CONSTRUCTIVE SYMBOLIC PRESENTATIONS OF RANK ONE MEASURE-PRESERVING SYSTEMS

Terrence Adams, Sébastien Ferenczi, Karl Petersen

- To cite this version:

Terrence Adams, Sébastien Ferenczi, Karl Petersen. CONSTRUCTIVE SYMBOLIC PRESENTATIONS OF RANK ONE MEASURE-PRESERVING SYSTEMS. Colloquium Mathematicum, 2017, 150, pp.243-255. hal-02120135

HAL Id: hal-02120135
https://hal.science/hal-02120135
Submitted on 5 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CONSTRUCTIVE SYMBOLIC PRESENTATIONS OF RANK ONE MEASURE-PRESERVING SYSTEMS

TERRENCE ADAMS
U.S. Government, 9800 Savage Rd, Ft. Meade, MD 20755 USA
\section*{SÉBASTIEN FERENCZI}
Aix Marseille Université, CNRS, Centrale Marseille, Institut de Mathématiques de Marseille, I2M - UMR 7373, F13288 Marseille, France

KARL PETERSEN
Department of Mathematics, CB 3250 Phillips Hall, University of North Carolina, Chapel Hill, NC 27599 USA

Abstract

Given a rank one measure-preserving system defined by cutting and stacking with spacers, we produce a rank one binary sequence such that its orbit closure under the shift transformation, with its unique nonatomic invariant probability, is isomorphic to the given system. In particular, the classical dyadic odometer is presented in terms of a recursive sequence of blocks on the two-symbol alphabet $\{0,1\}$. The construction is accomplished using a definition of rank one in the setting of adic, or Bratteli-Vershik, systems.

1. Introduction

Rank one measure-preserving systems were introduced in [1] and got their present name in $\sqrt{17]}$; they have been extensively studied, including recent developments such as $[2,3,12,14]$. The survey [8] tried to collate the various definitions of rank one, but it has two shortcomings: first, it ignores the theory of adic systems (see for example [18], and, for background, $[6])$, though rank one systems have a particularly simple and useful adic presentation (which, to our knowledge, has never appeared in print). Then, the nicest

[^0](and most used in recent papers) definition of rank one, called the constructive symbolic definition in the survey, was not known at the time to be equivalent to the others, as the odometers, which are rank one systems by all the other definitions, do not satisfy it (see the discussion in Section 3 below).

The present note aims to fill both of these gaps, by giving one more definition of rank one systems, the adic definition, and then by using it to show that any rank one system is measure-theoretically isomorphic to a rank one system with an extra property we call essential expansiveness, which in turn implies that it satisfies the constructive symbolic definition.

Rank one systems, as described in Definition 2.1 below, were modified, in a different context, by the second author in [9, Theorem 6.3] and [10, Theorem 4.8], by replacing, at suitably rare steps n, a relatively small number of n-towers by stacks of spacers of the same height, and this technique may well have been known before. In 2013 the use of this kind of construction to give a symbolic constructive model in the particular case of odometers was discussed by the second author with Aaron Hill, but nothing was written. In [2, Remark 2.10] it is stated that each rank one system is isomorphic to one with $a_{n, q_{n}-1}>0$ for infinitely many n. Indeed, combining the proof of [2, Theorem 2.8] with [4] and [16, Appendix], one may produce an isomorphism with a constructive symbolic rank one system. Here, we show explicitly how to build for each rank one \mathbb{Z}-action an isomorphic system that is essentially expansive, i.e., satisfies the constructive symbolic definition of rank one. Our new system will satisfy the hypothesis of Proposition 5.2, a stronger condition than the one in [2, Remark 2.10].
Acknowledgment. This project was advanced through conversations between TA and KP at the April 2016 University of Maryland-Penn State Workshop on Dynamical Systems and Related Topics and between SF and KP at the May 2016 Cieplice Conference on New Developments Around the x2 x3 Conjecture and Other Classical Problems in Ergodic Theory. We thank the organizers and supporting institutions of those meetings for providing these opportunities for collaboration. We also thank A. Hill for conversations on this topic, A. Danilenko for bringing our attention to [2] and quoting our main result, with a new proof, in [3], and the referee for a careful reading.

2. GEOMETRIC AND SYMBOLIC DEFINITIONS

Henceforth we take as definition of a rank one system the constructive geometric definition of [8]; note that the property of being rank one is invariant under measure-theoretic isomorphism; indeed, it is equivalent to building our system on the unit interval by cutting and stacking in a certain way, and allowing such isomorphisms. By a measurepreserving system we mean a nonatomic Lebesgue probability space together with an invertible measure-preserving transformation.
Definition 2.1. A measure-preserving system (X, \mathcal{A}, T, μ) is rank one if there exist sequences of positive integers $q_{n}, n \in \mathbb{N} \cup\{0\}$, with $q_{n}>1$ for infinitely many n, and $a_{n, i}, n \in \mathbb{N} \cup\{0\}, 0 \leq i \leq q_{n}-1$, such that, if h_{n} are defined by

