 where D3 = φ(D9).
φψ conjugates the map T on X9 with the shift S on X3: to use the vocabulary of [5], φψ is called
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(X6, T )

(Y3, S)(Y6, S)

(X9, T )

(Y9, S)

ψ′

φ′6

φ

ψ

φ6 φ3

FIGURE 7. The five AR systems

a semi-conjugacy; as is pointed out in the introduction above, this does not give a one-to-one cor-
respondence between points. Similarly, φ conjugates the shifts on Y9 on Y3 and φ(Y9) = Y3; it is
also a semi-conjugacy, and not injective, see Proposition 4.6 below.

We now place the AR6 in the picture: we can also define the AR6 symbolic system (Y6, S) on
{a−, a+, b−, b+, c−, c+}, by the natural coding ψ6, of (X6, S) by its defining six intervals; we
have Y6 = ψ6(X6) ∪D6 for a countable set D6. We can write φ = φ3 ◦ φ6, with φ6(1) = φ6(2) =
a−, φ6(3) = φ6(4) = a+, φ6(5) = b−, φ6(6) = φ6(7) = b+, φ6(8) = c−, φ6(9) = c+, and
φ3(j−) = φ3(j+) = j for j = a, b, c.

In the same way as Proposition 3.3, we could reprove the main result of [5]: the coding of an
AR6 interval exchange defined by (a0, b0, c0), by the partition into three sets φ′6(Ja−,0 ∪ Ja+,0),
φ′6(Jb−,0 ∪ Jb+,0), φ′6(Jc−,0 ∪ Jc+,0), is the AR3 symbolic system defined by the directing sequence
of Proposition 3.1, and all AR3 symbolic systems can be built in this way. Thus (Y6, S) appears
as an intermediate coding between the AR3 and AR9 symbolic systems; because of Proposition
3.2, φ6, applied letter to letter, is invertible except on a countable set (included in φ6(D9)), and
conjugates (Y9, S) and (Y6, S), which are thus measure-theoretically isomorphic for each invariant
measure.

As was already mentioned, we do not know any way to build the trajectories in Y6 as in Defi-
nition 2.1 or Proposition 3.1; but they can be deduced from the trajectories in Y9 by applying φ6

letter to letter, and that was the main objective of the theory of AR9 systems; however, in general
it will be easier to work directly on AR9 systems and then derive the properties of AR6 systems.

At this stage, it may be useful to recall the various notations we use, for which we had to make
choices because of the number of systems we have defined and some long pre-existing notations:
a, b, c are always the three symbols on which AR3 systems are built. But ak, bk, ck, for any k, are
real numbers, describing lengths of intervals. Ak, Bk, Ck are the words used to build AR3 systems,
of lengths (i.e. number of letters) ha,k, hb,k, hc,k. 1 to 9 are the symbols on which AR9 symbolic
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systems are built, 1k to 9k are the words used to build them, their lengths are among ha,k, hb,k,
hc,k. Interval lengths for AR9 systems, when needed, are defined in terms of ak, bk, ck. Roman
numerals are used for the substitutions and rules to build words.

4. DYNAMICAL PROPERTIES

4.1. Minimality. By using the condition that rn = I for infinitely many n, the minimality of AR3
symbolic systems and AR6 interval exchanges is shown in [5]. The minimality of AR6 symbolic
systems follows, as the minimality of an interval exchange is equivalent to the minimality of its
natural coding, small intervals corresponding to small cylinders.

Proposition 4.1. Any AR9 system is minimal.

Proof
We show it for the symbolic systems, the minimality of the interval exchanges follows from the
remark just above. We want to show that in the language of (Y9, S) any word w occurs in any long
enough word. It is enough to show that for all n and 1 ≤ i ≤ 9 there exists N such that in occurs
in every jN , 1 ≤ j ≤ 9.

For example we take i = 1. Through σ′III in occurs in in+1 for all i, as we are after sufficient
conditions we can ignore these rules. We start from 1n; it occurs in 1n+1 through any number of
σ′III , so we wait until the first σ′I (we know it exists), in which 1p1 occurs in 4p1+1, 5p1+1, 6p1+1.

We follow these three words until just before the next σ′I : if there has been no σ′II , we have to
track 4p2 , 5p2 , 6p2; if there has been one σ′II , the words into which at least one of 4p1+1, 5p1+1, 6p1+1

occur are 2p2 , 3p2 , 4p2; if there have been two σ′II or more, these words are 2p2 , 3p2 , 4p2 , 5p2 , 6p2 .
So in the worst case we have to track either 2p2 , 3p2 , 4p2 or 4p2 , 5p2 , 6p2 . After the σ′I , these occur
either in 1p2+1, 2p2+1, 3p2+1 or in a larger set of words.

Again we follow these three words until just before the next σ′I : if there have been no σ′II , we
have to track 1p3 , 2p3 , 3p3; if there has been one σ′II , the words to track are 1p3 , 4p3 , 5p3 , 6p3 , 7p3 ,
8p3 , 9p3; if there have been two σ′II , these words are 1p3 , 2p3 , 3p3 , 4p3 , 7p3 , 8p3 , 9p3; if there have
been at least three σ′II , we have already won (in occurs in all the jp3).

