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Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a fatal malignancy
known as adult T-cell leukemia (ATL). One way to address the pathology of the disease
lies on conducting research with a molecular approach. In addition to the analysis
of ATL-relevant signaling pathways, understanding the regulation of important and
relevant transcription factors allows researchers to reach this fundamental objective.
HTLV-1 encodes for two oncoproteins, Tax and HTLV-1 basic leucine-zipper factor,
which play significant roles in the cellular transformation and the activation of the host’s
immune responses. Activating protein-1 (AP-1) transcription factor has been linked to
cancer and neoplastic transformation ever since the first representative members of
the Jun and Fos gene family were cloned and shown to be cellular homologs of viral
oncogenes. AP-1 is a dimeric transcription factor composed of proteins belonging to
the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra1, and Fra2), and activating
transcription factor protein families. Activation of AP-1 transcription factor family by
different stimuli, such as inflammatory cytokines, stress inducers, or pathogens, results
in innate and adaptive immunity. AP-1 is also involved in various cellular events including
differentiation, proliferation, survival, and apoptosis. Deregulated expression of AP-1
transcription factors is implicated in various lymphomas such as classical Hodgkin
lymphomas, anaplastic large cell lymphomas, diffuse large B-cell lymphomas, and adult
T-cell leukemia. Here, we review the current thinking behind deregulation of the AP-1
pathway and its contribution to HTLV-induced cellular transformation.

Keywords: AP-1, HTLV-1, antisense transcription, leukemia, HBZ, JunD

INTRODUCTION

The human T-cell leukemia virus type 1 (HTLV-1) was the first pathogenic retrovirus identified
in human (Matsuoka and Jeang, 2010). It is estimated that 10–15 million individuals are infected
with HTLV-1 around the world, with endemic areas in the Caribbean, southern Japan, Central and
South America, Iran, Melanesia, and sub-Saharan Africa (Sonoda et al., 2011; Gessain and Cassar,
2012). While the vast majority of HTLV-1-infected individuals remain clinically asymptomatic,
around 5% of them will develop a highly aggressive T-cell malignancy, termed adult T-cell
leukemia/lymphoma (ATL) (Matsuoka and Jeang, 2007; Kogure and Kataoka, 2017). ATL presents
four distinct clinical stages ranging from smoldering to acute leukemia. It generally occurs in
individuals infected around the time of birth eventually and it develops only after prolonged
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incubation periods ranging from 20 to 60 years (Matsuoka
et al., 1997). Although several studies have reported that the
proviral DNA load is a critical factor for promoting disease
progression in infected individuals (Olindo et al., 2005; Iwanaga
et al., 2010; Yoshida, 2010), 30 years after its characterization
in T-lymphocytes from leukemic patients, it is still not fully
understood how HTLV-1 transforms human CD4+ T cells
in a stepwise fashion. The current view is that pleiotropic
functions of the HTLV-1 viral transcriptional transactivator Tax
(Peloponese et al., 2007; Journo et al., 2009), such as deregulation
of the signaling pathways AP-1 pathway (Fujii et al., 2000) and
NF-kB (Rosin et al., 1998; Peloponese et al., 2006; Chan and
Greene, 2012), and inactivation of tumor suppressors (Tabakin-
Fix et al., 2006) are promitotic events, which drive CD4+ T-cell
proliferation during the preleukemic stage (Matsuoka and Jeang,
2007). Paradoxically, fresh ATL cells lack Tax expression, due
to genetic and epigenetic modifications in the HTLV-1 provirus
(Tamiya et al., 1996; Kataoka et al., 2015). In contrast, HTLV-1
basic leucine-zipper factor (HBZ) mRNA which is encoded by
the complementary strand of the HTLV-1 genome is expressed
in all ATL cells (Mesnard et al., 2006; Matsuoka and Green,
2009). Recent studies have provided striking evidence for the
important role played by of HBZ and the AP-1 pathway in
HTLV-1 pathogenesis. In this review, we will limit our focus
to the role of AP-1 activation by Tax and HBZ and discuss,
in a non-exhaustive manner, how this activation relates to
oncogenesis and inflammation.

THE AP-1 PATHWAY, A KEY REGULATOR
OF CELLULAR TRANSFORMATION

Activating protein-1 (AP-1) transcription factor has been
linked to cancer and neoplastic transformation since the
first cloning of jun and fos proto-oncogenes were cloned
following their identification as cellular homologs of avian
sarcoma virus 17 (ASV 17)-encoded oncogenes vjun and
vfos 30 years ago (Curran and Franza, 1988). AP-1 is
composed of 18 dimeric complexes which included members
of four families of DNA-binding proteins: Jun family (c-Jun,
JunB, v-Jun, JunD), Fos family (c-Fos, FosB, Fra-1, and
Fra-2,) ATF/cyclic AMP-responsive element-binding (CREB)
(activating transcription factor: ATF1–4, ATF-6, b-ATF, ATFx),
and Maf family (musculoaponeurotic fibrosarcoma c-Maf,
MafA, MafB, MafG/F/K, and Nrl) (Eferl and Wagner, 2003;
Milde-Langosch, 2005; Hernandez et al., 2008; Figure 1).
Transcriptional activity of AP-1 is regulated by a wide array
of cellular stimuli including growth factors, bacterial and viral
infection, cytokines, UV radiation, and cellular stress (Eferl and
Wagner, 2003; Milde-Langosch, 2005; Hernandez et al., 2008;
Figure 1). These transcription factors have critical functions
in wide variety of cellular processes, including inflammation,
proliferation, differentiation, and apoptosis (Eferl and Wagner,
2003; Milde-Langosch, 2005; Hernandez et al., 2008). The activity
of the different AP-1 dimer also depends on the cell type
and its differentiation state. In response to external stimuli,
MAPK activity increases and regulates both the abundance

and transactivating capacities of Jun, Fos, and ATF (Figure 2).
MAPKs are a serine/threonine kinase superfamily that comprises
extracellular signal-regulated kinases (ERK), c-Jun NH2-terminal
kinases (JNK), p38, and c-Fos-regulating kinases (FRK) (Cavigelli
et al., 1995; Karin, 1995; Srivastava et al., 1999). The regulation
of AP-1 is complex and occurs at multiple levels, ranging from
dimer composition, to transcriptional and post-translational
events, and to specific interactions between AP-1 proteins and
other transcription cofactors (Figure 2).

