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In this article, we introduce a new proximal interior point algorithm (PIPA). This algorithm is able to handle convex optimization problems involving various constraints where the objective function is the sum of a Lipschitz differentiable term and a possibly nonsmooth one. Each iteration of PIPA involves the minimization of a merit function evaluated for decaying values of a logarithmic barrier parameter. This inner minimization is performed thanks to a finite number of subiterations of a variable metric forward-backward method employing a line search strategy. The convergence of this latter step as well as the convergence the global method itself are analyzed. The numerical efficiency of the proposed approach is demonstrated in two image processing applications.

Introduction

Many problems in image processing, such as segmentation [START_REF] Chan | Active contours without edges[END_REF], classification [START_REF] Briceño-Arias | A random block-coordinate Douglas-Rachford splitting method with low computational complexity for binary logistic regression[END_REF], or restoration [START_REF] Nikolova | A variational approach to remove outliers and impulse noise[END_REF], can be formulated as the minimization of a convex objective function under convex constraints. This type of problem can be successfully addressed by interior point methods (IPMs) [START_REF] Wright | Interior methods for constrained optimization[END_REF][START_REF] Forsgren | Interior methods for nonlinear optimization[END_REF][START_REF] Gondzio | Interior point methods 25 years later[END_REF]. Instead of tackling directly the original optimization problem, IPMs solve a sequence of intermediate problems parametrized by a barrier parameter going to zero. In each intermediate problem, the original objective function is penalized with a logarithmic barrier, which is unbounded at the boundary of the feasible set. This modified objective function is referred to as a merit function. Thanks to the introduction of the barrier term, IPMs produce only strictly feasible iterates, which can be beneficial from the application viewpoint and also boost convergence. For instance, under suitable assumptions, the primal-dual interior point algorithm proposed in [START_REF] Gould | Superlinear convergence of primal-dual interior point algorithms for nonlinear programming[END_REF] presents superlinear convergence in the context of nonlinear programming. From a numerical perspective, IPMs have demonstrated very good performance on several challenging applications, such as image reconstruction [START_REF] Johnson | Interior-point methodology for 3-D PET reconstruction[END_REF] and multispectral image unmixing [START_REF] Chouzenoux | Fast constrained least squares spectral unmixing using primal-dual interior-point optimization[END_REF]. It is worth noting that most of interior point approaches rely on first or second-order methods and, therefore, assume that the objective function is at least twice-differentiable [START_REF] Armand | A feasible BFGS interior point algorithm for solving convex minimization problems[END_REF][START_REF] Bonettini | Non-negatively constrained image deblurring with an inexact interior point method[END_REF]. However, in many image processing applications, the quality of the solution and its robustness to noise may be improved by including a nondifferentiable regularization term in the objective function. For instance, the the 1 norm [START_REF] Fu | Efficient minimization methods of mixed 2-1 and 1-1 norms for image restoration[END_REF][START_REF] Kim | An interior-point method for large-scale 1 -regularized least squares[END_REF][START_REF] Fountoulakis | Performance of firstand second-order methods for 1 -regularized least squares problems[END_REF], for more general non-smooth penalizations, approaches relying on the proximity operator 1 seem more appropriate [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF]. In most applications, the objective function is actually composite, in that it can be split into a nonsmooth term and a differentiable term. Some proximal resolution methods take advantage of this decomposition [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF], such as the widely-used forward-backward (FB) algorithm [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF], where each iteration is made of two steps, namely a gradient step (i.e., forward) on the differentiable term, and a proximal step (i.e. backward) on the nonsmooth term. The FB algorithm can be accelerated by using a so-called variable metric or preconditioner . For instance, in [START_REF] Chen | Convergence rates in forward-backward splitting[END_REF][START_REF] Combettes | Variable metric forwardbackward splitting with applications to monotone inclusions in duality[END_REF], the convergence of a variable metric forward-backward (VMFB) method is established in the convex setting under a monotonicity condition. Recent works [START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF][START_REF] Frankel | Splitting methods with variable metric for Kurdyka-Lojasiewicz functions and general convergence rates[END_REF] relying on the Kurdyka-Lojasiewicz (KL) inequality [START_REF] Lojasiewicz | Une propriété topologique des sousensembles analytiques réels[END_REF][START_REF] Kurdyka | On gradients of functions definable in ominimal structures[END_REF][START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF] extend this convergence result to nonconvex problems, under milder boundedness condition on the variable metrics. The KL property is also useful for deriving convergence rates [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF][START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF]. Proximal and interior point methods can be combined in efficient solvers, as illustrated in [START_REF] Kaplan | Proximal methods in view of interior-point strategies[END_REF], where the authors proposed an algorithm that minimizes a convex differentiable function over convex inequality constraints. However, this framework does not make use of any splitting strategy, hence it assumes that the proximity operator of the merit function is easy to compute. More recently, a preconditioning strategy based on the logarithmic barrier was proposed in [START_REF] Valkonen | Interior-proximal primal-dual methods[END_REF] to modify the dual update in a proximal primal-dual algorithm. A major challenge, when dealing with IPMs is that the logarithmic barrier does not satisfy the gradient-Lipschitz property. Therefore, specific line search strategies have to be designed in order to preserve the convergence properties of the methods used to solve the subproblems [START_REF] Chouzenoux | Majorizeminimize linesearch for inversion methods involving barrier function optimization[END_REF]. This question has also been addressed in the context of VMFB algorithms, when the gradient of the smooth term in the objective function is not globally Lipschitz-continuous. Following the work of [START_REF] Tseng | A coordinate gradient descent method for nonsmooth separable minimization[END_REF], Armijo-type line searches were proposed in [START_REF] Bello Cruz | On the convergence of the forward-backward splitting method with linesearches[END_REF][START_REF] Bonettini | Variable metric inexact line-search-based methods for nonsmooth optimization[END_REF], where the convergence of the algorithm is obtained in a convex setting under suitable assumptions on the variable metrics. However, the line search strategy in [START_REF] Bello Cruz | On the convergence of the forward-backward splitting method with linesearches[END_REF] requires multiple gradient computations, while [START_REF] Bonettini | Variable metric inexact line-search-based methods for nonsmooth optimization[END_REF] requires the domain of the nondifferentiable function to be closed. Other line searches have also been studied in [START_REF] Salzo | The variable metric forward-backward splitting algorithm under mild differentiability assumptions[END_REF], where convergence guarantees and convergence rate in terms of function values are provided for the convex case. It is worth noting that, similarly to [START_REF] Bonettini | New convergence results for the scaled gradient projection method[END_REF], [START_REF] Salzo | The variable metric forward-backward splitting algorithm under mild differentiability assumptions[END_REF] considers a relaxed version of the monotonicity condi-1 see http://proximity-operator.net/ tion on the variable metrics from [START_REF] Combettes | Variable metric forwardbackward splitting with applications to monotone inclusions in duality[END_REF], where the metrics converge to a multiple of the identity operator, with a multiplicative factor which is allowed to vary along iterations. This assumption still remains restrictive compared to the conditions required in [START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF], where the proof of convergence is carried out using the KL property. In this paper, we propose to combine the VMFB algorithm with the logarithmic barrier method, leading to a proximal interior point algorithm, which is referred to as PIPA. We will make use of one of the line searches investigated in [START_REF] Salzo | The variable metric forward-backward splitting algorithm under mild differentiability assumptions[END_REF] to determine the stepsize value for each iteration of the proposed algorithm. Since our assumptions on the function domains are different from those in [START_REF] Salzo | The variable metric forward-backward splitting algorithm under mild differentiability assumptions[END_REF], we prove that the line search remains valid in our context. Furthermore, we carry out the convergence analysis of the proposed algorithm under a mild boundedness condition on the involved variable metrics. Under some additional assumptions, we derive a linear convergence rate for the inner loop involved in PIPA. We show that the proposed algorithm performs well with respect to state-of-the-art methods on two applications in image processing, namely hyperspectral unmixing and joint geometry-texture decomposition and reconstruction of computed tomography (CT) data. Our numerical experiments demonstrate in addition the benefits of using a variable metric to accelerate the convergence of PIPA. The article is organized as follows. Mathematical notation and definitions are provided in Section 2, where the proposed method is detailed and summarized in Algorithms 1 and 2. Section 3 is dedicated to the mathematical analysis of PIPA. Our main theoretical results are provided in Section 3.1, while the proofs for these results are given in the following sections. In Section 3.2 we show that the line search and inner loop in PIPA are well-defined, and in Section 3.3 we demonstrate the linear convergence rate of Algorithm 1 for a useful case where the KL property is satisfied. In Section 3.4 we prove the convergence results regarding PIPA, i.e. Algorithm 2. Numerical experiments are presented in Section 4 and some conclusions are drawn in Section 5.