$$
\begin{equation*}
h_{0}=1, h_{n+1}=q_{n} h_{n}+\sum_{j=0}^{q_{n}-1} a_{n, i}, \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\left.\sum_{n=0}^{\infty} \frac{h_{n+1}-q_{n} h_{n}}{h_{n+1}}=\sum_{n=0}^{\infty} \frac{\sum_{i=0}^{q_{n}-1} a_{n, i}}{h_{n+1}}<\infty \quad \text { (equivalently } \sum_{n=0}^{\infty} \frac{\sum_{i=0}^{q_{n}-1} a_{n, i}}{q_{n} h_{n}}<\infty\right) \tag{2.2}
\end{equation*}
$$

and subsets of X, denoted by $F_{n}, n \in \mathbb{N} \cup\{0\}, F_{n, i}, n \in \mathbb{N}, 0 \leq i \leq q_{n}-1$, and $S_{n, i, j}, n \in$ $\mathbb{N}, 0 \leq i \leq q_{n}-1,0 \leq j \leq a_{n, i}-1$, (if $a_{n, i}=0$ there are no $S_{n, i, j}$), such that for all n

- $\left(F_{n, i}, 0 \leq i \leq q_{n}-1\right)$ is a partition of F_{n},
- the $T^{k} F_{n}, 0 \leq k \leq h_{n}-1$, are disjoint,
- $T^{h_{n}} F_{n, i}=S_{n, i, 1}$ if $a_{n, i} \neq 0$,
- $T^{h_{n}} F_{n, i}=F_{n, i+1}$ if $a_{n, i}=0$ and $i<q_{n}-1$,
- $T S_{n, i, j}=S_{n, i, j+1}$ if $j<a_{n, i}-1$,
- $T S_{n, i, a_{n, i}-1}=F_{n, i+1}$ if $i<q_{n}-1$,
- $F_{n+1}=F_{n, 0}$,
and the partitions $P_{n}=\left\{F_{n}, T F_{n}, \ldots, T^{h_{n}-1} F_{n}, X \backslash \cup_{k=0}^{h_{n}-1} T^{k} F_{n}\right\}$ are increasing to \mathcal{A}.
The parameters q_{n} and $a_{n, i}$ determine the transformation T up to a set of measure 0 , but of course for a given T several sets of parameters are possible (this is the point of the whole paper). The sets $T^{k} F_{n}, 0 \leq k \leq h_{n}-1$, are called the levels of the n-towers (or stacks). The sets $S_{n, i, j}, 0 \leq i \leq q_{n}-1,0 \leq j \leq a_{n, i}-1$ are the n-spacer levels.

Note that if we had $q_{n}=1$ ultimately, then because of the condition on h_{n} we should have also $a_{n, 0}=0$ for all n large enough, and then T would not be defined almost everywhere.

This construction determines naturally an associated constructive symbolic definition.
Definition 2.2. A system is constructive symbolic rank one if it consists of the shift on the orbit closure of the sequence u defined as follows, with its unique nonatomic invariant measure. For each $n=0,1, \ldots$ the initial n-block of u is B_{n}. The blocks B_{n} are defined recursively by concatenation:

$$
\begin{equation*}
B_{0}=0, B_{n+1}=B_{n} 1^{a_{n, 0}} B_{n} \ldots B_{n} 1^{a_{n, q_{n}-1}} \text { for } n \geq 0 \tag{2.3}
\end{equation*}
$$

The parameters $a_{n, i}$ are as in Definition 2.1 and are assumed to satisfy (2.1) and 2.2).
The symbols 1 , corresponding to spacer levels, are called spacers.

3. Odometers

The classical dyadic odometer, also called the von Neumann-Kakutani adding machine, can be defined by the constructive geometric definition as a rank one system with $q_{n}=2$ for all n, and $a_{n, i}=0$ for all n and i; but then the blocks B_{n} on the alphabet $\{0,1\}$ defined recursively by $B_{0}=0, B_{n+1}=B_{n} B_{n}$ lead to a trivial one-point symbolic dynamical system, while the phase space of the dyadic odometer is the unit interval. Thus this set of parameters q_{n} and $a_{n, i}$ do not provide a symbolic constructive definition of the odometer; in [8, p. 15] and [11, p. 124] it is stated that the dyadic odometer is not known to be rank one by the constructive symbolic definition.

Note that there exists a symbolic model for the dyadic odometer: namely, the shift on the orbit closure of the fixed point u of the substitution σ defined by $0 \rightarrow 01,1 \rightarrow 00$ (a Toeplitz sequence, called the period-doubling sequence and constructed by Garcia and Hedlund [15]) is measure-theoretically isomorphic to the dyadic odometer. As an aside, we show we cannot use it to find a constructive symbolic definition for this rank one system:

Proposition 3.1. No sequence x in the orbit closure of u can be built by blocks B_{n} as in Definition 2.2.