AP-1 Transcriptional Regulation
Activating protein-1 activity is modulated through its dimer
composition which is determined by the differential expression
of Jun, Fos, ATF, and Maf families (Figure 1) and through
the sequence of the AP-1 DNA-binding sites (Table 1).
The abundance of the subunits can be controlled either via
the regulation of the synthesis and stability of respective
mRNAs or via the regulation of protein stability (for example,
stimulus-dependent degradation via the ubiquitin pathway)
(Musti et al., 1996). Most of the genes that encode AP-1 subunits
behave as “immediate-early” genes. Indeed, they are rapidly but
transiently transcribed in response to extracellular stimuli, such
as growth factor (Ryder and Nathans, 1988; Karin et al., 1997)
and cellular stress (Angel and Karin, 1991; Zhou et al., 2007;
Figure 2). Among these, the transcriptional regulation of c-jun
and c-fos is well studied and characterized (Abate and Curran,
1990). The transcription of c-fos is induced in response to a
diverse spectrum of extracellular stimuli and its promoter is
composed of several transcription factor-binding sites, such as a
cAMP-response element (CRE), which can drive transcriptional
activation in response to elevation of intracellular Ca2+ or cAMP
concentrations under stimulation from neurotransmitters and
polypeptide hormones (Figure 2; Lucibello et al., 1993; Cavigelli
et al., 1995; Tulchinsky, 2000). It also contains a serum-response
element (SRE), which can drive transcription in response to
growth factors, cytokines, UV irradiation, and other stimuli.
SRE is recognized by a dimer composed of serum-response
factor (SRF) and Elk-1, the major component of ternary complex
factor (TCF) in human cells (Lucibello et al., 1993; Cavigelli
et al., 1995; Tulchinsky, 2000; Figure 2). The third major
element of c-Fos promoter is the v-Sis-inducible element (SIE)
(Wagner et al., 1990). SIE is mostly recognized by homodimers
and heterodimers of STAT1 and STAT3, two members of the
signal transducers and activators of transcription (STAT) family
(Sadowski et al., 1993). Tyrosine phosphorylation of these
factors in the cytoplasm is mediated by janus kinase/tyrosine
kinase (JAK/TYKs) and drives their dimerization. The dimerized
factor can then translocates to the nucleus, binds the SIE, and
participates in promoter activation. Finally, the c-Fos promoter
also contains a 12-O-tetradecanoyl-phorbol-13-acetate-response
element (TRE) (Figure 2; Lucibello et al., 1993; Cavigelli et al.,
1995; Tulchinsky, 2000).

The c-jun promoter is simpler, being mostly induced
through the TRE element that preferentially binds c-Jun/ATF2
heterodimers (Figure 2; Van Dam et al., 1993). Despite its
inducible expression, most cell types prior to their stimulation
contain basal levels of c-Jun protein. Like the c-fos SRE, the
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FIGURE 1 | Schematical presentation of the structure of AP-1 proteins. Activator protein 1 (AP-1) proteins include the JUN, FOS, activating transcription factor (ATF),
and musculoaponeurotic fibrosarcoma (MAF) protein families, which can form homodimers and heterodimers through their leucine-zipper domains. The AP-1
proteins exhibit several domains, including the bZIP domain (leucine zipper plus basic domain), transactivation domains, and docking sites for several kinases, such
as JNK or ERK. These kinases modulate the activity of those transcription factors by phosphorylation of serine and threonine residues.

c-jun TRE is constitutively occupied in vivo (Van Dam et al.,
1993). Thus, the expression of more than one AP-1 component is
under positive and negative AP-1 (auto-)regulation. For example,
c-jun and atf3 promoters can be activated by c-Jun/ATF2 and/or
ATF2/ATF2 via TRE-binding sites, whereas the atf3 promoter is
inhibited by ATF3 (Angel et al., 1988; Hai and Curran, 1991; Van
Dam et al., 1993). The c-jun promoter can be inhibited by JunB,
c-Jun itself, and c-Fos. This feedback control allows fine-tuned
regulation of AP-1 heterodimer activity over longer periods of
time (Chiu et al., 1988).

Post-transcriptional Regulation of AP-1
Transcription Factors
Phosphorylation of AP-1 components modulates the dimers
transcriptional activities (Karin and Hunter, 1995). Serum and
growth factors stimulation induces AP-1 by activating the ERK
which then directly phosphorylate c-Jun, Fra-1, and Fra-2
(Figure 2). While phosphorylation of c-Jun by ERK on one
serine located next to the C-terminal DNA-binding domain
inhibits c-Jun DNA-binding activity, phosphorylation of Fra-1
and Fra-2 enhances their DNA binding in conjunction with c-Jun
(Woodgett et al., 1993; Punga et al., 2006).