Proximal interior point method

Notation and definitions

In this paper, R n denotes the n-dimensional Euclidean space endowed with the standard scalar product •, • and the norm • . The set of symmetric positive definite matrices in R n×n is referred to as S n . For every matrix A ∈ S n , |||A||| denotes its spectral norm and • A denotes the norm induced by A, i.e. 

• A = •, A• 1/2
→ R ∪ {+∞}, its domain is defined as domf = {x ∈ R n | f (x) = +∞}.
A function is said proper if its domain is nonempty. The set of functions which are proper, convex, lower semicontinuous (lsc) on R n and take values in R ∪ {+∞}, is denoted as Γ 0 (R n ). For every set D ⊂ R n , D denotes its closure.

Definition 1 (Lipschitz-continuity) A function f : R n → R p is said Lipschitz-continuous if there exists L ≥ 0 such that (∀(x, y) ∈ (domf ) 2 ) f (x) -f (y) ≤ L x -y .
The proximity operator [START_REF] Rockafellar | Variational analysis[END_REF][START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF], which is defined below, is a fundamental tool in convex analysis [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Pustelnik | Parallel proximal algorithm for image restoration using hybrid regularization[END_REF][START_REF] Lee | Practical large-scale optimization for max-norm regularization[END_REF].

Definition 2 (Proximity operator) For every f ∈ Γ 0 (R n ), A ∈ S n and x ∈ R n , the proximity operator of f at x, with regards to the norm induced by A, is defined as

prox A f (x) = argmin y∈R n f (y) + 1 2 x -y 2 A . (1) 
In Definition 2, when A is not specified, then the standard Euclidean norm is used, i.e. A = I n . If prox f is simple to compute, then the solution to (1) for an arbitrary A ∈ S n can be obtained by using the dual forward-backward (DFB) algorithm [START_REF] Combettes | Proximity for sums of composite functions[END_REF] or its accelerated version [START_REF] Abboud | Dual block-coordinate forwardbackward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF].

Definition 3 (Moreau Subdifferential) Let f : R n → R ∪ {+∞} be proper. The subdifferential of f is the set-valued operator ∂f such that, for every

x ∈ R n , ∂f (x) = {u ∈ R n | (∀y ∈ R n ) y -x, u + f (x) ≤ f (y)}.
The subdifferential, defined hereabove, provides an equivalent characterization for the proximity operator. From [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 16.44], it follows that for every

f ∈ Γ 0 (R n ), A ∈ S n , x ∈ R n , and z ∈ R n z = prox A f (x) ⇐⇒ x -z ∈ A -1 ∂f (z). (2) 
The proximity operator exhibits many useful properties, in particular it is firmly nonexpansive [ 

(R n ), if g is differentiable on a neighborhood of x ∈ R n , then x is a minimizer of f + g if and only if x = prox f (x -∇g(x)).
Definition 4 For every η > 0, Φ η is the set of continuous concave functions φ : [0, η[→ [0, +∞[ such that φ(0) = 0, φ is C 1 on ]0, η[ and continuous at 0 and, for every s ∈]0, η[, φ (s) > 0.

From the above definition, we can state the so-called Kurdyka-Lojasiewicz (KL) property. Following the seminal work of Lojasiewicz and Kurdyka, the KL property has been extensively used for proving the convergence and obtaining convergence rates of optimization methods for possibly nondifferentiable functions, both in the convex and nonconvex case [START_REF] Bolte | The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems[END_REF][START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF].

Definition 5 (KL property [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF]) Let f : R n → R ∪ {+∞} be proper and lower semicontinuous. The function f is said to have the Kurdyka-Lojasiewicz (KL)

property at x ∈ dom∂f = {x ∈ R n | ∂f (x) = ∅} if there exist η ∈]0, +∞], a neighborhood Ω of x and a function φ ∈ Φ η , such that for all x ∈ Ω such that f (x) < f (x) < f (x) + η, the following inequality holds φ (f (x) -f (x))dist(0, ∂f (x)) ≥ 1.
If f satisfies the KL property at each point of dom∂f , then f is called a KL function.

The KL property is satisfied in most practical optimization applications and, for a wide class of functions, the reparametrization φ has a specific form and can be written (∀s ∈ [0, η[) φ(s) = cs 1-α for some c > 0 and α ∈ [0, 1[. This parameter α is called the KL exponent and can be made explicit under some conditions, as detailed in [START_REF] Li | Calculus of the exponent of Kurdyka-Lojasiewicz inequality and its applications to linear convergence of first-order methods[END_REF]. This is of particular interest because this exponent can help derive convergence rates for many optimization methods, as proven for instance in [START_REF] Attouch | On the convergence of the proximal algorithm for nonsmooth functions involving analytic features[END_REF]Theorem 2] or [START_REF] Attouch | Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality[END_REF]Theorem 3.4].

Optimization problem and assumptions

In this paper we consider the following constrained convex minimization problem,

P 0 : minimize x∈R n f (x) + g(x) subject to (∀i ∈ {1, . . . , p}) c i (x) ≤ 0, (3) 
where p > 0, and Assumption 1 below is satisfied.

Assumption 1 (i) The set of solutions to P 0 is nonempty and bounded.

(ii) Functions f , g and (c i ) 1≤i≤p belong to Γ 0 (R n ), and f + g is bounded from below. The set 

D = {x ∈ R n | (∀i ∈ {1, . . . , p}) c i (x)
D = {x ∈ R n | (∀i ∈ {1, . . . , p}) c i (x) ≤ 0}.
In image processing, the constraints can be derived from the underlying geometry of the problem [START_REF] Harizanov | Epigraphical projection for solving least squares Anscombe transformed constrained optimization problems[END_REF]. For instance, inequality constraints are used in a problem of deformable image matching in [START_REF] Musse | Topology preserving deformable image matching using constrained hierarchical parametric models[END_REF] to ensure that the estimated image deformation is injective and preserves the topology. Constraints can also serve to enforce some a priori knowledge about the solution, and act as regularization terms, as in the image segmentation approach in [START_REF] Klodt | A convex framework for image segmentation with moment constraints[END_REF], where bound constraints are imposed on the segmented areas and their barycenters. Following the framework of interior point methods, we propose to reformulate the constrained problem P 0 as a sequence (P µj ) j∈N of modified subproblems parametrized for every j ∈ N by a so-called barrier coefficient µ j > 0 and defined as

P µj : minimize x∈R n f (x) + g(x) + µ j B(x) (4) 
where B is the logarithmic barrier associated with the constraints:

B : R n → R ∪ {+∞} x →      - p i=1 ln(-c i (x)) if x ∈ D +∞ otherwise.
For simplicity we introduce the shorter notation:

(∀x ∈ R n ) c(x) = (c i (x)) 1≤i≤p ∈ R p , and 
(∀µ > 0) ϕ µ = g + µB, Ψ µ = f + ϕ µ .
Ψ µ is designated as merit function.