Proof. Any sequence x in the orbit closure of u is the concatenation of the blocks 0100 and 0101. Therefore spaces between appearances of 0100 in x are multiples of 4 (there is no appearance of 0100 across a juncture of 0100 and 0101). Suppose $x=B 1^{s_{0}} B 1^{s_{1}} B \ldots$, where B is some block in a supposed constructive symbolic rank one construction of x that is long enough to contain 0100 , and B starts and ends with the symbol 0 . The s_{i} are bounded because the sequence has minimal orbit closure. The sequence x does not contain the block 11 , so each s_{i} is 0 or 1 . If both 0 and 1 appear among the s_{i}, then we can find in x a stretch where the spaces between appearances of B, and hence between appearances of 0100, are not all multiples of 4 . Therefore either $s_{i}=0$ for all i or $s_{i}=1$ for all i, and in both cases x is periodic.

The general odometers are rank one systems with $a_{n, i}=0$ for all n and i.

4. Adic definition

We give now a definition of rank one which was not known at the time of [8]: it is a translation of the constructive geometric definition into the language of adic transformations defined on paths in Bratteli diagrams.

Definition 4.1. A system is rank one if it is measure-theoretically isomorphic to the following system, where the q_{n} and $a_{n, i}$ are as in Definition 2.1 and satisfy the sum condition (2.2).

Let $V=\left\{v_{-1}, v_{0,0}, v_{0,1}, \ldots, v_{n, 0}, v_{n, 1}, \ldots\right\}$ represent an infinite set of nodes (or vertices). The integer n is called the level of the vertex $v_{n, i}, i=0,1$. For each $n=-1,0,1, \ldots$ there are directed edges from level n to level $n+1$. Let $e_{-1,0}$ be an edge connecting v_{-1} to $v_{0,0}$, and $e_{-1,1}$ be an edge connecting v_{-1} to $v_{0,1}$. For $n \in \mathbb{N} \cup\{0\}$, let $e_{n, i}$ for $0 \leq i<q_{n}$ be edges connecting $v_{n, 0}$ to $v_{n+1,0}$. Let $e_{n, i, j}$ for $0 \leq i<q_{n}$ and $0 \leq j<a_{n, i}$ be edges connecting $v_{n, 1}$ to $v_{n+1,0}$. Let d_{n} be a single edge connecting $v_{n, 1}$ to $v_{n+1,1}$. Order the edges entering $v_{n+1,0}$ as

$$
\ldots \prec e_{n, i} \prec e_{n, i, 0} \prec e_{n, i, 1} \prec \ldots \prec e_{n, i, a_{n, i}-1} \prec e_{n, i+1} \prec \ldots
$$

Let E be the set of all edges, and let $G=\{V, E\}$ be the infinite directed acyclic graph with the ordering defined above. Let X_{0} be the set of infinite paths beginning at the root node v_{-1}. The ordering of edges arriving at the nodes defines a lexicographic ordering of infinite paths that start at v_{-1} : we say that $x<y$ if there is an N such that $x_{n}=y_{n}$ for all $n>N$ and $x_{N}<y_{N}$. If $X_{\max }$ denotes the set of maximal paths, then the adic transformation T on $X=X_{0} \backslash X_{\max }$ is defined to be the map that assigns to each path its successor in this ordering.

A cylinder set is determined by a finite set E_{0} of edges forming a path from the root vertex v_{-1} to a vertex v : it is the set of all the infinite paths in X that pass through all the edges in E_{0}. Let \mathcal{A} be the σ-algebra generated by all cylinder sets. There is a unique probability measure that for each $v \in V$ assigns the same mass to all cylinder sets determined by paths from v_{-1} to v. The adic transformation T preserves this measure. Denote by P_{k}^{\prime} the partition of X into the cylinder sets determined by paths from v_{-1} to vertices at level k.

We show how to translate the constructive geometric definition into the adic definition: for almost all x in the geometric system, either there is a unique $M=M(x) \geq 0$ such that x is in $S_{M, i, j}$, for some $0 \leq i=i(x) \leq q_{M}-1,0 \leq j=j(x) \leq a_{M, i}-1$, or else x is in F_{0}, in which case we take $M(x)=-1$. Then, for all $n>M, x$ is in some $T^{k} F_{n, i}$ for some $0 \leq i=i(n, x) \leq q_{n}-1$, which means that x is in the i-th (from the bottom) copy of the n-tower inside the $n+1$-tower.

Then in the adic system x becomes the path (still denoted by x)

$$
\left\{\left\{\begin{array}{ll}
\left(e_{-1,1}, d_{0}, \ldots, d_{M-1}, e_{M, i(x), j(x)} e_{M+1, i(M+1, x)}, e_{M+2, i(M+2, x)}, \ldots\right) & \text { if } M>0 \tag{4.1}\\
\left(e_{-1,1}, e_{0, i(x), j(x)}, e_{1, i(1, x)}, e_{2, i(2, x)}, \ldots\right) & \text { if } M=0 \\
\left(e_{-1,0}, e_{0, i(0, x)}, e_{1, i(1, x)}, e_{2, i(2, x)}, \ldots\right) & \text { if } M=-1
\end{array}\right.\right.
$$

On the other hand, in the adic system, for each $n \in \mathbb{N} \cup\{0\}$, define the cylinder set

$$
\begin{equation*}
C_{n}=\left\{x: x(m)=e_{m, 0}, m<n\right\} . \tag{4.2}
\end{equation*}
$$

Then the h_{n} of Definition 2.1 is the number of paths from the root node v_{-1} to the node $v_{n, 0}$, often called the dimension of the vertex $v_{n, 0}$, and the basis F_{n} of the tower in Definition 2.1 is the cylinder C_{n}. For $n=0$, the partition P_{0}^{\prime} is $\left\{C_{0}, D_{1}\right\}$, where $D_{1}=C_{0}^{c}$ is the set of spacer paths that go through the vertex $v_{0,1}$, while C_{0} is the set of nonspacer paths that do not.