The induction of AP-1 by pro-inflammatory cytokines and
genotoxic stress is mostly mediated by the JNK and p38MAPK
pathways (Chang and Karin, 2001; Figure 2). Once activated,

JNKs translocate to the nucleus, where they phosphorylate
c-Jun on Ser 63/73 and Thr 91/93 and thereby potentiates
its ability to activate transcription upon homodimerization
or a heterodimerization with c-Fos (Woodgett et al., 1993;
Deng and Karin, 1994; Punga et al., 2006). The molecular
mechanisms underlying the capacity of JNK to control c-Jun
activity involve the modulation of interactions with histone
deacetylase complexes, sub-nuclear localization of AP-1 proteins,
and related factors required for c-Jun-dependent activity. JNKs
also phosphorylate ATF2 on Thr69/71 and potentiate its activity
after heterodimerization with c-Jun, leading to its binding to
divergent AP-1 sites in the c-jun promoter (Van Dam et al.,
1993; Shaulian and Karin, 2002). Transactivation by ATF2 is
also potentiated by binding of retinoblastoma (Rb) or E1A,
to the DNA-bound ATF2 dimer (Lopez-Bergami et al., 2010).
Both E1A and Rb act in concert with phosphorylation of ATF2.
Although E1A induces c-jun transcription (Van Dam et al., 1993),
it concomitantly represses AP-1 activity through competition
for CREB-binding protein (CBP) in a similar manner to the
competitive effect of E1A binding on p300 (Offringa et al., 1990;
Arany et al., 1994).

The contribution of p38 to AP-1 induction can be mediated
by the direct phosphorylation and activation of ATF2 and TCFs
(Figure 2; Mendelson et al., 1996; Whitmarsh and Davis, 1996).
The PI3K/AKT pathway is activated in response to cytokine
receptors and T-cell receptor activation in normal T cells. Akt is
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FIGURE 2 | Transcriptional and post-translational activation of AP-1. AP-1 activity is stimulated by external stimuli like growth factors or inflammatory cytokines and
a complex network of kinase such as mitogen-activated protein kinases (MAPKs) of the extracellular-signal regulated kinase (ERK), p38, and JUN amino-terminal
kinase (JNK) families. Posttranslational phosphorylation by various kinases regulates AP-1 activity, which includes its transactivating potential, DNA-binding capacity,
and the stability of AP-1 components. GSK-3β, glycogen synthase kinase-3β; MAPKK, MAPK kinase; RSK2, ribosomal S6 kinase 2; TCF, ternary complex factor;
SRE, serum-response element; TRE, TPA-responsive element; CRE, cAMP-response element; SIE, Sis-inducible element.

a serine/threonine protein kinase activated by PI3K through
phosphorylation of Ser473, which acts as a regulator of cell
survival and proliferation (Warfel and Kraft, 2015). In addition,
glycogen synthase kinase-3 (GSK3), an effector kinase of the
PI3K pathway, has the capacity to negatively regulate AP-1
transcriptional activity (Koul et al., 2007; Warfel and Kraft,
2015). GSK3 is a ubiquitously expressed serine/threonine kinase
normally active in unstimulated cells. Upon stimulation by
growth factors, GSK3 is phosphorylated at Ser9 and Ser21 (for
GSK3β and GSK3a, respectively) by Akt and other kinases of
the AGC family (protein kinase A, protein kinase G, protein
kinase C) thus leading to an important decrease of its activity

TABLE 1 | The different AP-1-binding sites.

AP-1-binding sequence

TRE TGACTCA

MAREI TGCTGACTCAGCA

CRE TGACGTCA

MARE II TGCTGACGTCAGCA

ARE a/gtGACnnnGC

The main DNA response element is the TPA-responsive element (TRE), but different
dimers preferentially bind to elements such as the cAMP-response element (CRE),
the MAF-recognition elements (MAREs), and the antioxidant-response elements
(AREs).

(Koul et al., 2007; Venkatesan et al., 2010). GSK3 activity is
controlled mainly through the PI3K/AKT pathway upon AKT
phosphorylation on Ser473 (Koul et al., 2007). This complex
network of signaling pathways reveals that a particular stimulus
can evoke a specific “spectrum” of AP-1 activity and thereby
activate and/or repress distinct subset of AP-1-targetted genes.

The Janus (Dual) Role of AP-1 in Cancer
Development
A large amount of studies have shown that AP-1 components
play an important role in oncogenesis. c-jun and c-fos were first
identified as retrovirus-activated genes with oncogenic potential
in avian and mammalian cells (Abate and Curran, 1990; Verma
et al., 1990). Chronic exposure to carcinogens can promote
tumorigenesis through the activation of a wide array of signaling
pathways, ranging from inflammatory to pro-proliferative and
survival pathways. Furthermore, environmental or dietary
carcinogens have been shown to induce increased AP1 activity
(Abate and Curran, 1990; Verma et al., 1990).

Many human cancers exhibit overexpression of Jun family
members (Neyns et al., 1996; Langer et al., 2006; Kharman-
Biz et al., 2013). Consistent with the idea that c-Jun can
promote tumorigenicity, overexpression of this transcription
factor is observed in some of the more aggressive CD30-positive
lymphomas (Drakos et al., 2007; Mao et al., 2007). In breast
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cancer, alteration of RB, VEGF, and EGFR pathways has been
shown to induce c-Jun overexpression (Kharman-Biz et al.,
2013). Interestingly, increased c-Fos expression is associated
with poor clinical outcome in osteosarcoma and endometrial
carcinoma, while loss of c-Fos expression is associated with tumor
progression and adverse outcome in ovarian carcinoma and
gastric carcinoma (Tulchinsky, 2000). On the other side, Fra-1
overexpression is associated with the development of thyroid,
breast, lung, brain, nasopharyngeal, esophageal, endometrial,
prostate, and colon carcinomas, along with glioblastomas and
mesotheliomas (Tulchinsky, 2000; Young and Colburn, 2006).
The studies are strongly suggesting that the role of Fos family in
tumors development depends on the tissue of origin.