1p3 , 4p3 , 5p3 , 6p3 , 7p3 , 8p3 , 9p3 after σ′I give 1p4 , 2p4 , 3p4 , 4p4 , 5p4 , 6p4 , 7p4 which are conserved
by any number of σ′II , and give every word after the next σ′I .
1p3 , 2p3 , 3p3 , 4p3 , 7p3 , 8p3 , 9p3 give everything after σ′I .
1p3 , 2p3 , 3p3 after σ′I give 1p4 , 4p4 , 5p4 , 6p4 , 7p4 , 8p4 , 9p4 (with which we win after another σ′I , as
just above), after one σ′II 1p4 , 2p4 , 3p4 , 4p4 , 7p4 , 8p4 , 9p4 which will give everything after σ′I , after
two σ′II everything.

Similar (shorter, as we can use what we already proved about 1n and successive others) chasing
arguments take care of the other in. �

4.2. Rokhlin towers.

Definition 4.1. In a system (X ′, U), a Rokhlin tower is a collection of disjoint measurable sets F ,
UF , . . . , Uh−1F (U jF is called level j of the tower, F is called the base, h the height of the tower).
A slice of τ is a union of consecutive levels UpF ... U qF , and a column of τ is made with levels G,
... Uh−1G for a subset G of F . We shall usually write “the tower τ” as a shortened form of “the
tower for which the union of the levels is the set τ”.
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Proposition 4.2. In an AR9 interval exchange (X9, T ), there are nine sequences of towers τi,k,
respectively of base Ii,k, and height equal to the length of the word ik, 1 ≤ i ≤ 9, k ≥ 0: every
point x in X9 is determined by the sequence ι(x, k), η(x, k) such that x is in T η(x,k)Iι(x,k),k, k ≥ 0.
This remains true if we restrict k to a subsequence, for example the mn. All levels of these towers
are intervals.

Proof
From the induction steps in Section 3.2, we deduce that the τi,k are indeed Rokhlin towers. The
union of all their levels for fixed k is X9, all these levels are intervals and their lengths are smaller
than ak, which tends to zero when k goes to infinity, hence the result. �

Figures 4, 5, 6 going from stage 0 to stage 1 show how the towers at order 1 are made from
the towers at order 0 by cutting and stacking: this cutting and stacking is done in the same way
from stage k to stage k + 1: it is dictated by the induction as above, and can be read on the rules
giving the words 1k+1 to 9k+1 as concatenations of the words 1k to 9k, which are deduced from the
substitutions σ′I to σ′III : for example, when rk+1 = I , σ′I is applied, and we deduce from 1 → 35
that 1k+1 = 3k5k, and the tower τ1,k+1 is made by a column of τ5,k stacked above a column of τ3,k.

Corollary 4.3. In (Y9, S), the τ ′i,k = ψ(τi,k), i = 1, ...9, form nine sequences of Rokhlin towers.
If D9 is the countable set defined in Remark 3.1, every point y in Y9 \ D9 is determined by the
sequences ι(y, k), η(y, k) such that y is in Sη(x,k)ψ(Iι(x,k),k), k ≥ 0.

In (X9, T ), there exist three sequences of Rokhlin towers τa,k, τb,k, τc,k, respectively of bases
Ja,k, Jb,k, Jc,k, and heights equal to ha,k, hb,k, hc,k, k ≥ 0, where Ja,k = I1,k ∪ I2,k ∪ I3,k ∪ I4,k,
Jb,k = I5,k ∪ I6,k ∪ I7,k, Jc,k = I8,k ∪ I9,k. The union of all their levels for fixed k is X9.

In the AR3 system (Y3, S), the τ ′j,k = φψ(τj,k), j = a, b, c, form three sequences of Rokhlin
towers; if D3 = φ(D9), every point x in Y3 \ D3 is determined by the sequences ι′(y, k), η(y, k)
such that y is in Sη(y,k)φψ(Jι′(y,k),k), k ≥ 0.

Proof
The first assertion comes from Proposition 4.2 translated by ψ to the symbolic system, the second
one from the definition of the Jj,k and the values of the heights, the third one from the first one
and the fact that for all k φ sends ψ(Ii,k) to ψ(Ja,k) if i = 1, 2, 3, 4, ψ(Jb,k) if i = 5, 6, 7, ψ(Jc,k)
ifi = 8, 9. and similarly for the other levels. �

Remark 4.1. We can also build directly (slightly) enlarged versions of the various towers τ ′ in the
symbolic systems: this is done in [11] for the τ ′j,k, j = a, b, c, by induction on cylinders which are
the closure of φψ(Ja,k) in the topology of the symbolic systems, and can be done in the same way
for the τ ′i,k, i = 1, ...9, by induction on unions of cylinders which are the closure of ψ(Ja,k). These
enlarged towers are closed and include also improper trajectories; but we do not need that for our
results, for which countable sets can be neglected, and in any case points of D3 must be taken into
account, see Remark 4.2 below.

The towers τ ′i,k, i = 1, ...9, can be built by cutting and stacking with the same rules as the τi,k.
The τj,k or τ ′j,k, j = a, b, c, can be built by cutting and stacking, using the concatenation rules
generating the words Ak to Ck, deduced from the substitutions σI to σIII ; we shall also use the
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multiplicative rules to build more quickly these towers at multiplicative times, as is shown in Fig-
ures 9 and 10 below.

Lemma 4.4. For every k, the sets T jI2,k and T jI3,k, 0 ≤ j ≤ ha,k − 1, resp. T jI5,k and T ji6,k,
0 ≤ j ≤ hb,k − 1, resp. T jI8,k and T ji9,k, 0 ≤ j ≤ hc,k − 1, are adjacent intervals.

Proof
We make the induction hypothesis that our result is true at order k and that T jI2,k, T jI5,k, r T jI8,k

are the leftmost of the respective two adjacent intervals when dk, ek, fk are not in a reversed order,
the rightmost if dk, ek, fk are in a reversed order.