What determines a point x in a rank one system is the sequence J_{n} of the numbers of the level where x lies in the n-tower. The adic definition allows us to compute them explicitely from the path x.
Lemma 4.2. Let x be defined by (4.1) with $M(x)=M$; then for all $n>M, x$ is in $T^{J_{n}(x)} C_{n}$ where

$$
\begin{cases}\text { if } M=-1, & J_{0}(x)=0 \tag{4.3}\\ \text { if } M \geq 0, & J_{M+1}(x)=(i(x)+1) h_{M}+a_{M, 0}+\ldots+a_{M, i(x)-1}+j(x), \\ \text { if } n \geq M+1, & J_{n+1}(x)=i(n, x) h_{n}+a_{n, 0}+\ldots+a_{n, i(n, x)-1}+J_{n}(x)\end{cases}
$$

Proof. This is a direct consequence of the construction of the towers in Definition 2.1 and its adic translation above.

5. Essential expansiveness

We look now at cases where the constructive symbolic definition of rank one is equivalent to the other definitions. For this, we use a notion of expansiveness which comes from the general theory of adic and topological dynamical systems, see for example [5].

Definition 5.1. For $k \in \mathbb{N} \cup\{0\}$, a rank one system defined by Definition 2.1, resp. Definition 4.1, is essentially k-expansive if the partition P_{k} of X, resp. P_{k}^{\prime}, generates the full σ-algebra under the transformation T.

When a rank one system defined by Definition 4.1 is essentially 0 -expansive, the symbolic system that results from coding the orbits of its paths according to their initial edges and taking the closure coincides with the symbolic system defined in Definition 2.2. With the same parameters in each case, it is measure-theoretically isomorphic to both the adic system (X, T) of Definition 4.1 and a measure-preserving system satisfying Definition 2.1.

A necessary and sufficient condition for essential 0 -expansiveness of rank one systems, due to Kalikow [16, Appendix], is that the sequence u in Definition 2.2 is not periodic. This in turn is realized for example when the parameters in Definition 2.1 or 4.1 satisfy

$$
\begin{equation*}
\sup _{0 \leq m \leq n, 0 \leq i \leq q_{n+1}-1} a_{m, q_{m}-1}+a_{m+1, q_{m+1}-1}+\ldots a_{n, q_{n}-1}+a_{n+1, i}=\infty \tag{5.1}
\end{equation*}
$$

as this implies u has unbounded strings of 1 , while it has symbols 0 infinitely often because q_{n} is at least 2 for infinitely many n.

Here, in order to make the present paper more self-contained, we introduce a stronger sufficient condition, allowing an elementary proof of essential expansiveness.

Proposition 5.2. A rank one system defined by Definition 2.1 or 4.1 is essentially 0expansive if $a_{n, q_{n}-1}>a_{n, i}$ for all n and $i<q_{n}-1$.

Proof. Let \mathcal{D} the smallest S-invariant σ-algebra that contains C_{0} and D_{1} : we shall show that it contains the cylinder set C_{n} of Section 4 for all n, thus all cylinder sets, and therefore equals the full σ-algebra of Y.

Indeed, C_{0} is in \mathcal{D}. Suppose that $n \geq 0$ and C_{n} is in \mathcal{D}.
Let $W_{0}=T^{h_{n}} C_{n} \cap D_{1}$. For i such that $0 \leq i<a_{n, q_{n}-1}$, define $W_{i+1}=T W_{i} \cap D_{1}$. Then, by our hypothesis, $W_{a_{n, q_{n}-1}}$ is exactly $T^{h_{n+1}-1} C_{n+1}$. As all the W_{i} are in \mathcal{D}, so is C_{n+1}, which completes our induction.

Note that our proposition gives a sufficient condition for essential expansiveness, but it is not necessary: the so-called Chacon map given by Definition 2.2 with the recursion rule $B_{n+1}=B_{n} B_{n} 1 B_{n}$ does not satisfy it, but, as u is not periodic, the system defined by Definition 2.1 with the same parameters is essentially expansive.

Note that if $q_{n}=2$ and there is a single spacer, essential expansivity implies that $a_{n, q_{n}-1}=a_{n, 1}>a_{n, 0}$ at least for infinitely many n; otherwise, the recursion rule is $B_{n+1}=B_{n} 1 B_{n}$ ultimately, and u is periodic while the corresponding system in Definition 2.1 is an odometer. Indeed, it is proved in [7, Lemma 10] that if the sequence u defined as in Definition 2.2 is periodic, then the corresponding rank one system defined as in Definition 2.1 is isomorphic to an odometer.