PIPA algorithm

The proposed method, PIPA, is made of two interlocked loops, which are detailed in Algorithms 1 and 2. Given j ∈ N, Algorithm 1 produces an approximate solution to P µj via VMFB steps [START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF] consisting in a gradient step on the smooth term ϕ µj and a proximal step on the nondifferentiable term f . The proximity operators are computed within the metric induced by symmetric definite positive preconditioning matrices whose eigenvalues are bounded from below and from above (using ν and ν positive constants). For well-chosen matrices, this so-called variable metric strategy can significantly improve the convergence speed. Preconditioning matrices Algorithm 1: A µ (x 0 , δ, θ, γ, , ν, ν)

Inputs are such that (δ, θ) ∈]0, 1[ 2 , (γ, µ) ∈]0, +∞[ 2 , ∈ [0, +∞[, 0 < ν ≤ ν, and x 0 ∈ D; for k = 0, 1, . . . do Choose A k ∈ S n such that νI n A k νI n ; for l = 0, 1, . . . do xk,l = prox A k γθ l f (x k -γθ l A -1 k ∇ϕ µ j (x k )); Exit loop if (5) is satisfied; end x k+1 = xk,l ; γ k = γθ l ; v k+1 = A k γ k (x k -x k+1 ) -∇ϕ µ (x k ) + ∇ϕ µ (x k+1 ); Stop if v k+1 < ; end Return (x k+1 , v k+1 ); Algorithm 2: Proximal Interior Point Algorithm (PIPA) Let (δ, θ) ∈]0, 1[ 2 , (γ, µ 0 ) ∈]0, +∞[ 2 ,
x 0 ∈ D, and let (µ j ) j∈N and ( j ) j∈N satisfy Assumption 2; for j = 0, 1, . . . do Let 0 < ν j ≤ ν j ; (x j+1 , v j+1 ) = A µ j (x j , δ, θ, γ, j , ν j , ν j );

λ j+1 = - µ j c i (x j+1 ) 1≤i≤p ; end Return x j+1 ;
can be determined for instance through a majorizationminimization procedure [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF]. It must be emphasized that, since the barrier is logarithmic, the gradient of ϕ µj is not Lipschitz-continuous on R n . Thus, the VMFB algorithm must be associated with a line search to find an appropriate value for the stepsize so as to guarantee convergence of the scheme. In Algorithm 1, we use the backtracking line search method investigated in [START_REF] Salzo | The variable metric forward-backward splitting algorithm under mild differentiability assumptions[END_REF]LS1], itself a generalization of [START_REF] Bello Cruz | On the convergence of the forward-backward splitting method with linesearches[END_REF]. At iteration k ∈ N, this backtracking procedure stops if

ϕ µ (x k,l ) -ϕ µ (x k ) -xk,l -x k , ∇ϕ µ (x k ) ≤ δ γθ l xk,l -x k 2 A k , (5) 
for some l ∈ N. Such line search ensures both sufficient decrease of the criterion and feasibility of the next iterate. It is interesting to note that if the whole cost function in P 0 is smooth (f = 0), then it reduces to the standard Armijo line search along the steepest direction. Applications related to p -norms, with 1 < p < 2, and Bregman distances where considered in [START_REF] Salzo | The variable metric forward-backward splitting algorithm under mild differentiability assumptions[END_REF], but, to the best of our knowledge, it is the first time that this line search is applied in the context of an interior point approach.

The resolution of the inner subproblem through Algorithm 1 is stopped once a certain accuracy is reached.

In practice, we propose to stop the iterations once the norm of one element of the sequence (v k+1 ) k∈N , where (∀k ∈ N) v k+1 ∈ ∂Ψ µ (x k+1 ), is sufficiently small. As stated in Assumption 2 below, the sequence ( j ) j∈N and the barrier parameter (µ j ) j∈N , have to be chosen properly to secure the convergence of the sequence of iterates produced by Algorithm 2 to a solution to the initial problem P 0 .

Assumption 2 (Hyperparameters) For every j ∈ N, µ j > 0 and j > 0. In addition, lim j→+∞ µ j = 0 and lim j→+∞ j /µ j = 0.

Remark 1 The sequence (λ j+1 ) j∈N , produced by Algorithm 2, is related to the Lagrangian associated with the constrained problem P 0 and it is used in the proof of convergence as shown in Section 3.4.

Related works

It can be noted that there exist links between the proposed PIPA algorithm and a different class of methods called diagonal or penalization methods [START_REF] Attouch | Proxpenalization and splitting methods for constrained variational problems[END_REF][START_REF] Garrigos | Iterative regularization via dual diagonal descent[END_REF], for which a general study was recently provided for the continuous setting in [START_REF] Attouch | Asymptotic behavior of nonautonomous monotone and subgradient evolution equations[END_REF]. In [START_REF] Attouch | Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities[END_REF], the authors proposed a similar approach in the discrete setting based on the FB algorithm. However, they assume that the gradient of the penalization function, which is the equivalent of our barrier, is Lipschitz continuous, and they let the penalization parameter tend to infinity, whereas our barrier parameter decreases to zero. In addition, their method does not solve a problem of the form (3), instead, it performs a hierarchical minimization [52, Eq. ( 6)]. This key difference is also highlighted in [START_REF] Alvarez | Asymptotic selection of viscosity equilibria of semilinear evolution equations by the introduction of a slowly vanishing term[END_REF] and [START_REF] Cabot | Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization[END_REF], in the continuous and discrete settings, respectively. In [START_REF] Cabot | Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization[END_REF] the author studied the proximal point algorithm, without any forward-backward step, and considered a penalization parameter that, similarly to our barrier parameter, vanishes to zero. The optimization problem that is solved by this algorithm then depends on the rate of reduction chosen for this coefficient. In addition, it is assumed that the penalization function is bounded from below, which is not necessarily satisfied by the logarithmic barrier. Related works also include Bregman distance approaches and entropy-like proximal algorithms [START_REF] Iusem | Entropy-like proximal methods in convex programming[END_REF][START_REF] Brito | Interior proximal algorithm for quasiconvex pro-gramming problems and variational inequalities with linear constraints[END_REF][START_REF] Quiroz | An inexact proximal method for quasiconvex minimization[END_REF], where the Euclidean norm in the definition of the proximity operator is replaced by a divergence measure. The latter can be chosen such that feasibility is ensured at each iteration. However, the computation of the modified proximity operator in such methods is usually not straightforward.

Convergence analysis

This section aims at studying the convergence of the proposed PIPA method. After stating our main results in Section 3.1, we provide the corresponding proofs in Sections 3.2, 3.3 and 3.4.

Main results

Theorem 1 guarantees that the stopping criterion in Algorithm 1 is well-defined.

Theorem 1 Under Assumption 1, for every (δ, θ) ∈ ]0, 1[ 2 , (γ, µ, ν) ∈]0, +∞[ 3 , ν ∈]0, ν], and x 0 ∈ D, for every > 0, there exists k ∈ N such that v k+1 < .

Thus, an important feature of Algorithm 1 is the decay rate of the sequence ( v k+1 ) k∈N . This rate can be made explicit for the particular instance of linear inequality constraints. More precisely we focus on the case when the constrained problem takes the form:

minimize x∈R n g(Hx) + f (x) subject to M x + m ∈ ] -∞, 0] p , (6) 
where g :

R s →] -∞, +∞], H ∈ R s×n , M ∈ R p×n , m ∈ R p
, and the involved functionals satisfy the following assumption.

Assumption 3

(i) f is a polyhedral function, i.e. its epigraph a finite intersection of closed halfspaces. (ii) g is lsc with an open domain, it is strongly convex on any compact subset of dom g and it is twice continuously differentiable on dom g. (iii) f + g • H is proper and it is continuous on the domain of its subdifferential.

Remark 2 Assumption 3 holds for instance if g = 1 2 • -y 2 with y ∈ R s and if f = κ W • 1 where κ ≥ 0 and W ∈ R q×n is a linear transform (e.g., a wavelet analysis operator [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF][START_REF] Chaux | Wavelet transform for the denoising of multivariate images[END_REF]). This corresponds to an 1 -regularized least-squares problem, at the core of many applications such as denoising [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], image restoration [START_REF] Fu | Efficient minimization methods of mixed 2-1 and 1-1 norms for image restoration[END_REF], machine learning, or biological data analysis [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF]Chapter 18.4].