This is true for k = 0, whatever the choice of d0, e0, f0. The induction step from k to k + 1
describes also the way the towers at order k + 1 are built from the towers at order k.

Take for example Case I when dk, ek, fk are not in a reversed order: the new tower 8 is made by
taking a right subinterval of the base I2,k of the old tower 2, and keeping the corresponding part of
all the levels of the old tower 2; the new tower 9 is made by taking a left subinterval of the base
I3,k of the old tower 3, and keeping the corresponding part of all the levels of the old tower 3. Thus
all corresponding levels of the new towers 8 and 9 are adjacent as those of the old towers 2 and 3
were, and the levels of the new tower 8 are to the left of those of the new tower 9.
The new tower 2 is made by taking a left subinterval of the base I4,k of the old tower 4, and keeping
the corresponding part of all the levels of the old tower 4, until the top; above that we stack a right
subinterval of I5,k, and the corresponding part of all the levels of the old tower 5. The new tower 3
is made by taking a right subinterval of I4,k, and keeping the corresponding part of all the levels of
the old tower 4, until the top; above that we stack I6,k, and all the levels of the old tower 6. Thus
all corresponding levels of the new towers 2 and 3 are adjacent as those of the old towers 5 and 6
were, while the levels of the old tower 4 are intervals, and the levels of the new tower 2 are to the
left of those of the new tower 3.
The new tower 6 is made by taking a right subinterval of I1,k, and keeping the corresponding part
of all the levels of the old tower 1, until the top; above that we stack a left subinterval of I9,k, and
the corresponding part of all the levels of the old tower 9. The new tower 5 is made by taking a
subinterval of I1,k just left of the previous one, and keeping the corresponding part of all the levels
of the old tower 1, until the top; above that we stack the subinterval I8,k, and all the levels of the
old tower 8. Thus all corresponding levels of the new towers 5 and 6 are adjacent as those of the
old towers 8 and 9 were, while the levels of the old tower 1 are intervals, and the levels of the new
tower 5 are to the left of those of the new tower 6.

The other cases are similar. �
An immediate consequence is best seen on Figure 8:

Corollary 4.5. Each level of the towers τc,k is an interval, each level of the towers τb,k is a union
of at most two intervals, each level of the towers τa,k is a union of at most three intervals.

Note that the Jj,k and their images are not intervals for j = a, b, except maybe for the first values
of k, with a suitable choice of d0, e0, f0, but even in that case, for example if they are in the first
order, Jb,0 is not an interval. Similarly, except maybe for the first values of k, the levels of the
towers τb,k are not intervals, the levels of the towers τa,k are not unions of less than three intervals.

4.3. Isomorphism.
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FIGURE 8. Rokhlin towers in X9

Definition 4.2. For i = 1, 2, 3, let Ei ⊂ Y3 be the set of points which have i pre-images under φ.

Proposition 4.6. Y3 \D3 ⊂ E1 ∪ E2 ∪ E3. E3 is countable. If µ(E1) < 1, then for any invariant
probability µ′ the system (Y9, S, µ

′) is a two-point extension of (Y3, S, µ)

Proof
The knowledge of a point y in Y3 determines the sequences ι′(y, k) in {a, b, c} and 0 ≤ η(y, k) ≤
hι′(y,k),k− 1 such that y is in Sη(y,k)φψJι′(y,k),k for all k. If y is not in D3, there exist points x ∈ X9

such that φψ(x) = y, and the pre-images of y by φ are of the form ψ(x); such an x must be in
T η(x,k)Iι(x,k),k were ι′(y, k) = φ(ι(x, k)). If there exist more than three such points x, two of them
must be infinitely often in one of the intervals of Figure 8 above, thus must be the same as the
intersection of infinitely many of these intervals defines at most one point. Thus we get our first
assertion.

By the same reasoning, if y ∈ Y3 \D3 is in τ ′c,k ∪ τ ′b,k for infinitely many k, then y is in E1 ∪E2.
Thus if y is in E3 \ D3, y is in τ ′a,k for all k ≥ k0. By the rules of construction by cutting and
stacking, this implies that for all k ≥ k0 η(y, k) takes the same value η0, thus any pre-image of y
by φψ is in ∩k≥k0T η0Ja,k. For η0 = 0, it is shown in [5] that this intersection consists indeed of
three distinct points, whose images by ψ are not in D6 and which have the same images by φψ,
thus E3 \ D3 consists of the union of the positive orbits of these three points, which proves our
second assertion.

Thus µ(E1 ∪ E2) = 1, and if µ(E1) < 1 the number of pre-images by φ is two on a set of
positive measure, thus almost everywhere by ergodicity, and this is our third assertion. �

Lemma 4.7. Let y be in Y3 \D3. If y is in τ ′c,k for infinitely many k, then y is in E1.

Proof
Under the hypothesis, as in the proof of Proposition 4.6, for infinitely many k all the pre-images of
y by φψ are in an interval, of length ck, thus the intersection of infinitely many of these intervals
defines at most one point. �
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Remark 4.2. If we enlarge the towers to cover all Y3 as in [11] and Remark 4.1 above, the gen-
eralization of Lemma 4.7 does not hold for y ∈ D3: indeed, the point x0 separating I8,0 from I9,0

defines one trajectory in ψ(X9) and one improper trajectory (as in Remark 3.1), and both these
trajectories have the same image y0 by φ, though we can check that, for example in the Tribonacci
case, y0 is in the enlarged τ ′c,k for infinitely many k. However, it is true that every point in Y3 has
at most three pre-images by φ, as the only candidates to have more are the points which are in the
enlarged τ ′a,k for all k ≥ k0, and their pre-images do not give rise to improper trajectories.