6. ESSENTIALLY EXPANSIVE CONSTRUCTION

We turn now to our main objective, the construction of an essentially expansive model (and thus of a constructive symbolic model) for every rank one transformation. We use the adic definition, which is well adapted to the.building of isomorphisms.

Theorem 6.1. Every rank one system is measure-theoretically isomorphic to an essentially 0-expansive rank one system.

The remainder of this section is devoted to the proof of the theorem.
6.1. Definition of the new system. We start from the rank one system (X, T) in Definition 2.1 or 4.1. We choose a strictly increasing sequence m_{n} with $m_{0}=0$ and such that if $H_{n}=h_{m_{n}}$ then

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{H_{n}}{H_{n+1}}<\infty \tag{6.1}
\end{equation*}
$$

We shall now look at the same system (X, T), but we build it by considering only the steps m_{n}. Thus the parameters q_{n} and $a_{n, i}$ are replaced by new parameters Q_{n} and $A_{n, i}$, which we compute now.

Namely, we have

$$
\begin{equation*}
Q_{n}=\prod_{i=m_{n}}^{m_{n+1}-1} q_{i} \tag{6.2}
\end{equation*}
$$

We compute $A_{n, i}$ for $0 \leq i \leq Q_{n}-1$. To do that, we write in a unique way

$$
\begin{equation*}
i=g_{0}+\sum_{j=1}^{m_{n+1}-m_{n}-1} g_{j} \prod_{k=0}^{j-1} q_{m_{n}+k} \tag{6.3}
\end{equation*}
$$

with $0 \leq g_{j} \leq q_{m_{n}+j}-1$. Then let l be such that $g_{k}=q_{m_{n}+k}-1$ for all $k<l$ and $g_{l} \neq q_{m_{n}+l}-1$, or $l=m_{n+1}-m_{n}-1$ if this last inequality is never satisfied; then we have

$$
\begin{equation*}
A_{n, i}=\sum_{k=0}^{l} a_{m_{n}+k, g_{k}} \tag{6.4}
\end{equation*}
$$

Thus, the H_{n} are indeed the heights of the stacks and the $A_{n, i}$ the numbers of spacers for the system (X, T) after collapsing the stages between $m_{n}+1$ and $m_{n+1}-1$. As (X, T) preserves a finite measure, the equivalent of condition (2.2) still applies, thus

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\sum_{i=0}^{Q_{n}-1} A_{n, i}}{H_{n+1}}<+\infty \tag{6.5}
\end{equation*}
$$

We consider the rank one system (X, T), as defined by the parameters Q_{n} and $A_{n, i}$, with Definition 4.1; its edges are denoted as in that definition, by $d_{n}, e_{n, i}$ and $e_{n, i, j}$.

Let $\bar{A}_{n}=\max \left\{A_{n, i}: 0 \leq i \leq Q_{n}-1\right\}$. Choose $0 \leq i_{n} \leq Q_{n}-1$ to be the last i such that $A_{n, i}+H_{n}+A_{n, i+1}+H_{n}+\ldots A_{n, Q_{n}-1}>\bar{A}_{n}$, Namely

$$
\begin{equation*}
\bar{H}_{n}=\left(Q_{n}-i_{n}-1\right) H_{n}+\sum_{i \geq i_{n}} A_{n, i}>\bar{A}_{n} \tag{6.6}
\end{equation*}
$$

but

$$
\begin{equation*}
\left(Q_{n}-i_{n}-2\right) H_{n}+\sum_{i>i_{n}} A_{n, i} \leq \bar{A}_{n} \tag{6.7}
\end{equation*}
$$

We define now a new rank one system (Y, S) by modifying the system (X, T) (now built with the towers at stages m_{n}) in the following way: in the building of the tower at stage m_{n+1} by subsets of the tower at stage m_{n} and spacers, we replace the upper $\left(Q_{n}-i_{n}-1\right)$ of these sub-towers by spacers. The index i_{n} has been chosen such that this change is the smallest one allowing the new system to satisfy Proposition 5.2, and we shall show below that the change is small enough, first to allow the new system to preserve a finite measure, and then to allow it to be isomorphic to the initial system.

We define now this system precisely, using the adic formalism.
The set of vertices of our Bratteli diagram is $\left\{u_{-1}, u_{i, 0}, u_{i, 1}: i \in \mathbb{N} \cup 0\right\}$.
Let $r_{-1,0}$ be a directed edge from u_{-1} to $u_{0,0}$, and $r_{-1,1}$ from u_{-1} to $u_{0,1}$. Let d_{n} be a single edge connecting $u_{n, 1}$ to $u_{n+1,1}$. For $i \leq i_{n}$, let $r_{n, i}$ be edges from $u_{n, 0}$ to $u_{n+1,0}$; for $i>i_{n}$, there is no edge. $r_{n, i}$; thus there are $i_{n}+1$ edges $r_{n, i}$.