Several studies have shown that AP-1 activity is crucial for
tumorigenesis, as its inhibition by dominant-negative c-Jun
mutants or AP-1 decoys strongly inhibits the growth of various
tumor cell lines both in vitro and in vivo (Angel and Karin,
1991; Kajanne et al., 2009; Eckert et al., 2013; Kharman-Biz et al.,
2013). These studies have also led to the identification of AP1
target genes involved in carcinogenesis (Eferl and Wagner, 2003;
Lopez-Bergami et al., 2010; Nakayama et al., 2012). In addition,
chronic exposure to environmental and dietary carcinogens such
as cigarette smoke or nicotine or ethanol, activates AP1 activity in
mouse brain or epithelial cell lines or neuroblastoma cells (Fried
et al., 2001; Jochum et al., 2001; Manna et al., 2006). Interestingly,
increase in AP1 activity has been also reported in drug-resistant
cancer, suggesting that some chemotherapeutic agents can elicit
AP1 activation and favor tumor cell survival by making them
refractory to long-term treatments (Malorni et al., 2016; Fan et al.,
2017; Liou et al., 2017).

Overexpression of Jun and Fos proteins can also suppress
tumor formation (Eferl and Wagner, 2003; Hess et al., 2004;
Shaulian, 2010), thus revealing the double-edged activity of AP-1
transcription factors. These dual properties depend on the genetic
background of the tumor, its differentiation state, and tumor
stage (Eferl and Wagner, 2003; Hess et al., 2004; Shaulian, 2010).
Several studies have shown that increased AP-1 activity can lead
to apoptosis in human tumor cells but it can also antagonize
apoptosis in specific cell types, such as liver tumors (Eferl and
Wagner, 2003; Hess et al., 2004; Shaulian, 2010). This dual
effect of AP-1 on apoptosis can be further exemplified. Indeed,
increased c-Jun activity promotes apoptosis in neuronal cells
in vitro (Ham et al., 2000). When the activation of c-Jun is
impaired, either in Jnk3-null or JunAA mice, which express
a c-Jun insensitive to JNK-mediated activation, neurons are
protected from apoptosis (Behrens et al., 1999). In contrast, c-Jun
is required for the survival of fetal hepatocytes, which undergo
apoptosis in c-Jun-deficient mouse embryos (Eferl et al., 1999;
Hasselblatt et al., 2007). The cell-specific consequence of AP-1
activity over apoptosis is likely due to its differential regulation
of pro-apoptotic and anti-apoptotic target genes. In neurons,
c-Jun regulates the expression of Bim, a pro-apoptotic Bcl-2
family member that is crucial for neuronal apoptosis. While in T
cells, c-Jun regulates the expression of Fas ligand (FasL), which
upon binding to the Fas receptor triggers apoptosis (Eferl and
Wagner, 2003; Hess et al., 2004; Shaulian, 2010). Bcl-2 family
members are also part of the list of anti-apoptotic targets that

are regulated by AP-1 (Kirkin et al., 2004). In T cells, Jun
members exert a protective signal through the induction of Bcl-3,
while in myeloid cells, inactivation of JunB leads to reduced
apoptosis with increased expression of the anti-apoptotic Bcl-2
gene (Kyriakis, 1999; Srivastava et al., 1999; Kirkin et al., 2004)
have shown that hepatocytes deficient for c-Jun or JunD are
highly sensitive to tumor necrosis factor-α-induced apoptosis,
thus suggesting that c-Jun and JunD might regulate genes that
protect cells from TNF-α-induced-cell death. Those studies have
demonstrated that depending on the type of extracellular stimuli
and on the cellular context, activation of AP-1 can have a different
outcome on the cell fate. Therefore, the role and function of AP-1
in cancer development should be examined within the context
of a complex network of simultaneously triggered signaling
pathways.

REGULATION OF AP-1 DURING HTLV-1
INFECTION

Human T-cell leukemia virus type 1 can infect a variety of cell
types in vivo, including T cells, B cells, and macrophages (Jones
et al., 2008; Pique and Jones, 2012; Gross and Thoma-Kress, 2016;
Rizkallah et al., 2017). The HTLV-1 provirus is detected mainly in
CD4+ T cells and to lesser extent in CD8+ T cells (Richardson
et al., 1990; Iwahashi et al., 1991; Melamed et al., 2015). This
asymmetry in detection may be caused by recruitment of CD4+
T cells and induction of their proliferation following HTLV-1
infection in contrast to a delayed cell death in CD8+ T cells
(Sibon et al., 2006; Alais et al., 2015). A subset of HTLV-1-infected
individuals will develop ATL after an extended period of time
(Matsuoka and Jeang, 2007; Kannian and Green, 2011). Infected
cells, however, must initiate proliferation and evade apoptosis as a
prelude to immortalization and transformation. Virally encoded
oncogenic proteins are known to dysregulate various cellular
pathways or processes through the regulation of the activity of
target proteins. HTLV-1 transforms T cells via its transactivator
Tax, which interferes with pathways regulating cell growth
control through activation of various cellular transcription
factors (NF-κB, E2F, and AP-1) (Fujii et al., 2000; Peloponese
et al., 2006; Journo et al., 2009) and inactivation of p53 (Tabakin-
Fix et al., 2006). Since AP-1 has been implicated in transformation
of T cells, it has been hypothesized that inappropriate activation
of AP-1 could contribute to the dysregulated phenotype of
HTLV-1-infected cells or to the development of ATL. Indeed,
ATL leukemic cells exhibit increased levels of mRNAs encoding
JunD and Fra-2 (Nakayama et al., 2008; Terol et al., 2017)
and high levels of AP-1-binding activity (Fujii et al., 2000;
Iwai et al., 2001), with in addition, AP-1, more specifically
c-Jun/c-Fos heterocomplex, induces HTLV-1 promoter activity
and thus participates in HTLV-1 basal transcription (Jeang et al.,
1991).