At this stage, one can ask whether the condition to be in τ ′c,k for infinitely many k is necessary
for y to be in E1. Hopefully, a necessary and sufficient condition will be given in a further paper,
but the following lemma gives already a negative answer for many systems including Tribonacci.

Lemma 4.8. Suppose that,
• (i) either for an infinite sequence sj , the sj + 2-th multiplicative rule is Im with ksj+2 = 1,
• (ii) or for an infinite sequence sj the sj + 2-th multiplicative rules is Im and the sj + 1-th

multiplicative rule is IIm with ksj+1 = 1.
Let y be in Y3 \D3. If we are in case (i) and for infinitely many j y is in τ ′b,msj+1

∩ τ ′b,msj+3
, or if

we are in case (ii) and for infinitely many j y is in τ ′b,msj
∩ τ ′b,msj+3

, then y is in E1.

Proof
A pre-image x of y by φ s in τ ′5,msj+3

, τ ′6,msj+3
, or τ ′7,msj+3

.
Going from msj+2 to msj+3, we have a number (possibly zero) of σ′III followed by a σ′I or σ′II .
• Suppose this last substitution is σ′II : the construction of the towers by σ′II implies that x is

in τ ′1,msj+3−1, τ ′2,msj+3−1, or τ ′3,msj+3−1; then either the absence of σ′III or the construction of
the towers by σ′III imply that x is in τ ′1,p, τ

′
2,p or τ ′3,p at all stages msj+2 ≤ p ≤,msj+3 − 1.

• Suppose now this substitution is σ′I : the construction of the towers by σ′I implies that x is
in τ ′1,msj+3−1, τ ′2,msj+3−1, τ ′8,msj+3−1 or τ ′9,msj+3−1. In the last two cases, x is in τ ′c,msj+3−1

and if this happens infinitely often we conclude by Lemma 4.7 that y is in E1. Otherwise,
either the absence of σ′III or the construction of the towers by σ′III imply that x is in τ ′1,p or
τ ′2,p at all stages msj+2 ≤ p ≤ msj+3 − 1.

Thus in both remaining cases x is in τ ′1,msj+2
, τ ′2,msj+2

, or τ ′3,msj+2
.

Going from msj+1 to msj+2, we have a number of σ′III followed by a σ′I ; the construction of the
towers by σ′I implies that x is in τ ′3,msj+2−1, τ ′4,msj+2−1, τ ′5,msj+2−1, or τ ′6,msj+2−1. We are in the last
two cases whenever x is in τ ′b,msj+2−1, and then the knowledge of its level in that tower puts x in
a single level of τ ′5,msj+2−1 ∪ τ ′6,msj+2−1, which puts the possible pre-images of y by φψ in a small
interval by Lemma 4.4; if this happens infinitely often we conclude as in Lemma 4.7 that y is in
E1. Otherwise, either the absence of σ′III or the construction of the towers by σ′III imply that x is
in τ ′3,p or τ ′4,p at all stages msj+1 ≤ p ≤,msj+2 − 1: this is excluded by the hypotheses in case (i),
thus our result in proved in that case.

Finally, in case (ii), going from msj to msj+1 by a single σ′II and knowing y is in τ ′b,msj
, we get

that x must be in τ ′5,msj
, and the knowledge of its level in τ ′b,msj

puts the possible pre-images of y
by φψ in a small interval, thus we conclude as in Lemma 4.7. �

Note that Lemma 4.8 gives only sufficient conditions, the same reasoning can produce many
others. It will not be used further, as Lemma 4.7 is enough to prove
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FIGURE 9. Cutting and stacking Im

Proposition 4.9. Let

• ξn = 1
kn+2

if the n+ 1-th multiplicative rule is of type Im and kn+1 ≥ 2,
• ξn = 1

3lkn+2...kn+l+1
if the n+ 1-th multiplicative rule is of type Im with kn+1 = 1 or of type

IIm, and the next multiplicative rule of type Im is the n+ l-th, l ≥ 2.

Suppose
∑
ξn = +∞. Let Z be the set of y in Y3, such that y is not in τ ′c,k for all k large enough.

Then µ(Z) = 0 for the unique invariant measure µ.

Proof
We fix a multiplicative timemn0 , and for n ≥ n0 we defineZn to be the set of y which are not in τ ′c,k
for all mn0 ≤ k ≤ mn, n ≥ n0, and Vn such that Zn \ Vn = Zn+1. We have Zn0 = τ ′a,mn0

∪ τ ′b,mn0
.

At each additive time mn ≤ k < mn+1, the new tower τ ′c,k+1 is made with τ ′c,k stacked above
one column of τ ′a,k; τ

′
c,mn+1−1 is made with τ ′c,mn

stacked above kn+1 − 1 columns of τ ′a,mn
; then,

if the n + 1-th multiplicative rule is of type IIm, τ ′c,mn+1
is made with τ ′c,mn

stacked above kn+1

columns of τ ′a,mn
; if the n + 1-th multiplicative rule is of type Im, τ ′c,mn+1

is made with the last
remaining column of τ ′a,mn

. Then Vn is made either with kn+1 − 1 columns of τ ′a,mn
stacked above

τ ′c,mn
plus the last column of τ ′a,mn

, or with kn+1− 1 columns of τ ′a,mn
stacked above τ ′c,mn

. In both
cases, Vn is a union of slices of τ ′a,mn+1

and τ ′c,mn+1
.