Let $s_{n, i, j}$ be edges connecting $u_{n, 1}$ to $u_{n+1,0}$ for $0 \leq j<A_{n, i}$, and $i<i_{n}$. Let $s_{n, i_{n}, j}$ be edges connecting $u_{n, 1}$ to $u_{n+1,0}$ for $0 \leq j<\bar{H}_{n}$.

Order the edges entering $u_{n+1,0}$ in the following manner (with obvious modifications if i_{n} is the last element of $\left.U_{n}\right)$:

$$
\begin{aligned}
& \text { - } r_{n, i} \prec s_{n, i, 0} \prec s_{n, i, 1} \prec \ldots \prec s_{n, i, A_{n, i}-1} \prec r_{n, i+1} \text { for } i<i_{n} \text {; } \\
& \text { - } r_{n, i_{n}} \prec s_{n, i_{n}, 0} \prec s_{n, i_{n}, 1} \prec \ldots \prec s_{n, i_{n}, \bar{H}_{n}-1} \text {. }
\end{aligned}
$$

This ordering on the Bratteli diagram defines an invertible transformation S on the set of all non-maximal paths Y. This new system is rank one, and we get its parameters by replacing Q_{n} by $Q_{n}^{\prime}=i_{n}+1, A_{n, i}$ by $A_{n, i}^{\prime}=A_{n, i}$ if $i<i_{n}, A_{n, i_{n}}^{\prime}=\bar{H}_{n}$, the $A_{n, i}^{\prime}$ being defined for $0 \leq i<Q_{n}^{\prime}$. The heights of the stacks remain the same, $H_{n}^{\prime}=H_{n}$. As in Section 4, we define quantities $M^{\prime}(x)$ and $J_{n}^{\prime}(x)$.

We have

$$
\begin{align*}
\sum_{i=0}^{Q_{n}^{\prime}-1} A_{n, i}^{\prime} & =\sum_{i=0}^{Q_{n}-1} A_{n, i}+\left(Q_{n}-i_{n}-1\right) H_{n} \tag{6.8}\\
& \leq \sum_{i=0}^{Q_{n}-1} A_{n, i}+\bar{A}_{n}+H_{n} \leq 2 \sum_{i=0}^{Q_{n}-1} A_{n, i}+H_{n}
\end{align*}
$$

Since $\sum_{n=0}^{\infty} H_{n} / H_{n+1}<\infty$ by construction, condition (6.5) implies that

$$
\begin{equation*}
\sum_{n=0}^{+\infty} \frac{\sum_{i=0}^{Q_{n}^{\prime}-1} A_{n, i}^{\prime}}{H_{n+1}^{\prime}}<+\infty \tag{6.9}
\end{equation*}
$$

Thus there is a unique invariant nonatomic probability measure for the rank one transformation S which assigns the same measure to all cylinder sets ending at a given vertex in the left column.
S is essentially 0-expansive by Proposition 5.2, as its last stacks of spacers are of height \bar{H}_{n} while the others are of height at most \bar{A}_{n} for all n. Now we show that S is isomorphic to T.
6.2. Definition of the isomorphism. Let E_{n} denote the set of $x \in X$ which are either in the n-spacers or in the top \bar{H}_{n} levels of the $n+1$-tower; namely E_{n} is the set of x such that

- either $x(n)=e_{n, i, j}$ for some i, j;
- or $x(n)=e_{n, i}$ for some $i>i_{n}$.

Let

$$
\begin{align*}
& \text { (6.10) } E=\bigcap_{k=0}^{\infty} \bigcup_{n=k}^{\infty} E_{n} \tag{6.10}\\
& \text { (6.11) } \bar{E}=\bigcup_{-\infty}^{+\infty} T^{k} E
\end{align*}
$$

Now E_{n} is made with exactly $\sum_{i=0}^{Q_{n}-1} A_{n, i}+\left(Q_{n}-i_{n}-1\right) H_{n}$ iterates of C_{n+1}, and we have $\left(Q_{n}-i_{n}-2\right) H_{n} \leq \bar{A}_{n}$, thus

$$
\begin{equation*}
\mu\left(E_{n}\right) \leq \frac{\sum_{i=0}^{Q_{n}-1} A_{n, i}+\bar{A}_{n}+H_{n}}{H_{n+1}} \tag{6.12}
\end{equation*}
$$

Because of (6.5) and $\sum_{n=0}^{\infty} H_{n} / H_{n+1}<\infty$ we have $\sum_{n=0}^{\infty} \mu\left(E_{n}\right)<\infty$ and
(6.13) $\mu(E)=\mu(\bar{E})=0$.

If $x \notin \bigcup_{n=0}^{\infty} E_{n}$ (i.e., x is in no E_{n}), define $N(x)=-1$; otherwise, for $x \notin E$, define (6.14) $N(x)=\max \left\{n: x \in E_{n}\right\}$.

Note that, by definition of the $E_{n}, N(x) \geq M(x)$ (of Section 4). Hence $J_{N(x)+1}(x)$ exists and can be computed from x by Lemma 4.2.