Activation of the AP-1 Pathway by Tax
during Acute HTLV-1 Infection
The phosphoprotein Tax is encoded within the pX region
of HTLV-1 genome and is a viral regulatory protein. This
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protein mainly localizes to the nucleus and is a well-known
trans-activator of the HTLV-1 long terminal repeat (LTR)
operating through three 21-bp repeats called Tax-responsive
elements (TxREs) (Meertens et al., 2004; Grassmann et al.,
2005). Its pleiotropic properties confer a pivotal role for Tax
toward viral pathogenicity and immortalization/transformation
of infected cells, causing the onset of HTLV-1-associated diseases
(Giam and Jeang, 2007; Peloponese et al., 2007). Indeed, the
protein is sufficient for immortalizing primary human T cells
and rodent fibroblasts as well as inducing tumors in nude mice
inoculated with Tax-transformed cells (Grassmann et al., 2005).
Furthermore, Tax interferes with important functions, leading to
cell cycle dysregulation and promoting in vivo clonal expansion
(Giam and Jeang, 2007; Peloponese et al., 2007). Moreover, Tax
can alter the expression of cellular proteins involved in cell
growth and proliferation such as cytokines (Grassmann et al.,
2005; Matsuoka and Jeang, 2010). Importantly, this trans-acting
factor also acts as a transcriptional regulator of gene expression
by recruiting or modifying the activity of cellular transcription
factors (such as CREB protein, SRF, NF-κB, and notably AP-1)
through direct or indirect interactions (Grassmann et al., 2005;
Matsuoka and Jeang, 2010).

Tax activates the transcription of cellular genes by activating
AP-1 DNA binding to promoter elements in T cells (Fujii et al.,
2000; Iwai et al., 2001; Figure 3). Thus, activation of AP-1 by
Tax is thought to contribute to the deregulated phenotypes and
leukemogenesis of T cells infected with HTLV-I. Among these
factors, c-Fos, Fra-1, c-Jun, JunB, and JunD genes have been
shown to be activated by Tax at the transcriptional level (Fujii
et al., 2000; Iwai et al., 2001; Figure 3). Interestingly, exogenous
expression of Tax in Jurkat cells induced AP-1-dependent
transcription of a reporter gene more efficiently than any
combinations of AP-1 proteins (Fujii et al., 2000; Iwai et al.,
2001). Thus, the well-known induction of expression of multiple
Fos and Jun family members by Tax is known to be essential,
but may not be sufficient, for the transcriptional activation
of AP-1 sites mediated by Tax (Fujii et al., 2000; Iwai
et al., 2001). Since DNA-binding activity and transcriptional
activation of AP-1 are regulated at a post-translational level,
Tax might be involved in this regulation (Fujii et al., 2000;
Iwai et al., 2001). Tax contributes to the high activity of
AP-1 in HTLV-1-infected cells through different mechanisms
with intricate ramifications in cascade signaling (Figure 3).
A constitutive activation of JNK had initially been reported in
HTLV-1-infected cells, such as Tax-expressing MT-2 cells and
Tax-ATL primary cells. Furthermore, this activity seemed to
depend on the status of infection (Xu et al., 1996). Interestingly,
Tax is responsible for the constitutive activation of PI3K/Akt by
impairing the association between the catalytic (p110) and the
regulatory subunit (p85) leading to Akt Ser 473 phosphorylation
in HTLV-1-infected cell lines (Peloponese and Jeang, 2006;
Figure 3).

Pathways lying upstream of AP-1 are normally activated
in response to external stimuli whereas Tax overrides this
requirement (Figure 3). Additionally, the PI3K/Akt-AP-1
pathway had been involved in survival and is likely to be
required for the immortalization of HTLV-1-infected cells (Jeong

et al., 2005). Indeed, Tax even in the absence of NF-κB
signaling is able to activate the Akt/PI3K pathway, which
upon inhibition by dominant-negative mutants for Akt or for
c-Jun abolishes the proliferation of Tax-transfected cell lines
as well as the transformed phenotype (Peloponese and Jeang,
2006). AP-1 sites are Tax-inducible elements in different cellular
genes, which promote cell proliferation and are associated
with clinical characteristic features of ATL (Figure 3). Among
target genes regulated by AP-1-binding sites, Tax activates
growth-promoting cytokine genes, such as IL-2, IL-5, IL-13, as
well as proinflammatory cytokines, such as IL-8 and TNF-a,
and further induces the expression of immunosuppressors, like
TGF-b1 and proenkephalin (PENK). This deregulation implies
different combinations of dimerized AP-1 complex although they
have not all been characterized as to their targeted promoters
(Brady, 1992; Waldmann, 1996; Yamada et al., 1996; Jeang, 2001;
Hall and Fujii, 2005).