Assume, as is true for n = n0, that Zn is a union of slices of τ ′a,mn
and τ ′b,mn

; then Zn is also a
union of slices of τ ′a,mn+1

and τ ′b,mn+1
, and thus so is Zn+1.

In all cases, Zn+1∩τ ′a,mn+1
is made with all Zn∩τ ′b,mn

and the intersection of Zn∩τ ′a,mn
, with kn+1

columns of τ ′a,mn
whose levels have measure amn+1 . Zn+1∩τ ′b,mn+1

is the intersection of Zn∩τ ′a,mn

with one column of τ ′a,mn
whose levels have measure bmn+1 . Thus we have always, for n ≥ n0 + 1,

µ(Zn ∩ τ ′a,mn
) ≥ µ(Zn ∩ τ ′b,mn

).

Figures 9 and 10 give a schematic view (note that the levels of the towers are not intervals, even
when carried to (X9, T ), see Figure 8 above) of what is used in the proof. The crossed parts form
Vn, which has been deleted from Zn to get Zn+1; the τ ′c,mn

, crossed by dashed lines, have been
deleted at an earlier stage.
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FIGURE 10. Cutting and stacking IIm

We want now to estimate the measure of Vn.

We suppose first that the n+ 1-th multiplicative rule is of type Im. If kn+1 ≥ 2, Vn is a slice of
τ ′b,mn+1

of height (kn+1 − 1)ha,mn . If kn+1 = 1, Vn is τ ′c,mn+1
.

Suppose kn+1 ≥ 2. Then we need to estimate µ(τ ′b,mn+1
); we notice that µ(τ ′a,mn+2

) ≥ 1
5
, because

this tower is wider than the two others, and at least half as high by the estimate at the end of Section
2.2. τ ′b,mn+1

, is a slice of τ ′a,mn+2
of height hb,mn+1 , while ha,mn+2 = kn+2ha,mn+1 + hb,mn+1 . From

hb,mn+1 = kn+1ha,mn + hc,mn , ha,mn+1 = kn+1ha,mn + hb,mn , we get hb,mn+1 ≥
kn+1

kn+1+2
ha,mn+1 ≥

1
2
ha,mn+1 , and µ(τ ′b,mn+1

) ≥ 1
10(kn+2+2)

. Now Vn is a slice of τ ′b,mn+1
of relative height at least

kn+1−1
kn+1+2

≥ 1
3
, and we get µ(Vn) ≥ 1

30(kn+2+2)
.

If kn+1 = 1, we take first l = 2: the n + 2-th multiplicative rule is also of type 1m. Then
τ ′c,mn+1

, is a slice of τ ′b,mn+2
of height hc,mn+1 , while hb,mn+2 = kn+2ha,mn+1 + hc,mn+1 . We have

ha,mn+1 = ha,mn + hb,mn , hc,mn+1 = ha,mn , thus hc,mn+1 ≥ 1
3
ha,mn+1 , thus we get µ(τ ′c,mn+1

) ≥
1

3(kn+2+2)
µ(τ ′b,mn+2

). Then µ(τ ′b,mn+2
) is estimated just as µ(τ ′b,mn+1

) in the case above, with the
only difference that kn+2 may be equal to one: we get it is at least 1

15(kn+3+2)
, and thus µ(Vn) ≥

1
45(kn+2+2)(kn+3+2)

.
For larger values of l we iterate this method, looking at τ ′c,mn+1

, inside ... inside τ ′c,mn+l−1
, inside

τ ′b,mn+l
,inside τ ′a,mn+l+1

, Estimating the measures gives us first constants 1
kn+2+2

... 1
kn+l+1+2

, but
depend also on the comparison of successive heights of towers, which brings constants 3.

If the n+1-th multiplicative rule is of type IIm, Vn is a slice of τ ′c,mn+1
of height at least 1

3
hc,mn+1

and we estimate its measure in the same way.

In all cases Vn is a union of columns of τ ′a,mn
while Zn ∩ τ ′a,mn

is a union of slices of τ ′a,mn
,

thus they are independent sets, hence µ(Vn ∩Zn) ≥ µ(Zn ∩ τ ′a,mn
∩ Vn) = µ(Vn)µ(Zn ∩ τ ′a,mn

) ≥
1
2
µ(Vn)µ(Zn), and µ(Zn+1) ≤ µ(Zn)(1− 1

2
µ(Vn)), which yields the conclusion. �

Note that Proposition 4.9 is intended as a sufficient condition; the first set of values of ξn takes
care of almost all the Arnoux-Rauzy systems, see Theorem 4.11 below; the second set takes care
of the Tribonacci case, for which the resulting Theorem 4.10 is claimed, though not proved, in [3],
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and completes taking care of all Arnoux-Rauzy systems where the kn are bounded, (in [9] these are
said to have bounded weak partial quotients), which include the substitutive AR9 or AR3 symbolic
systems.

We turn now to the isomorphism problem: as E3 is nonempty, the best we can hope is to replace
the semi-conjugacies in Section 3.4 by measure-theoretic isomorphisms.

Theorem 4.10. Under the hypothesis of Proposition 4.9, an AR9 or AR6 symbolic system or inter-
val exchange is uniquely ergodic and measure-theoretically isomorphic to its AR3 coding.

Proof
Then, by Proposition 4.9 and Lemma 4.7 φ is invertible almost everywhere. Thus φ provides
a measure-theoretic isomorphism between (Y3, S, µ) and (Y9, S, µ

′) for any normalized invariant
measure µ′. Such an invariant measure µ′ can be defined also on (X9, T ) as ψ is invertible almost
everywhere, and ψ provides a measure-theoretic isomorphism between (X9, T, µ

′) and (Y9, S, µ
′).