The following result can be deduced from existing results concerning the use of the KL inequality in optimization.

Theorem 2 Let µ > 0 and consider the barrier problem P µ associated to problem [START_REF] Gondzio | Interior point methods 25 years later[END_REF]. Under Assumptions 1 and 3, for every (δ, θ) ∈]0, 1[ 2 , (γ, ν) ∈]0, +∞[ 2 , ν ∈ ]0, ν], and x 0 ∈ D, the sequence (v k+1 ) k∈N generated by Algorithm 1 converges linearly to 0 when = 0.

We finally present results regarding the convergence of the proposed method PIPA, i.e. Algorithm 2.

Theorem 3 Suppose that Assumptions 1 and 2 hold for every (δ, θ) ∈]0, 1[ 2 , (γ, µ 0 ) ∈]0, +∞[ 2 and x 0 ∈ D. Then, any sequence (x j+1 , λ j+1 ) j∈N generated by Algorithm 2 is bounded. In addition, every of its cluster point (x * , λ * ) is a primal-dual solution to P 0 , i.e. (x * , λ * ) is a saddle point for the Lagrangian defined in [START_REF] Chouzenoux | Majorizeminimize linesearch for inversion methods involving barrier function optimization[END_REF].

A stronger convergence result can be obtained, under additional assumptions. In particular the following one will turn out to play an important role.

Assumption 4 Either the constraints are affine, i.e. c : x → M x + m where M ∈ R p×n and m ∈ R p , and M has full column rank (i.e. M is injective), or there exists i ∈ {1, . . . , p} such that c i is strictly convex.

Let S P be the set of solutions to P 0 (primal solutions), and let S D be the set of solutions to the Lagrange dual problem associated with P 0 (dual solutions) [62, Section 5.2]. In addition, let

J P = {i ∈ {1, . . . , p} | (∃x ∈ S P ) c i (x) < 0}, (7) 
J D = {i ∈ {1, . . . , p} | (∃λ = (λ ( ) ) 1≤ ≤p ∈ S D ) λ (i) > 0}. (8) 
Our main convergence result, summarized in Theorem 4, provides a useful characterization for the limit point of Algorithm 2 using the so-called analytic center, which will be introduced in Section 3.4.2.

Theorem 4 Under Assumptions 1 and 2 the following hold.

(i) If there exists only one element in S P (resp. S D ) then the sequence (x j+1 ) j∈N (resp. (λ j+1 ) j∈N ) converges to this unique primal (resp. dual) solution to P 0 . (ii) Suppose that there exist at least two distinct elements in S P (resp. S D ), Assumption 4 holds, and P 0 has the strict complementarity property, i.e. J P ∪J D = {1, . . . , p}. Then the sequence (x j+1 ) j∈N (resp. (λ j+1 ) j∈N ) produced by Algorithm 2 converges to a primal (resp. dual) solution to P 0 , which is the analytic center of S P (resp. S D ).

The next sections providing the proofs for the aforementioned theorems are organized as follows. After deriving some properties for the solution set to Problem (4) in Section 3.2.1, we show in Section 3.2.2 that, under the considered assumptions, the chosen line search is welldefined. Then, we derive Lemma 5, Corollary 3 and Lemma 7 in Section 3.2.3, which lead to the proof of Theorem 1 in Section 3.2.4. Section 3.3 is dedicated to the convergence analysis and convergence rate of Algorithm 1. In Section 3.3.1 we start by deriving Lemma 8 which, together with Lemmas 5 and 7, ensures that the sufficient decrease, relative error and continuity conditions required in [START_REF] Attouch | Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods[END_REF]Theorem 2.9] are satisfied. This leads to Proposition 1. We then derive Proposition 2 which directly leads to the proof of Theorem 2 in Section 3.3.2. Finally, we study the convergence of Algorithm 2 in Section 3.4 based on a Lagrangian approach. The proof for Theorem 3 is given in Section 3.4.1, the analytic center is presented in Section 3.4.2 and, finally, the proof of Theorem 4 is provided in 3.4.3.

3.2 Well-definedness of Algorithm 1

Preliminary results

We first derive a preliminary result about functions ϕ µ and Ψ µ with µ > 0.

Lemma 1 Under Assumption 1(iii), for every µ > 0, ∇ϕ µ is Lipschitz-continuous on every compact subset of D.

Proof Let K be a compact subset of D. By assumption, for every i ∈ {1, . . . , p}, c i is differentiable on K, so it is continuous on K and, according to the extreme value theorem, it is bounded on K and it attains its bounds. Thus, there exist (c,

c) ∈] -∞, 0[ 2 such that (∀i ∈ {1, . . . , p})(∀x ∈ K) c ≤ c i (x) < c. Hence, for every (x, y) ∈ K 2 , ∇B(x) -∇B(y) ≤ p i=1 c i (y)∇c i (x) -c i (x)∇c i (y) |c i (x)c i (y)| ≤ p i=1 |c i (y)| c 2 ∇c i (x) -∇c i (y) + |c i (y) -c i (x)| c 2 ∇c i (y) . (9) 
In addition, by assumption, for every i ∈ {1, . . . , p},

∇c i is L i -Lipschitz continuous on K for some L i > 0;
in particular, it is bounded by some constant K i > 0. Hence, for every i ∈ {1, . . . , p}, c i is K i -Lipschitz continuous on K and we deduce from (9) that

∇B(x) -∇B(y) ≤ p i=1 cL i + K 2 i c 2 x -y .
Therefore, for every µ > 0, ∇ϕ µ = ∇g + µ∇B is Lipschitz continuous on K.

The following lemma will be useful.

Lemma 2 [4, Theorem 4] Under Assumption 1, for every µ > 0 and τ ∈ R, the level set {x ∈ D | Ψ µ (x) ≤ τ } is compact.

We now prove the existence of a solution for every subproblem P µ (4).

Corollary 1 Under Assumption 1, for every µ > 0, the solution set to P µ is a nonempty convex and compact subset of D.

Proof Let µ > 0. By assumption there exists

x 0 ∈ D such that x 0 ∈ domΨ µ . Let S = {x ∈ D | Ψ µ (x) ≤ Ψ µ (x 0 )}. From Lemma 2, S is compact.
The set S is also nonempty since x 0 ∈ S, and it is convex since

Ψ µ ∈ Γ 0 (R n
) and D is convex. Solving P µ amounts to minimizing Ψ µ over S. Hence, the solution set of P µ is nonempty, convex and closed; it is also bounded since it is a subset of S, which is compact.

Line search

We show in this section that our proposed line search is well-defined given our assumptions. Let (γ, µ) ∈]0, +∞[ 2 , θ ∈]0, 1[ and A ∈ S n . We define function h such that for every x ∈ D and l ∈ N, h(x, l) = prox A γθ l f x -γθ l A -1 ∇ϕ µ (x) . Note that, from (2), for every x ∈ D and l ∈ N,

A(x -h(x, l)) -γθ l ∇ϕ µ (x) ∈ γθ l ∂f (h(x, l)). (10) 
First, we check that, in the backtracking procedure, if the stepsize tends to zero then the expression for the next iterate in Algorithm 1 converges to the current iterate.

Lemma 3 Under Assumption 1, for every θ ∈]0, 1[, (γ, µ) ∈]0, +∞[ 2 and A ∈ S n , if x ∈ D, then lim l→+∞ h(x, l) = x. ( 11 
)
Proof Let l ∈ N and x ∈ D. Since prox A γθ l f is nonex- pansive with respect to • A , it follows that h(x, l) -prox A γθ l f (x) A ≤ γθ l A -1 ∇ϕ µ (x) A . ( 12 
)
Taking the limit in [START_REF] Ahmad | Iteratively reweighted 1 approaches to sparse composite regularization[END_REF] we deduce that, as l → +∞, h(x, l) -prox A γθ l f (x) A → 0. In addition, A -1 ∂f is a maximally monotone operator with respect to • A . From [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 16.27] and since ∅ = intdomf ⊂ dom∂f , we have D ⊂ D ⊂ domf ⊂ domf = intdomf ⊂ dom∂f . Thus, [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Theorem 23.48] 

leads to lim l→+∞ prox A γθ l f (x) -x A = 0.
Finally, from the triangular inequality it follows that, as l → +∞, h(x, l) -x A → 0, hence the result since A ∈ S n .