Tax does not always activate cellular promoters bearing
AP-1-binding site (for example, the collagenase gene) (Hall and
Fujii, 2005). Rather, another mechanism, by which promoter
could be regulated by Tax through AP1, is linked to the binding
of Tax and c-Jun to an overlapping region corresponding to
the KIX domain of CBP. This could induce a competition
between these two proteins for CBP interaction and lead to the
repression of c-Jun transcription activity by Tax (Van Orden et al.,
1999; Van Orden and Nyborg, 2000). Although Tax induces the
transactivation of the TGF-b1 promoter through AP-1 sites, Tax
inhibits TGF-b1 signaling by reducing DNA-binding activity of
Smad3 through a Smad3/c-Jun complex, which might be involved
in the resistance of TGF-b1-induced growth inhibition observed
in ATL cells, an important step in the pathogenesis of ATL
(Arnulf et al., 2002). An opposite effect could be imputed to HBZ
which could overcome the repressing effect of Tax on TGF-b1
signaling (Zhao et al., 2011). Tax might not solely account for
the constitutive activity of AP-1, since a high activity of AP-1 has
been detected in primary Tax− leukemia cells of ATL patients
(Fujii et al., 2000). These observations indicate that AP-1 is
activated in HTLV-1-infected T cells through Tax-dependent and
Tax-independent mechanisms.

Hijacking of the AP-1 Signaling Pathway
by HBZ
Within its antisense strand, HTLV-1 codes for a bZIP factor,
which was appropriately named HBZ (HTLV-I bZIP factor)
(Gaudray et al., 2002; Mesnard et al., 2006). HBZ can express
under three isoforms: one unspliced form (usHBZ) and two
alternatively spliced forms (HBZ-SP1 and HBZ-SP2) (Cavanagh
et al., 2006; Murata et al., 2006) with HBZ-SP1 (or sHBZ)
being the most abundant spliced variant. sHBZ is a 31-kDa
protein with an N-terminal transcriptional activation domain, a
central domain involved in nuclear localization, and a C-terminal
bZIP domain (Gaudray et al., 2002; Mesnard et al., 2006).
Sequence comparison between HBZ bZIP region and several
bZIP factors clearly indicates that HBZ possesses a c-Fos-like
bZIP domain although its DNA-binding domain lacks the
consensus amino acid sequence bb-bN–AA-b(C/S)R-bb thought
to be critical for DNA binding. HBZ interacts with all the
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FIGURE 3 | Mechanisms of Tax activation of AP-1 pathway. Pathways upstream of AP-1 are normally activated in response to external stimuli whereas presence of
Tax overrides this requirement. Indeed Tax is able to activate the Akt/PI3K pathway as well as the SRF pathways thus activating at the transcription of c-Fos, Fra-1,
c-Jun, JunB, and JunD genes. By interacting with the JNK inhibitor G-protein pathway suppressor 2 (GPS2), Tax also participate to the exhibited highly activity of
AP-1 in HTLV-1 infected cells through a constitutive activation of JNK (Jin et al., 1997). Interestingly, AP-1 proteins such as c-Jun and c-Fos activate the transcription
through the 21 bp repeat in HTLV-1 LTR.

members of the Jun family (JunB, c-Jun, and JunD), and
differently regulates the transcriptional properties of the Jun
family (Basbous et al., 2003; Hivin et al., 2005, 2007; Clerc et al.,
2009).

Sequestration of JunB and c-Jun in HBZ
Nuclear Bodies Inhibits Their
Transcriptional Activities
HTLV-1 basic leucine-zipper factor is a nuclear protein,
which not only accumulates in specific nuclear bodies (called
here HBZ-NBs) but is targeted to nucleoli (Hivin et al.,
2005). Using a fluorescence recovery after photobleaching
approach (FRAP) and an EGFP-tagged-HBZ, Hivin et al.
(2007) have observed that the deletion of its leucine-zipper
domain altered the rate of nuclear flux of HBZ, suggesting
that HBZ heterodimerization partners are involved in
controlling its own nuclear trafficking. Indeed, HBZ modifies
the localization of JunB and targets JunB to the HBZ-NBs.
Moreover, the relocalization of JunB into HBZ-NBs inhibits
its transcriptional activity (Hivin et al., 2007; Clerc et al., 2009;
Figure 4).

Although HBZ and c-Fos can both interact with c-Jun,
they differ greatly in their abilities to activate transcription
of AP-1-regulated genes. Indeed, the interaction of HBZ
with c-Jun prevents this transcription factor from activating

transcription of AP-1-dependent promoters by decreasing its
DNA-binding activity (Clerc et al., 2009). The generation of
different c-Fos/HBZ chimeras by region swapping indicates
that the HBZ DNA-binding motif has an important impact
on the transcriptional activity of both transcription factors
in the presence of c-Jun (Hivin et al., 2007; Clerc et al.,
2009). Indeed, the mutant HBZ-mutMD/DBD, for which specific
residues present in the MD and DBD regions of HBZ were
substituted for corresponding amino acids of c-Fos, showed
a significant in vitro affinity for the AP-1-binding site TRE
but remained unable to stimulate promoter activity of the
AP-1-dependent collagenase gene in vivo. Like JunB, c-Jun is also
relocalized to HBZ-NBs in the presence of HBZ-mutMD/DBD,
while this transcription factor is diffusely distributed throughout
the nucleus in the presence of HBZ-H14F (a construction in
which the bZIP domain of HBZ-mutMD/DBD was replaced
by the corresponding ZIP domain of c-Fos), suggesting that
HBZ- inhibits c-Jun DNA-binding capacity in vivo mainly by its
sequestration to the HBZ-NBs (Hivin et al., 2007; Clerc et al.,
2009) (Figure 4 blue circle).