In particular, any such measure µ′ has to be ergodic, hence the unique ergodicity. The results ex-
tend then to the intermediate coding (Y6, S, µ

′) and to its geometric model (X6, T, µ
′). �

Definition 4.3. As in [9], we consider measures on all infinite sequences of symbols I , II , III
and take any shift invariant ergodic probability measure ν which assigns positive measure to each
cylinder; by identifying an AR3, AR6, or AR9 system with its defining sequence (rn), we can define
ν on the set of all AR3, AR6, or AR9 systems.

In particular, one of these possible measures ν coincides with the measure of maximal entropy
for the suspension flow of the Rauzy gasket built in [7], see also [8].

Theorem 4.11. The hypothesis of Proposition 4.9 is satisfied by ν-almost every AR3, AR6, or AR9
system.

Proof
This hypothesis is satisfied in particular if for infinitely many n we have kn+1 = 2 and kn+2 = 1,
which is satisfied in particular if for infinitely many p we have rp = I , rp+1 = rp+2 = III ,
rp+3 = rp+4 = I . As this cylinder has positive measure and ν is ergodic, this is true for ν-almost
every sequence (rn). �

4.4. Non unique ergodicity.

Theorem 4.12. If
∑+∞

n=1
1
kn
< +∞, each corresponding AR9 or AR6 symbolic system or interval

exchange is not uniquely ergodic; it has two ergodic invariant measures; it is measure-theoretically
isomorphic to its AR3 coding if and only if it is equipped with an ergodic measure,

Proof
Let µ′ be any normalized invariant measure on (Y9, S). We first show that at multiplicative times
all towers have very small measure except τ ′1,mn

and τ ′4,mn
.

Indeed, from the multiplicative rules of Section 2.2 we get that τ ′b,mn
is a slice of τ ′a,mn+1

of
height hb,mn , hence µ(τ ′b,mn

) ≤ 2
kn+1−1

, while τ ′c,mn
is a slice of either τ ′b,mn+1

or τ ′c,mn+1
, of

height hc,mn , hence µ(τ ′c,mn
) ≤ 2

kn+1−1
; and µ′(τ ′i,mn

) ≤ µ′(ψτb,mn) = µ(τ ′b,mn
) for i = 5, 6, 7,

µ′(τ ′i,mn
) ≤ µ′(ψτc,mn) = µ(τ ′c,mn

) for i = 8, 9.
Now, from the multiplicative rules at the end of Section 3.3 we get that τ ′2,mn

is either τ ′6,mn+1
or



20 P. ARNOUX, J. CASSAIGNE, S. FERENCZI, AND P. HUBERT

the union of τ ′8,mn+1
with a slice of τ ′7,mn+1

, thus µ′(τ ′2,mn
) ≤ 4

kn+2−1
. Finally τ ′3,mn

is either the
union of τ ′9,mn+1

with a slice of τ ′1,mn+1
of relative height at most 1

kn+1−1
, or the union of τ ′5,mn+1

with a slice of τ ′4,mn+1
of relative height at most 1

kn+1−1
: in both cases µ′(τ ′3,mn

) ≤ 3
kn+1−1

.

Thus, the condition
∑+∞

n=1
1
kn

< +∞ implies that for any invariant measure µ′, the system
(Y9, S, µ

′) is such that µ′-almost every point y in Y9 is determined by the sequences ι”(y, k), η(y, k)
such that y is in level η(y, k) of the tower τ ′ι”(y,k),k, ι”(y, k) ∈ {1, 4}. We say that (Y9, S, µ

′) is
generated by two sequences of towers, and such a measure-theoretic system is said to be a system
of rank (at most) two; by a classical result for which we refer the reader to [13], (Y9, S), which is
of rank at most two for any invariant measure, has as at most two ergodic invariant measures.

At multiplicative times, we define recursively (τ ′1̄,mn
, τ ′4̄,mn

) = el(τ ′1,mn
, τ ′4,mn

) if l is the total
number of rules Im (strictly) before the n-th multiplicative rule and e is the exchange. Then for
each n, τ ′1̄,mn

makes all but a very small part of τ ′1̄,mn+1
, τ ′4̄,mn

makes all but a very small part of
τ ′4̄,mn+1

, and all the other τ ′i,mn
, i 6= 1, 4 have very small measure.

We define a new symbolic system (X̄, T̄ , µ̄) on the alphabet {a, s} by the words D0 = a,
Dn+1 = sha,mnDkn+1−1

n shb,mn . By a standard argument, see [13], we can build towers τ̄ ′n in X̄ ,
τ̄ ′n+1 being obtained from τ̄ ′n by cutting it into kn+1 − 1 equal columns, stacking them above each
other, stacking below them ha,mn new levels called spacers, and stacking above them hb,mn new
levels called spacers; almost every point x in X̄ is determined by the sequence η′(x, n) such that y
is in level η′(x, n) of the tower τ̄ ′n. (X̄, T̄ , µ̄) is a system of rank one, as it can be generated by a
single family of towers.