We now show that, [34, Lemma 3.6(ii)] holds for the line search.

Lemma 4 Under Assumption 1, for every

θ ∈]0, 1[, (γ, µ) ∈]0, +∞[ 2 and A ∈ S n , if x ∈ D \ Argmin(f + ϕ µ ), then γθ l (ϕ µ (h(x, l)) -ϕ µ (x) -h(x, l) -x, ∇ϕ µ (x) ) h(x, l) -x 2 A → 0, as l → +∞.
Proof Take l ∈ N. If x = h(x, l) then, from [START_REF] Armand | A feasible BFGS interior point algorithm for solving convex minimization problems[END_REF], it follows that 0 ∈ ∂f (x) + ∇ϕ µ (x) and x is a minimizer of f + ϕ µ , which leads to a contradiction. Hence, h(x, l) -x A = 0. Since A -1 ∂f is a maximally monotone operator with respect to

• A , [63, Lemma 1] leads to x -h(x, l) A γθ l ≤ x -h(x, l + 1) A γθ l+1
and (γθ l / h(x, l) -x A ) l∈N is a decreasing sequence. Hence, there exists l 0 ∈ N and M > 0 such that

(∀l > l 0 ) γθ l x -h(x, l) A ≤ M. (13) 
In addition, from Lemma 3, (11) holds. According to Assumption 1(iii), D is an open set, so there exist l 1 ≥ l 0 and a convex subset K of D such that x ∈ K and for every l ≥ l 1 , h(x, l) ∈ K. From Lemma 1 it follows that ∇ϕ µ is uniformly continuous on any compact subset of K. From, [34, Corollary 3.4 (ii)] and the norm equivalence

λ min (A) 1/2 • ≤ • A ≤ λ max (A) 1/2
• , where λ min (A) and λ max (A) are the minimal and maximal eigen values of A, when l → +∞ we have

ϕ µ (h(x, l)) -ϕ µ (x) -h(x, l) -x, ∇ϕ µ (x) h(x, l) -x A → 0. ( 14 
)
Combining ( 13) and ( 14) completes the proof.

Finally, we derive Corollary 2 below which states that the line search performed at each iteration of Algorithm 1 is properly defined.

Corollary 2 Let (δ, θ) ∈]0, 1[ 2 , (γ, µ, ν) ∈]0, +∞[ 3 , ν ∈ ]0, ν]
, and x 0 ∈ D. Suppose that Assumption 1 holds and that Algorithm 1 is run at iteration k ∈ N. Then, x k+1 ∈ D and condition (5) is met for some l ∈ N.

Proof Let us prove the result by induction. First note that x 0 ∈ D. Assume that the property is satisfied at iteration k -

1 if k ≥ 1. Under Assumption 1, if x k ∈ D
is not a minimizer of f +ϕ µ then we can apply Lemma 4, which implies that the line search will stop: for any δ > 0, (5) will be satisfied for a finite l. If x k ∈ Argmin(f + ϕ µ ) then xk,0 = x k and the line search is satisfied for l = 0. Moreover, if x k+1 ∈ D then ϕ µ (x k+1 ) = +∞ and the inequality (5) could not be satisfied. Hence, x k+1 ∈ D.

Key elements for the proof of Theorem 1

Let us first show the following sufficient decrease property regarding the values of the merit function.

Lemma 5 (Sufficient decrease) For every

(δ, θ) ∈ ]0, 1[ 2 , (γ, µ, ν) ∈]0, +∞[ 3 , ν ∈]0, ν]
, and x 0 ∈ D, if Assumption 1 holds, then the sequence (x k ) k∈N produced by Algorithm 1 with = 0 satisfies, for every k ∈ N, the inequality

Ψ µ (x k+1 ) ≤ Ψ µ (x k ) - ν(1 -δ) γ x k+1 -x k 2 . ( 15 
)
Proof Let k ∈ N. The stopping criterion (5) for the backtracking procedure on γ k leads to

Ψ µ (x k+1 ) ≤ ϕ µ (x k ) + x k+1 -x k , ∇ϕ µ (x k ) + δ γ k x k+1 -x k 2 A k + f (x k+1 ). ( 16 
)
In addition, we have

A k (x k -x k+1 ) -γ k ∇ϕ µ (x k ) ∈ γ k ∂f (x k+1 ),
and it follows from the definition of the subdifferential that

γ k f (x k ) ≥ A k (x k -x k+1 ) -γ k ∇ϕ µ (x k ), x k -x k+1 + γ k f (x k+1 ). ( 17 
)
Re-writing [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] in a more convenient form yields

x k+1 -x k , ∇ϕ µ (x k ) + f (x k+1 ) ≤ f (x k ) - 1 γ k x k -x k+1 2 A k . ( 18 
)
Plugging ( 18) into ( 16) and using νI n A k completes the proof.

Remark 3 It is worth noting that, without the assumption of existence of bounds (ν, ν) on matrices (A k ) k∈N , the proof of Lemma 5 still allows us to conclude that the sequence (Ψ µ (x k )) k∈N is decreasing. Thus, in view of Lemma 2, there exists a compact K ⊂ D such that (∀k ∈ N) x k ∈ K. Therefore, by the continuity of function c on K we deduce that there exist c and c in ] -∞, 0[ such that for every k ∈ N and i ∈ {1, . . . , p}, c ≤ c i (x k ) ≤ c < 0. This remark will be useful in Section 4 to prove that the chosen variable metrics satisfy the boundedness condition.

Before deriving a lowerbound for (γ k ) k∈N in Lemma 6 we show that the distance between two iterates produced by Algorithm 1 tends to zero and that the iterates are bounded.

Corollary 3 Under Assumption 1, for every (δ, θ) ∈ ]0, 1[ 2 , (γ, µ, ν) ∈]0, +∞[ 3 , ν ∈]0, ν]
, and x 0 ∈ D, the sequence (x k ) k∈N produced by Algorithm 1 with = 0 satisfies the following properties:

(i) lim k→+∞ x k+1 -x k = 0; (ii) there exists a compact K ⊂ D such that (∀k ∈ N) x k ∈ K. Proof (i) Summing (15) for k = 0 to N -1 ≥ 0 gives N -1 k=0 x k+1 -x k 2 ≤ γ ν(1 -δ) (Ψ µ (x 0 ) -Ψ µ (x N )) ≤ γ ν(1 -δ) Ψ µ (x 0 ) -Ψ µ ,
where Ψ µ = min x∈R n Ψ µ (x). The existence of Ψ µ is ensured by Corollary 1. Letting N tend to infinity gives ∞ k=0 x k+1 -x k 2 < +∞, which leads directly to the result. (ii) From Lemma 2, the set {x ∈ D | Ψ µ (x) ≤ Ψ µ (x 0 )} is compact, and from Lemma 5, for every k ∈ N x k belongs to this set, which completes the proof.

Before deriving relative error and continuity conditions, we show that, for every barrier problem, the stepsize computed using the line search is bounded below from zero.

Lemma 6 Under Assumption 1, for every (δ, θ) ∈]0, 1[ 2 , (γ, µ, ν) ∈]0, +∞[ 3 , ν ∈]0, ν], and x 0 ∈ D, there exists γ µ > 0 such that the sequence (γ k ) k∈N generated by Algorithm 1 with = 0 is bounded below by γ µ .

Proof Let I be the set of iterations in Algorithm 1 for which the stepsize value produced by the backtracking is strictly smaller than γ, i.e. I = {k ∈ N | γ k < γ}.