HBZ Promotes the Proteosomal
Degradation of c-Jun
HTLV-1 basic leucine-zipper factor can also decrease the stability
of c-Jun in cells and promote its degradation (Matsumoto et al.,
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FIGURE 4 | Differential effects of HBZ on the Jun family proteins. HBZ specifically interacted with all three members of the Jun Family (JunB, c-Jun, and JunD), but it
regulates differently the transcriptional properties of the Jun family. HBZ dramatically suppressed c-Jun- and JunB-induced transcriptional activation from the AP-1
element by sequestering c-Jun and JunB into HBZ-NB and by decreasing the steady-state level of c-Jun and the stability of c-Jun protein in cells through a
proteasome-dependent pathway. It is particularly interesting to note that HBZ has a different and opposite action on JunD expression. HBZ can stimulate the
transcription of JunD and by nuclear retention of RPS25, HBZ allows the expression of an alternative isoform of JunD called 1JunD. Furthermore, HBZ cooperates
with JunD and sp1 to enhance transcription of the 3′-LTR and also the human telomerase reverse transcriptase gene (hTERT).

2005). Indeed, in cells transfected with usHBZ, Matsumoto et al.
(2005) observed that treatment with proteasome inhibitors but
not with calpain inhibitors prevented the reduction in the steady
state of c-Jun, suggesting that this HBZ-mediated reduction
in c-Jun abundance could also occur through a proteasome-
dependent pathway. It has also been suggested by Isono et al.
(2008) that HBZ could act as a tethering factor between the 26S
proteasome and c-Jun (Figure 4). However, c-Jun is less degraded
by sHBZ (also called HBZ-SP1) than by usHBZ (Isono et al.,
2008) and it remains unclear how both isoforms of HBZ could
inhibit c-Jun through two different mechanisms.

HBZ Activates the Transcriptional
Activity of JunD
It is particularly interesting to note that HBZ has a different and
opposite effects on c-Jun- and JunD-dependent transcription.
Indeed, these two proteins belong to the same family of
transcription factors, but they are very different proteins. In
JunD expressing cells, HBZ is diffusely distributed throughout
the nucleoplasm, while no HBZ-NBs are formed (Hivin et al.,
2007). Interestingly, JunD is the only Jun family member, which
can be activated by HBZ (Thebault et al., 2004; Kuhlmann
et al., 2007). It is worth noting that the presence of the
EQERRE motif in HBZ modulates JunD activity (Hivin et al.,
2005). When the HBZ DNA-binding motif is substituted by the
c-Fos modulatory domain, HBZ is no longer able to stimulate
the transcriptional activity of JunD, although no alteration

in the JunD DNA-binding activity is observed (Hivin et al.,
2005). It is important to note that the abundance and activity
of JunD increase in freshly isolated ATL cells concomitantly
with an increase of HBZ expression (Nakayama et al., 2008;
Terol et al., 2017). These observations suggest that HBZ
modulates its own expression through a positive-feedback loop
in resting cells that involves cooperation with JunD (Figure 4).
Indeed, in HTLV-1-infected cells, HBZ enhances expression of
JunD, which leads to the association of JunD and HBZ to
Sp-1 bound to the 3′′-LTR-containing antisense promoter and,
ultimately, to the activation of hbz transcription (Gazon et al.,
2012).

In association with JunD and Sp-1, HBZ also activates
the transcription of the human telomerase catalytic subunit
gene (hTERT) (Kuhlmann et al., 2007). Telomerase, a
ribonucleoprotein complex that extends telomeres which
are essential for protecting chromosomal ends against end–end
fusions or degradation (Cong et al., 2002; Brunori et al., 2005;
Segal-Bendirdjian and Gilson, 2008). While mouse telomerase
(mTERT) is activated in many normal tissues, human cells
rarely spontaneously reactivate expression of the telomerase
gene, as its expression is tightly regulated (Cong et al., 2002;
Brunori et al., 2005; Segal-Bendirdjian and Gilson, 2008).
However, 75–85% of cancer cells including ATL cells present
an increase in telomerase expression and activity (Uchida et al.,
1999; Brunori and Gilson, 2004; Brunori et al., 2005; Shay and
Wright, 2011). Human telomerase is composed of a structural
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RNA component (hTERC), which contains an 11-base sequence
complementary to the telomeric single-stranded overhang acting
as a template for the synthesis of telomeric DNA. The other main
component of the hTERT is its enzymatic reverse transcriptase
subunit (Cong et al., 2002; Brunori et al., 2005; Segal-Bendirdjian
and Gilson, 2008). Expression of hTERT is regulated mainly at
the transcriptional level. The proximal 180 bp of the hTERT
promoter, which does not contain any AP-1-binding site, is
important for maintaining basal transcriptional activity and
is thought to be the essential component for its regulation.
Interestingly, Kuhlmann et al. (2007) have observed an increase
in hTERT transcripts in cells co-expressing HBZ and JunD.
Chromatin immunoprecipitation (ChIP) assays revealed that
HBZ/JunD heterodimers interact with Sp1 and that activation
of hTERT transcription by this trimer is mediated through
Sp-1-binding sites present in the core region of the hTERT
promoter (Kuhlmann et al., 2007).