Now we define our isomorphism $\phi: X \rightarrow Y$. For $x \in X \backslash E$, define $y=\phi(x)$ as follows: if $N(x)=-1$, define $y(-1)=r_{-1,0}$ and
(6.15) $y(n)=r_{n, i}$ whenever $x(n)=e_{n, i}$.

Otherwise, if $0 \leq N(x)=N<\infty$, define $y(-1)=r_{-1,1}$ and
(6.16) $y_{n}=\left\{\begin{array}{lll}d_{n} & \text { for } 0<n<N \\ s_{N, i, j} & \text { if } x(N)=e_{N, i, j}, i \leq i_{N} & \text { for } n=N \\ s_{N, i_{N}, J_{N+1}(x)-H_{N+1}+\bar{H}_{N}} & \text { if } x(N)=e_{N, i}, i>i_{N} & \text { for } n=N \\ s_{N, i_{N}, J_{N+1}(x)-H_{N+1}+\bar{H}_{N}} & \text { if } x(N)=e_{N, i, j}, i>i_{N} & \text { for } n=N \\ r_{n, i} & \text { if } x(n)=e_{n, i} & \text { for } n>N .\end{array}\right.$
6.3. Proof of the isomorphism. Let $N=N(x)$. From the definition of $\phi, \phi(x)$ is never in the n-spacers if $N=-1$, otherwise the last n for which $\phi(x)$ is in the n-spacers is N. Thus
(6.17) $M^{\prime}(\phi(x))=N(x)$.

We compute $J_{N+1}^{\prime}(\phi(x))$: if $x(N)=e_{N, i, j}$, then, by definition of $\phi, J_{N+1}^{\prime}(\phi(x))=J_{N}(x)$; in the other cases, $\phi(x)(N)=s_{N, i_{N}, J_{N+1}(x)-H_{N+1}+\bar{H}_{N}}$, which implies that $\phi(x)$ is at distance $\bar{H}_{N}-1-\left(J_{N+1}(x)-H_{N+1}+\bar{H}_{N}\right)=H_{N+1}-1-J_{N+1}(x)$ from the top of the $N+1$-tower, while, by definition of $J_{N+1}^{\prime}, \phi(x)$ is at distance $H_{N+1}^{\prime}-1-J_{N+1}^{\prime}(\phi(x))$ from that top. So because $H_{N+1}^{\prime}=H_{N+1}$ we get

$$
\begin{equation*}
J_{N+1}^{\prime}(\phi(x))=J_{N+1}(x) \tag{6.18}
\end{equation*}
$$

For $n>N+1$, neither x nor $\phi(x)$ can be in the top \bar{H}_{n-1} levels in their respective n-towers. Then, by the definition of $\phi(x)(n)$ for $n \geq N+1$ and Lemma 4.2, we get

$$
\begin{equation*}
J_{n}^{\prime}(\phi(x))=J_{n}(x) \text { for all } n>N(x)=M^{\prime}(\phi(x)) \tag{6.19}
\end{equation*}
$$

Now, $\phi\left(x_{1}\right)=\phi\left(x_{2}\right)$ implies $J_{n}^{\prime}\left(\phi\left(x_{1}\right)\right)=J_{n}^{\prime}\left(\phi\left(x_{2}\right)\right)$ for all n larger than $M^{\prime}\left(\phi\left(x_{1}\right)\right) \vee$ $M^{\prime}\left(\phi\left(x_{2}\right)\right)$. Thus $J_{n}\left(x_{1}\right)=J_{n}\left(x_{2}\right)$ for all n large enough, and by the rank one property this implies $x_{1}=x_{2}$. Thus ϕ is injective on $X \backslash E$.

Let E_{n}^{\prime} denote the set of $y \in Y$ which are in the n-spacers, $E^{\prime}=\bigcap_{k=0}^{\infty} \bigcup_{n=k}^{\infty} E_{n}^{\prime}$. For y in $Y \backslash E^{\prime}, M^{\prime}=M^{\prime}(y)$ is finite. Thus $y\left(M^{\prime}\right)=s_{M^{\prime}, i, j}$, and we can compute $J_{M^{\prime}+1}^{\prime}(y)$ by Lemma 4.2. Then $y=\phi(x)$ for the (unique by the injectivity proved above) x such that $J_{M^{\prime}+1}(x)=J_{M^{\prime}+1}^{\prime}(y)$, and $x(n)=e_{n ; i}$ whenever $y(n)=r_{n, i}$ for all $n>M^{\prime}$. This x satisfies $N(x)=M^{\prime}$ by construction. Thus

$$
\begin{equation*}
\phi(X \backslash E)=Y \backslash E^{\prime} \tag{6.20}
\end{equation*}
$$

Finally, suppose x is in \bar{E}, so that both x and $T x$ are in E. Then, for $n>(N(x) \vee$ $N(T x))+1$, both x and $\phi(x)$ are in the n-tower and not in the topmost level (indeed not in the topmost \bar{H}_{n-1} levels). Thus $J_{n}(T x)=J_{n}(x)+1, J_{n}^{\prime}(S \phi(x))=J_{n}^{\prime}(\phi(x))+1$, and

$$
\begin{equation*}
J_{n}^{\prime}(S \phi(x))=J_{n}(T x)=J_{n}^{\prime}(\phi(T x)), \tag{6.21}
\end{equation*}
$$

for all n large enough. Thus ϕ is equivariant on $X \backslash \bar{E}$, which completes the proof.
6.4. Variant. A variation on the same method would be to replace only one tower by spacers: for each n we choose one i_{n} and throughout the above section we replace "all $i>i_{n}$ " by $i=i_{n}$. Then the isomorphism works in the same way, but essential expansiveness is proved using the machinery of Kalikow's result and condition (5.1), as the new system has strings of at least H_{n} spacers.