For every k ∈ I there exists an integer l k > 0 such that γ k = γθ l k . By applying [63, Lemma 1], we have

(∀k ∈ I) x k -xk,l k -1 A k γθ l k -1 ≤ x k -xk,l k A k γθ l k , which leads to (∀k ∈ I) x k -xk,l k -1 ≤ 1 θ ν ν 1 2 x k -x k+1 . ( 19 
)
From Corollary 3(ii), there exists a compact subset

K of D such that, for every k ∈ N, x k ∈ K. Let ϑ : K → [0, +∞[ : x → d(x, R n \ D) = inf y∈R n \D x -y .
ϑ is a continuous function defined on a compact set and, since D is open, it is positive valued. It follows from the extreme value theorem, that there exists η ∈]0, +∞[ such that η = min x∈K ϑ(x). For every z ∈ K, let B(z, η/2) be the open ball with center z and radius η/2. For every

y ∈ B(z, η/2), y -z ≤ η/2 < η ≤ d(z, R n \ D), which implies that y ∈ R n \ D, that is y ∈ D. This shows that (∀z ∈ K) B(z, η/2) ⊂ D. (20) 
On the other hand, since ∪ z∈K B(z, η/4) is a cover of K, it follows from the compactness of this latter set that there exists (z j ) 1≤j≤J in K such that

K ⊂ J j=1 B(z j , η/4). (21) 
Let S = ∪ J j=1 B(z j , η/2). It follows from ( 20) and ( 21) that this set is a compact subset of D including K.

From [START_REF] Chouzenoux | Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF], for every k ∈ I, there exists j k ∈ {1, . . . , J} such that

x k -z j k < η 4 . (22) 
On the other hand, according to Corollary 3(i), there exists k 0 ∈ N such that

(∀k ≥ k 0 ) x k -x k+1 ≤ θ ν ν 1 2 η 4 . ( 23 
)
Set

I 0 = {k ∈ I | k ≥ k 0 }.
By applying the triangle inequality, we deduce from ( 19), [START_REF] Frankel | Splitting methods with variable metric for Kurdyka-Lojasiewicz functions and general convergence rates[END_REF], and ( 23) that

(∀k ∈ I 0 ) xk,l k -1 -z j k < η 2 ,
which shows that xk,l k -1 ∈ S. Since ϕ µ is convex, the following inequality holds for every k ∈ I 0 :

xk,l k -1 -x k , ∇ϕ µ (x k,l k -1 ) -∇ϕ µ (x k ) ≥ ϕ µ (x k,l k -1 ) -ϕ µ (x k ) -xk,l k -1 -x k , ∇ϕ µ (x k ) . (24) 
In addition, l k is the smallest integer such that (5) is satisfied. Hence, ( 5) is not satisfied for xk,l k -1 and, for every k ∈ I 0 , the following holds:

ϕ µ (x k,l k -1 ) -ϕ µ (x k ) -xk,l k -1 -x k , ∇ϕ µ (x k ) > νθδ γ k xk,l k -1 -x k 2 . ( 25 
)
Necessarily, x k = xk,l k -1 . From ( 24) and ( 25), it follows that (∀k

∈ I 0 ), xk,l k -1 -x k ∇ϕ µ (x k,l k -1 ) -∇ϕ µ (x k ) > νθδ γ k xk,l k -1 -x k 2 .
Moreover, according to Lemma 1, ∇ϕ µ is Lipschitz continuous on S. Hence, there exists L S > 0 such that

(∀k ∈ I 0 ) γ k > νθδ L S .
In addition, (∀k ∈ I) γ k = γ, and the set I \ I 0 has a finite number of elements. Hence, the proof is complete by setting γ µ = min γ, νθδ L S , (γ k ) k∈I\I0 .

We are now ready to identify a sequence of subgradients of Ψ µ converging to zero.

Lemma 7 (Relative error condition) Under Assumption 1, for every (δ, θ) ∈]0, 1[ 2 , (γ, µ, ν) ∈]0, +∞[ 3 , ν ∈]0, ν], and x 0 ∈ D, the sequence (v k+1 ) k∈N produced by Algorithm 1 when = 0 is such that (∀k ∈ N) v k+1 ∈ ∂Ψ µ (x k+1 ) and

(∃K µ > 0)(∀k ∈ N) v k+1 ≤ K µ x k+1 -x k .
Proof Let k ∈ N. By definition of x k+1 and v k+1 ,

v k+1 -∇ϕ µ (x k+1 ) = 1 γ k A k (x k -x k+1 ) -∇ϕ µ (x k ) ∈ ∂f (x k+1 ). ( 26 
)
By definition of Ψ µ , it follows that v k+1 ∈ ∂Ψ µ (x k+1 ).

In addition, the triangle inequality and Lemma 6 lead to

v k+1 ≤ ν γ µ x k -x k+1 + ∇ϕ µ (x k+1 ) -∇ϕ µ (x k ) .
From Corollary 3(ii) and Lemma 1, we know that (x k ) k∈N belongs to a compact subset K of D, on which ∇ϕ µ is Lipschitz-continuous for some constant L K > 0. Setting K µ = ν/γ µ + L K completes the proof.

Remark 4 It can also be deduced from ( 26) that (∀k ∈ N) v k+1 -µ∇B(x k+1 ) ∈ ∂(f + g)(x k+1 ).

Proof of Theorem 1

In view of Lemma 7 and Corollary 3(i), for every > 0, there exists k ∈ N such that v k+1 < .

3.3 Convergence analysis of Algorithm 1

Preliminary results

We first derive the following continuity condition. Proof From Corollary 3(ii) we know that (x k ) k∈N belongs to a compact subset K of D. Hence, there exists a subsequence (x kq ) q∈N converging to an element x ∈ D. Since Ψ µ is lsc, we have

Lemma 8 (Continuity condition) Under Assump- tions 1, let (δ, θ) ∈]0, 1[ 2 , (γ, µ, ν) ∈]0, +∞[ 3 , ν ∈]0,
Ψ µ (x) ≤ lim inf q→+∞ Ψ µ (x kq ). (27) 
Without loss of generality one can assume that k 0 > 0. From Lemma 7, for every q ∈ N, v kq belongs to ∂Ψ µ (x kq ) and v kq ≤ K µ x kq -x kq-1 . For every q ∈ N, we have

Ψ µ (x kq ) ≤ -v kq , x -x kq + Ψ µ (x) ≤ K µ x kq -x kq-1 x -x kq + Ψ µ (x). ( 28 
)
From Corollary 3(i), x kq -x kq-1 → 0 as q → +∞. Hence, taking the limit in (28) yields the following inequality

lim sup q→+∞ Ψ µ (x kq ) ≤ Ψ µ (x). (29) 
Altogether ( 27) and ( 29) lead to lim

q→+∞ Ψ µ (x kq ) = Ψ µ (x).
The next result guarantees that, in the absence of stopping rule, Algorithm 1 converges to a solution to the barrier problem.

Proposition 1 Let (δ, θ) ∈]0, 1[ 2 , (γ, µ, ν) ∈]0, +∞[ 3 ,
ν ∈]0, ν], and x 0 ∈ D. Suppose that Ψ µ is a KL function and that Assumption 1 holds. Then the sequence (x k ) k∈N produced by Algorithm 1 with = 0 converges to a solution to P µ and has a finite length, i.e.

+∞ k=0

x k+1 -x k < +∞. 

Ψ µ (x k ) -Ψ µ (x * ) = O exp(-cK µ ) k and x * -x k = O exp(-cK µ /2) k .
The linear convergence properties follow from the fact that exp(-cK µ ) < 1 and exp(-cK µ /2) < 1.

Proof of Theorem 2

Proposition 1 ensures the convergence of (x k ) k∈N to some x * . According to Lemma 7, there exists K µ > 0 such that

(∀k ∈ N) v k+1 ≤ K µ x k+1 -x k ≤ K µ ( x k+1 -x * + x * -x k ).
We then deduce from Proposition 2 that there exists c > 0 such that v k+1 = O exp(-cK µ /2) k .