We recently uncovered an additional mechanism used by HBZ
to turn JunD from a growth suppressor to a tumor promoter
(Terol et al., 2017). JunD is an intronless gene and produces two
predominant isoforms by alternative initiation of translation, a
39-kDa protein (JunD-FL) through initiation from the first AUG
codon and a shorter, 34-kDa JunD protein (1JunD) through the
use of the second in-frame AUG codon (Hirai et al., 1989; Berger
and Shaul, 1994; Short and Pfarr, 2002). Several studies indicated
that JunD-FL and 1JunD are differentially regulated through
interactions with other nuclear proteins (Hirai et al., 1989; Berger
and Shaul, 1994; Short and Pfarr, 2002). For example, menin,
the product of the tumor-suppressor MEN-1 gene, represses
JunD-FL transcriptional activity by interacting through its first
48 amino acids (Agarwal et al., 1999; Yazgan and Pfarr, 2001).
Loss of menin expression or lost the ability of menin to bind
JunD confers JunD with growth-promoting capabilities (Agarwal
et al., 2003). 1JunD does not bind menin, and its transcriptional
activity is unaffected by menin overexpression (Yazgan and Pfarr,
2001). In addition, JNK binds and activates JunD-FL more
efficiently than 1JunD, even though both JunD isoforms contain
a JNK-docking domain and three JNK phosphorylation target
sites. It is interesting to note that freshly isolated ATL cells
and HBZ-expressing T lymphocytes express both JunD isoforms
(Yazgan and Pfarr, 2002).

JunD mRNA contains a third functional out-of-frame ORF
(uORFs) positioned between the ATG of JunD-FL and ATG
of 1JunD (Short and Pfarr, 2002). Translation of downstream
ORFs by uORF appears to be a common translational regulatory
mechanism, as uORFs are present in two-third of mRNAs
encoding oncoproteins and proteins that regulate important
cellular processes. Alteration of protein expression levels by
disruption or creation of uORF has been associated with the
development of several human disease such as Alzheimer’s
disease, acute myeloid leukemia, and breast cancer (Short and
Pfarr, 2002; Zhou and Song, 2006; Wethmar et al., 2010; Barbosa
et al., 2013). HBZ relieves uORF translational control by reducing
the cellular abundance of RPS25, a ribosomal protein known
to play a key role in several alternative translation mechanisms
(Nishiyama et al., 2007). Using an immortalized fibroblast cell
line model, we found that 1JunD exhibits growth-promoting

and -transforming activities that are enhanced in presence of
HBZ (Terol et al., 2017). In summary, it has been proposed that
HBZ/JunD heterodimers induce down-regulation of lymphocyte
activation and viral transcription to favor viral latency and
persistence of the infected cells. Future studies will aim to clarify
how HBZ/JunD and/or HBZ/1JunD coordinately drive cell fate
toward cellular transformation.

PERSPECTIVES AND CONCLUSION

Activating protein-1 family members have both overlapping
and unique roles, and the transcriptional activity of the AP-1
dimer functions in a tissue-specific fashion (Shaulian, 2010).
With respect to this important fact, recent studies have included
the analysis of expression and/or activity of all Jun and Fos
family members. Thus, it has been demonstrated that malignant
transformation and tumor progression is accompanied by a
cell-type-specific shift in AP-1 dimer composition (Verma et al.,
1990; Radler-Pohl et al., 1993; Karin et al., 1997; Tulchinsky,
2000; Shaulian and Karin, 2002; Eferl and Wagner, 2003;
Milde-Langosch, 2005; Hernandez et al., 2008; Shaulian, 2010).
Those studies support a model, in which a shift in the
expression pattern of the Fos family members is a crucial
step in carcinogenesis and/or tumor progression (Tulchinsky,
2000; Milde-Langosch, 2005). Indeed, while uninfected CD4+
T-lymphocytes express mainly c-Jun and c-Fos proteins,
ATL-leukemic cells are expressing JunD and Fra-2 (Nakayama
et al., 2008; Terol et al., 2017). Due to their lack of a
trans-activating domain, it has been suggested that Fra-1 and
Fra-2 might exert anti-tumor effect and inhibit tumor cell growth.
Yet, recent studies point to a positive effect of Fra-1, and partly
Fra-2, on tumor growth (Young and Colburn, 2006; Milde-
Langosch et al., 2008; Nakayama et al., 2008; Davies et al.,
2011; Higuchi et al., 2013; Wang et al., 2014; Gupta et al.,
2015).

Indeed, gene substitution experiments in mice have shown
that growth retardation and osteoporosis observed in c-Fos null-
mice were rescued by Fra-1 overexpression, although Fra-1 failed
to induce expression of c-Fos target genes, such as MMP13 and
vimentin (Young and Colburn, 2006). This observation is in
line with results obtained in various cancer cell types, in which
Fra-1 alters the biological behavior of the cells without directly
activating AP-1-responsive promoters (Zerbini et al., 2003;
Young and Colburn, 2006). Surprisingly, in most of the clinical
tumor samples analyzed so far, Fra-1 expression is lower than in
normal cells, and the protein is poorly phosphorylated (Zerbini
et al., 2003; Young and Colburn, 2006). These observations
raised several interesting questions on the true role of Fra-1
in oncogenesis and tumor progression. Indeed, whether the
low level Fra-1 expression is due to tumor heterogeneity and
if expression Fra-1 in specific clones within the tumors have
a similar effect to what is seen in experimental systems and
contributes to local invasion and metastasis should be further
studied. In contrast to the bulk of data available on the function of
c-Fos and Fra-1 in carcinogenesis, far less is known on the role of
other Fos family members (FosB, FosB2, deltaFosB2, and Fra-2),
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which are often found expressed in high levels in cancer tissues.
Further study of the role of all Fos proteins in carcinogenesis will
be of great importance.
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