As is explained in more details in [1], we can build an application φ1 from X̄ to Y9 by sending
the j-th level of the tower τ̄ ′n to the j-th level of the tower τ ′1̄,mn

: it is consistent, defined almost
everywhere and one-to-one. By taking the image of µ̄ by φ1, we build a measure-theoretic isomor-
phism between the rank one system (X̄, T̄ , µ̄) and (Y9, S) equipped with some invariant probability
measure µ1; µ1 is ergodic as µ̄ is. We do the same for another application φ4, which sends the j-th
level of τ̄ ′n to the j-th level of τ ′4̄,mn

. defining an ergodic µ4. Now, µ1(τ ′1̄,mn
) and µ4(τ ′4̄,mn

) are
close to 1, µ1(τ ′4̄,mn

) and µ4(τ ′1̄,mn
) are close to 0 for n large enough, thus there exists n for which

µ1(τ ′1̄,mn
) 6= µ4(τ ′1̄,mn

), thus µ1 6= µ4 on (Y9, S).

The results extend immediately to (X9, T ), and to the AR6 systems, to which we carry µ1 and µ4.

Now, the AR3 coding (Y3, S, µ) is also a system of rank one, generated by the towers τ ′a,mn
.

These towers are built in the same way as the τ̄ ′n, as replacing a small part of τ ′a,mn
by spacers does

not change the system, thus as in [1] (Y3, S, , µ) is measure-theoretically isomorphic to (X̄, T̄ , µ̄),
thus to both (Y9, S, µ1) and (Y9, S, µ4); but it cannot be measure-theoretically isomorphic to a
non-ergodic (Y9, S, µ

′). And the same reasoning holds for the others AR9 or AR6 systems consid-
ered. �

Note that in the only family of counter-examples we have, the two-point extension of Proposition
4.6 is rather degenerate, being ergodic only when the measure is concentrated on one copy of the
factor.



AR IET 21

5. WEAK MIXING

Definition 5.1. If (X ′, U, µ0) is a finite measure-preserving dynamical system, a real number
0 ≤ θ < 1 is a measurable eigenvalue (denoted additively) if there exists a non-constant f in
L1(X ′,R/Z) such that f ◦ U = f + θ (in L1(X ′,R/Z)); f is then an eigenfunction for the eigen-
value θ.

As constants are not eigenfunctions, θ = 0 is not an eigenvalue if U is ergodic.
(X ′, U, µ0) is weakly mixing if it has no measurable eigenvalue.

The existence of weak mixing for AR3 systems, proved in [11], came as a surprise; this existence
persists for AR9 (and AR6) systems, because under the hypothesis

∑+∞
n=1

1
kn
< +∞, by Theorem

4.12 above the AR9 or AR6 system equipped with one of its ergodic measures is isomorphic to its
AR3 coding, while by Theorem 2 of [11] this AR3 system is weakly mixing. The sufficient condi-
tion given in [11] for weak mixing of AR3 systems is weaker than the condition

∑+∞
n=1

1
kn
< +∞:

we shall show now that under this sufficient conditions the AR9 systems are also weakly mixing,
for any ergodic invariant measure. But indeed this raises more questions than gives answers, as we
shall see in the discussion below.

Proposition 5.1. An ergodic AR9 or AR6 system is weakly mixing if
• kni+2 is unbounded,
•

+∞∑
i=1

1

kni+1

< +∞,

•
+∞∑
i=1

1

kni

< +∞,

where the ni are the n ≥ 1 for which the n-th multiplicative rule is of type Im.

Proof
The only difference between the present proof and the proof in [11] is in the beginning. Namely,
to prove Proposition 10 of [11], we use the fact that when we move by Sha,mn inside a substantial
slice of τ ′a,mn+1

, we arrive at the same level in τ ′a,mn
; here we need the stronger result that for all

i = 1, 2, 3, 4, when we move by Sha,mn inside a substantial slice of τ ′i,mn+1
, we arrive at the same

level in some τ ′j,mn
. This in turn involves some technical difficulties when kn+1 is small, obligeing

us to use our hypotheses on the kn at that stage, which was not recessary in [11]. Thus Proposition
10 of [11] is replaced by

Lemma 5.2. If θ is a measurable eigenvalue for an AR9 symbolic system (Y9, S, µ
′) satisfying

the hypotheses of Proposition 5.1, kn+1||ha,mnθ|| → 0 when n → +∞, where || || denotes the
distance to the nearest integer.

Proof
Let f be an eigenfunction for the eigenvalue θ; for each ε > 0 there exists N(ε) such that for all
n > N(ε) there exists fn, which satisfies

∫
||f − fn||dµ < ε and is constant on each level of each

tower τ ′i,mn−2
, τ ′i,mn−1

, and τ ′i,mn
, i = 1, ...9.

Suppose first kn+1 ≥ 3. Let j be any integer with 0 ≤ j ≤
[
kn+1−1

2

]
.
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Suppose for example the n + 1-th multiplicative rule is of type Im; we have the concatenation
rule 1mn+1 = 3mn4kn+1−1

mn
5mn . Let τ ′′n be the slice of τ ′1,mn+1

consisting of levels from ha,mn to
ha,mn + [kn+1−1

2
]ha,mn − 1; it has relative height at least 1

5
.

By construction, for any point x in τ ′′n , Sjha,mnx is in the tower τ ′1,mn+1
, and in the same level of

the tower τ ′4,mn
as x. Thus for µ′-almost every x ∈ τ ′′n , fn(Sjha,mnx) = fn(x) while f(Sjha,mnx) =

θjha,mn + f(x); we have∫
τ ′′n

||fn ◦ Sjha,mn − jθha,mn − fn||dµ′ =
∫
τ ′′n

||jθha,mn||dµ′ = ||jθha,mn ||µ(τ ′′n)

and∫
τ ′′n

||fn◦Sjha,mn−jθha,mn−fn||dµ′ ≤
∫
τ ′′n

||fn◦Sjha,mn−f ◦Sjha,mn ||dµ′+
∫
τ ′′n

||fn−f ||dµ′ < 2ε.