Convergence analysis of Algorithm 2

We are now ready to establish the convergence of Algorithm 2 to a solution to problem P 0 described in (3).

Under Assumption 1, finding a solution to P 0 is equivalent to finding a saddle point of the associated Lagrangian L 0 , which is defined, for every x ∈ R n and λ ∈ [0, +∞[ p , as

L 0 (x, λ) = f (x) + g(x) + λ c(x). (30) 
A point (x * , λ * ) with λ * = (λ * (i) ) 1≤i≤p is a saddle point of L 0 if and only if the following optimality conditions are satisfied:

         0 ∈ ∂f (x * ) + ∇g(x * ) + p i=1 λ * (i) ∇c i (x * ) (∀i ∈ {1, . . . , p}) λ * (i) c i (x * ) = 0 (∀i ∈ {1, . . . , p}) λ * (i) ≥ 0 and c i (x * ) ≤ 0 (31) (32) (33) 
We prove in the following section that the sequences (x j ) j∈N and (λ j+1 ) j∈N , produced by Algorithm 2, converge to a saddle point of L 0 . We remind that, for every j ∈ N, the dual variable λ j+1 is defined as follows,

λ j+1 = - µ j c i (x j+1 ) 1≤i≤p . ( 34 
)
It is worth noting that (34) can be seen as a perturbation of condition [START_REF] Bello Cruz | On the convergence of the forward-backward splitting method with linesearches[END_REF].

Remark 5 In the case of affine inequality constraints, (34) can be directly derived from the Lagrangian formulation of the barrier problem. Let j ∈ N and µ j > 0, a simple change of variable leads to the following problem, which is equivalent to P µj , minimize (x,z)∈R n ×R p f (x) + g(x) + µ j b(z) subject to z = c(x) [START_REF] Bonettini | New convergence results for the scaled gradient projection method[END_REF] where b(z) = -p i=1 ln(-z i ) if z ∈]-∞, 0[ p , +∞ otherwise. Under Assumption 1, and when (∀i ∈ {1, . . . , p}) c i is affine, finding a solution to [START_REF] Bonettini | New convergence results for the scaled gradient projection method[END_REF] is equivalent to finding a saddle point of the Lagrangian L µj defined, for every x ∈ R n , z ∈ R p and λ ∈ [0, +∞[ p , as

L µj (x, z, λ) = f (x) + g(x) + µ j b(z) + λ (c(x) -z). (36)
A point (x, z, λ) is a saddle point of L µj if and only if the following system is satisfied.

             0 ∈ ∂f (x) + ∇g(x) + p i=1 λ (i) ∇c i (x) (∀i ∈ {1, . . . , p}) λ (i) c i (x) = -µ j (∀i ∈ {1, . . . , p}) c i (x) < 0 z = c(x) (37) 
The definition of sequence (λ j+1 ) j∈N is then directly derived from [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF].

We first show that the primal and dual sequences produced by Algorithm 2 are bounded.

Lemma 9 Under Assumptions 1 and 2, for every (δ, θ) ∈ ]0, 1[ 2 , (γ, µ 0 ) ∈]0, +∞[ 2 , and x 0 ∈ D, the sequences (x j+1 ) j∈N and (λ j+1 ) j∈N produced by Algorithm 2 are bounded.

Proof Let j ∈ N. According to Lemma 7, v j+1 belongs to ∂Ψ µj (x j+1 ). Using the definition of the subdifferential, the stopping criterion v j+1 ≤ j , and the Cauchy-Schwarz inequality leads to

Ψ µj (x j+1 ) ≤ v j+1 , x j+1 -x 0 + Ψ µj (x 0 ) ≤ j x j+1 -x 0 + Ψ µj (x 0 ). ( 38 
)
Eq. ( 38) is equivalent to

(f + g)(x j+1 ) ≤ µ j (B(x 0 ) -B(x j+1 )) + j x j+1 -x 0 + (f + g)(x 0 ).
Moreover, since B is convex,

(f + g)(x j+1 ) ≤ -µ j ∇B(x 0 ), x j+1 -x 0 + j x j+1 -x 0 + (f + g)(x 0 ) ≤ ( j + µ j ∇B(x 0 ) ) x j+1 -x 0 + (f + g)(x 0 ). ( 39 
)
Assume that (x j+1 ) j∈N is unbounded. Then there exists a subsequence (d q ) q∈N = (x jq+1 ) q∈N of (x j+1 ) j∈N such that the sequence (t q ) q∈N = ( x jq+1 ) q∈N has only strictly positive elements and satisfies lim q→+∞ t q = +∞, lim q→+∞ d q t q = d ∈ R n , and d = 1.

The last two equalities are derived from the compactness of the unit ball. Let x * be a solution to P 0 , take t > 0. For every q 0 ∈ N, let τ q0 = min{t q | q ≥ q 0 }. Since (∀i ∈ {1, . . . , p}) c i (x * ) ≤ 0, (∀q ∈ N) c i (d q ) < 0, and c i is convex, (∀q ≥ q 0 ) 1 -τq 0 tq

x * + τq 0 tq d q ∈ D. By taking the limit of (1 -τ q0 /t q )x * + (τ q0 /t q )d q as q → ∞, we obtain x * + τ q0 d ∈ D. In addition, for every q ≥ q 0 , (f + g) 1 -

τ q0 t q x * + τ q0 t q d q ≤ 1 - τ q0 t q (f + g)(x * ) + τ q0 t q (f + g)(d q ). ( 40 
)
We deduce from (39) that

1 t q (f + g)(d q ) ≤ ( jq + µ jq ∇B(x 0 ) ) d q t q - x 0 t q + 1 t q (f + g)(x 0 ). ( 41 
)
As q → +∞, we have jq → 0, µ jq → 0, t q → +∞ and d q /t q -x 0 /t q → 1. Hence, taking the limit in (41) leads to lim sup q→∞ (f + g)(d q )/t q ≤ 0. Using now the lower-semicontinuity of f + g and letting q tend to +∞ in (40) lead to

(∀q 0 ∈ N) (f + g)(x * + τ q0 d) ≤ lim inf q→∞ (f + g) 1 - τ q0 t q x * + τ q0 t q d q ≤ (f + g)(x * ) + lim sup q→∞ τ q0 t q (f + g)(d q ) ≤ (f + g)(x * ).
Therefore, for every q 0 ∈ N, x * + τ q0 d is a solution to P 0 . Since τ q0 → +∞ as q 0 → +∞, the set of solution to P 0 is unbounded. This is however in contradiction with Assumption 1(i), thus showing that (x j+1 ) j∈N is bounded.

Similarly, we prove that (λ j ) j∈N is bounded. Let j ∈ N and i ∈ {1, . . . , p}. Since c i is convex, c i (x j+1 ) < 0 and µ j > 0, the following inequality holds:

µ j c i (x 0 ) c i (x j+1 ) ≤ µ j + µ j c i (x j+1 ) ∇c i (x j+1 ), x 0 -x j+1 . (42) 
Summing [START_REF] Bolte | Proximal alternating linearized minimization for nonconvex and nonsmooth problems[END_REF] for all i ∈ {1, . . . , p} leads to

-c(x 0 ), λ j+1 ≤ µ j p-µ j ∇B(x j+1 ), x 0 -x j+1 . ( 43 
)
In addition, from Remark 4 and the definition of the subdifferential of f + g, we deduce that

(f + g)(x j+1 ) ≤ -v j+1 -µ j ∇B(x j+1 ), x 0 -x j+1 + (f + g)(x 0 ). ( 44 
)
Combining ( 43) and ( 44) yields

-c(x 0 ), λ j+1 ≤ µ j p + (f + g)(x 0 ) -(f + g)(x j+1 ) + j x 0 -x j+1 .
Moreover, every component of λ j+1 and of -c(x 0 ) is strictly positive, hence

0 < -c(x 0 ), λ j+1 ≤ µ j p + (f + g)(x 0 ) -(f + g)(x * ) + j x 0 -x j+1 ,
where x * is a solution to P 0 . Since (µ j , j ) → (0, 0) as j → +∞, and since (x j+1 ) j∈N has been shown to be bounded, we conclude that -c(x 0 ), λ j+1 is bounded and so is (λ j+1 ) j∈N .