7. BaCk to the odometer

We can apply this construction to the dyadic odometer. We have $q_{n}=2, a_{n, i}=0$ for all n and $i, h_{n}=2^{n}$, and choose $m_{n}=n(n+1) / 2$, so that $H_{n+1}=2^{n+1} H_{n}$. Then the odometer is built with $Q_{n}=2^{n+1}$ and $A_{n, i}=0$ for all n and i. This implies $\bar{A}_{n}=0$, and $i_{n}=Q_{n}-2$. We build the new system by replacing only the top sub-tower with spacers. Then the new system admits a constructive symbolic definition, with recursion formula

$$
B_{n+1}=B_{n}^{2^{n+1}-1} 1^{2^{n(n+1) / 2}}
$$

with corresponding constructive geometric and adic definitions. The following picture gives the first stages of the adic construction, corresponding to $B_{1}=B_{0} 1$ and $B_{2}=$ $B_{1} B_{1} B_{1} 11$.

Figure 1. Constructive odometer

References

[1] R. V. Chacon, A geometric construction of measure preserving transformations, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Univ. California Press, Berkeley, Calif., 1967, pp. 335-360 MR0212158
[2] Alexandre I. Danilenko, Actions of finite rank: weak rational ergodicity and partial rigidity, Ergodic Theory Dynam. Systems 36 (2016), 2138-2171.
[3] , Rank-one actions, their ($C ; F)$ models, and constructions with bounded parameters (2016). preprint.
[4] Andrés del Junco, A simple map with no prime factors, Israel J. Math. 104 (1998), 301-320, DOI 10.1007/BF02897068.MR1622315
[5] Tomasz Downarowicz and Alejandro Maass, Finite-rank Bratteli-Vershik diagrams are expansive, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 739-747, DOI 10.1017/S0143385707000673 MR2422014 (2009c:37007)
[6] Fabien Durand, Combinatorics on Bratteli diagrams and dynamical systems, Combinatorics, Automata and Number Theory, Encyclopedia Math. Appl., vol. 135, Cambridge Univ. Press, Cambridge, 2010, pp. 324-372 MR2759109 (2012h:37023)
[7] El Houcein El Abdalaoui, Mariusz Lemańczyk, and Thierry de la Rue, On spectral disjointness of powers for rank-one transformations and Möbius orthogonality, J. Funct. Anal. 266 (2014), no. 1, 284-317, DOI 10.1016/j.jfa.2013.09.005 MR3121731
[8] Sébastien Ferenczi, Systems of finite rank, Colloq. Math. 73 (1997), no. 1, 35-65.MR1436950
[9] Sébastien Ferenczi, Charles Holton, and Luca Q. Zamboni, Structure of three-interval exchange transformations III: ergodic and spectral properties, J. Anal. Math. 93 (2004), 103-138, DOI 10.1007/BF02789305.MR2110326
[10] Sébastien Ferenczi and Luca Q. Zamboni, Eigenvalues and simplicity of interval exchange transformations, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 3, 361-392 (English, with English and French summaries) MR2839454
[11] N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel MR1970385
[12] Matthew Foreman and Benjamin Weiss, From odometers to circular systems: A global structure theorem (January 28, 2016). preprint.
[13] , A characterization of odometer based systems: Working notes (July 25, 2016). preprint.
[14] Su Gao and Aaron Hill, Topological isomorphism for rank-1 systems, J. Anal. Math. 128 (2016), 1-49, DOI 10.1007/s11854-016-0001-4 MR3481169
[15] Mariano Garcia and Gustav A. Hedlund, The structure of minimal sets, Bull. Amer. Math. Soc. 54 (1948), 954-964 MR0026764
[16] Steven Arthur Kalikow, Twofold mixing implies threefold mixing for rank one transformations, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 237-259, DOI 10.1017/S014338570000242X.MR766104
[17] Donald S. Ornstein, Daniel J. Rudolph, and Benjamin Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 37 (1982), no. 262, xii+116, DOI 10.1090/memo/0262 MR653094
[18] A. M. Vershik and A. N. Livshits, Adic models of ergodic transformations, spectral theory, substitutions, and related topics, Representation theory and dynamical systems, Adv. Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 185-204 MR1166202

[^0]: E-mail addresses: terry@ganita.org, ssferenczi@gmail.com, petersen@math.unc.edu.
 Date: March 1, 2017.
 2010 Mathematics Subject Classification. 37A05, 37B10 (primary).
 Key words and phrases. Rank one, odometer, constructive symbolic, isomorphism.