Thus we get ||jθha,mn||µ′(τ ′1,mn+1
) < 10ε, for n > N(ε) and any integer 0 ≤ j ≤

[
kn+1−1

2

]
.

The same result holds when the n + 1-th multiplicative rule is of type IIm, with concatenation
rule 1mn+1 = 1kn+1

mn
7mn: just τ ′1,mn

replaces τ ′4,mn
. And the same construction, mutatis mutandis,

works with τ ′1,mn+1
replaced by τ ′i,mn+1

, i = 2, 3, 4. Summing the four inequalities and taking into

account that
∑4

i=1 µ
′(τ ′i,mn+1

) = µ(τ ′a,mn+1
) ≥ 1

5
, we get ||jθha,mn|| < 50ε for 0 ≤ j ≤

[
kn+1−1

2

]
,

hence ||jθha,mn|| < 200ε for 0 ≤ j ≤ kn+1.
We continue exactly as in [11]. Let ε < 1

1000
, and suppose ||kn+1θha,mn|| 6= kn+1||θha,mn||:

let i be the smallest 0 ≤ j ≤ kn+1 such that ||jθha,mn|| 6= j||θha,mn||, then i ≥ 2 and ||(i −
1)θha,mn|| = (i−1)||θha,mn||, thus i||θha,mn|| = (i−1)||θha,mn||+||θha,mn|| = ||(i−1)θha,mn||+
||θha,mn|| < 400ε < 1

2
thus ||iθha,mn|| = ||(i||θha,mn||)|| = i||θha,mn||, contradiction. Thus we

get kn+1||θhn−1|| < 200ε for n > N(ε).

Suppose now kn+1 = 2; then, except maybe for a finite number of values of n, the hypothe-
ses imply that the n-the multiplicative rule is of type IIm. Note also that we need only to prove
||θha,mn|| < Cε. For concatenation rules such as 1mn+1 = 12

mn
7mn , we see that S iterated by the

length of 1mn , namely ha,mn , sends to itself each level of τ ′1,mn
if we start from the first slice τ ′1,mn

in τ ′1,mn+1
, whose height is comparable (by some constant) to the height of τ ′1,mn+1

, thus we can
write the reasoning which leads to ||θha,mn||µ′(τ ′1,mn+1

) < Cε.
If there is no square in the concatenation rule, its right member is 3mn4mn5mn , which is equal to
4knmn−1

5mn−13mn−14
kn−1
mn−1

5mn−13mn−1; if kn ≥ 2 we iterate S by the length of 4knmn−1
5mn−1 , which is

ha,mn , starting from the 4kn−1
mn−1

, at the end of 4knmn−1
; if kn = 1 we use the length of 3mn−15mn−1 ,

which is ha,mn , starting from the first 3mn−1 . In both cases, the iteration of S by the chosen quan-
tity will send levels of some τ ′i,mn−1

to themselves, thus our choice of fn allows to write the usual
reasoning, and to complete the case kn+1 = 2.

Suppose kn+1 = kn = 1.Then, again for n large enough, the n-th and n − 1-th multiplicative
rules are of type IIm. The concatenations we look for are 1mn7mn = 1mn−17mn−11mn−1 , 4mn5mn =
3mn−15mn−13mn−1 , 3mn5mn = 4mn−15mn−13mn−1 ,4mn6mn = 3mn−15mn−12mn−1 , In the first one,
ha,mn , which is the length of 1mn−17mn−1 , can be used to iterate S starting from the first 1mn−1 , and
similarly in the second one. The last ones are equal to 3mn−24

kn−1−1
mn−2

5mn−23mn−24
kn−1
mn−2

5mn−2 and
4kn−1−
mn−2

5mn−23mn−24
kn−1
mn−2

6mn−2: in both cases ha,mn , which is the length of 4kn−1−
mn−2

5mn−23mn−2 , can
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be used to iterate S starting from a sizeable slice of the tower.

Suppose kn+1 = 1 but kn ≥ 2. Then ha,mn = ha,mn+1 − ha,mn−1 . We have ||θha,mn−1|| < Cε
because kn ≥ 2, and ||θha,mn+1|| < Cε either because kn+2 ≥ 2 or because kn+1 = kn+2 = 1, thus
we conclude. �

Then the (nontrivial!) Sections 3 and 4 of [11] prove that, under the hypotheses of Proposition
5.1, the condition kn+1||ha,mnθ|| → 0 gives no possible θ except θ = 0, which is excluded because
of the ergodicity of the system. The same reasoning applies to the other AR9 or AR6 systems. �

We do not know whether this sufficient condition gives interesting new examples; it might help
to find a weakly mixing AR9 system for which µ(E1) = 1 in the AR3 coding, but this we were not
able to achieve. Indeed, starting from Lemma 4.7 as in Section 4.3, we are able to build such AR9
systems under the condition

∑+∞
i=1

1
kni+1

= +∞. while
∑+∞

i=1
1
kni

may be finite; we could also get
these conditions by starting from Lemma 4.8 and imitating the proof of Proposition 4.9; this falls
short of being compatible with the conditions of Proposition 5.1. Indeed, we conjecture that these
conditions are not compatible with µ(E1) = 1, and not even with unique ergodicity; whether these
conditions are necessary for weak mixing is not known either. It would be also very interesting to
find a uniquely ergodic weakly mixing AR9, or a weakly mixing AR9 which is not isomorphic to
its AR3 coding.
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