Proof of Theorem 3

According to Lemma 9, the sequences (x j+1 ) j∈N and (λ j+1 ) j∈N are bounded. Hence, there exists a subsequence (x jq+1 , λ jq+1 ) q∈N converging to some point (x * , λ * ). By construction, for every q ∈ N and every i ∈ {1, . . . , p}, c i (x jq+1 ) < 0 and 0 < λ

(i)
jq+1 . Since (∀i ∈ {1, . . . , p}) c i is lsc, taking the limit as q → +∞ yields [START_REF] Bonettini | Variable metric inexact line-search-based methods for nonsmooth optimization[END_REF]. Moreover, by definition, (∀q ∈ N)(∀i ∈ {1, . . . , p}) λ (i) jq+1 c i (x jq+1 ) = -µ jq . Since (∀i ∈ {1, . . . , p}) c i is continuous on D, letting q → +∞ in the previous equality leads to [START_REF] Bello Cruz | On the convergence of the forward-backward splitting method with linesearches[END_REF]. Let q ∈ N. From Remark 4, it follows that x jq+1 = prox f +g (x jq+1 + v jq+1 -µ jq ∇B(x jq+1 )). In addition, prox f +g is nonexpansive. Hence,

x jq+1 -prox f +g x * - p i=1 λ * (i) ∇c i (x * ) ≤ x jq+1 + v jq+1 -µ jq ∇B(x jq+1 ) -x * + p i=1 λ * (i) ∇c i (x * ) . (45)
By applying the triangle inequality, we deduce from (45) that

x * -prox f +g x * - p i=1 λ * (i) ∇c i (x * ) ≤ 2 x * -x jq+1 + j + p i=1 λ (i) jq+1 ∇c i (x jq+1 ) -λ * (i) ∇c i (x * ) . ( 46 
)
The sequence (x j+1 ) j∈N is a bounded sequence in D. Therefore, all its cluster points belong to a compact subset of D. In view of Assumption 1(iii), ∇c i is thus continuous at x * . Thus, taking the limit in [START_REF] Musse | Topology preserving deformable image matching using constrained hierarchical parametric models[END_REF] as q → +∞ leads to

x * = prox f +g x * - p i=1 λ * (i) ∇c i (x * ) ,
which is equivalent to [START_REF] Tseng | A coordinate gradient descent method for nonsmooth separable minimization[END_REF]. Finally, (x * , λ * ) is a saddlepoint for the Lagrangian [START_REF] Chouzenoux | Majorizeminimize linesearch for inversion methods involving barrier function optimization[END_REF], which completes the proof.

Analytic center

When there are several primal or dual solutions, assumptions are needed to prove the uniqueness of the cluster point exhibited in Theorem 3. As shown in this section, interior point methods provide an insightful characterization for the limit point.

Let us recall that under Assumption 1, strong duality holds and the set of saddle points for the Lagrangian L 0 is equal to S P × S D where S P and S D are the socalled sets of primal and dual solutions to P 0 [62, Section 5.4.2]. We derive the following result for these sets.

Proposition 3 Under Assumptions 1(i)-(ii), S P and S D are nonempty bounded convex sets.

Proof The results for S P directly follows from Assumptions 1(i)-(ii). The convexity of S D follows from standard results [START_REF] Boyd | Convex optimization[END_REF]Section 5.2]. The fact that S D is not empty also follows from Assumption 1(i)-(ii). For every (x * , λ * ) ∈ S P × S D , the inequality (f + g)(x * ) ≤ (f + g)(x 0 ) + λ * c(x 0 ) holds for every x 0 ∈ D. If S D is unbounded, then the right-hand side can tend to -∞ which is in contradiction with (f + g)(x * ) being a finite number. So S D is bounded.

We also show that under an additional assumption, the sets J P , defined in [START_REF] Gould | Superlinear convergence of primal-dual interior point algorithms for nonlinear programming[END_REF], and J D , defined in ( 8), are nonempty.

Proposition 4 If Assumption 4 holds and if the set S P (resp. S D ) contains at least two distinct elements, then the set J P (resp. J D ) is nonempty.

Proof Assume that there are at least two distinct elements x 1 and x 2 in S P . Then, for every i ∈ {1, . . . , p}, c i (x 1 ) ≤ 0 and c i (x 2 ) ≤ 0. Assume that Assumption 4 holds. If the constraints are affine, i.e. c : x → M x + m, with M an injective matrix, then there exists i 0 ∈ {1, . . . , p} such that (M x 1 ) i0 = (M x 2 ) i0 . There thus exists i 0 ∈ {1, . . . , p} such that c i0 (x 1 ) = c i0 (x 2 ). The same conclusion obviously holds if i 0 ∈ {1, . . . , p} is such that c i0 is strictly convex. Hence, we have either c i0 (x 1 ) < 0 or c i0 (x 2 ) < 0, that is i 0 ∈ J P . Assume that there are at least two distinct elements λ 1 and λ 2 in S D . The components of two elements satisfy (∀i ∈ {1, . . . , p}) λ (i) 1 ≥ 0 and λ (i) 2 ≥ 0. Since λ 1 and λ 2 are distinct there exists i 0 ∈ {1, . . . , p} such that λ

(i0) 1 = λ (i0)
2 . Hence, we have either λ

(i0) 1 > 0 or λ (i0) 2 > 0, that is i 0 ∈ J D .
If J P is nonempty, we define the following quantities: for every x ∈ R n , c J P (x) = (c i (x)) i∈J P and B J P (x) = -i∈J P ln(-c i (x)) if c J P (x) < 0, +∞ otherwise. We also consider the following problem:

P P : minimize x∈R n B J P (x)
subject to x ∈ S P and c J P (x) < 0.

Similarly if J D is nonempty, we define the following quantities: for every λ ∈ R p , λ

J D = (λ (i) ) i∈J D and b J D (λ) = -i∈J D ln(λ (i) ) if λ J D > 0, +∞ otherwise.
We also consider the following problem:

P D : minimize λ∈R p b J D (λ)
subject to λ ∈ S D and λ J D > 0.

Lemma 10 Under Assumptions 1 and 4, if S P (resp. S D ) does not reduce to a singleton, then there exists a unique solution to P P (resp. P D ) called the analytic center of S P (resp. S D ).

Proof Assume that S P does not reduce to a singleton. According to Proposition 3, S P is nonempty and it thus contains at least two distinct elements. It then follows from Proposition 4 that the set J P is nonempty. In addition, by invoking again Proposition 3, S P is bounded and convex. Since the constraint functions (c i ) 1≤i≤p are convex, we deduce that the feasible set of P P is bounded, and convex. Because of the convexity of the set S P and the functions (c i ) 1≤i≤p , it can be checked that this feasible set is nonempty. In addition, under Assumptions 1 and 4, B J P is lsc and strictly convex, and it is finite-valued on {x ∈ R n | c J P (x) < 0}. Hence, there exists a unique solution to P P .

Assume that S D does not reduce to a singleton. It then follows from Propositions 3 and 4 that J D = ∅. By using a similar reasoning as for P P we deduce that there exists a unique solution to P D .

The complementary slackness property in [START_REF] Bello Cruz | On the convergence of the forward-backward splitting method with linesearches[END_REF] ensures that J P ∩J D = ∅. We say that P 0 has the strict complementarity property if J P ∪ J D = {1, . . . , p}. Strict complementarity always holds in Linear Programming (LP) while in Quadratic Programming the concept of linear monotone complementarity can be used [START_REF] Bonnans | Numerical optimization: theoretical and practical aspects[END_REF]Chapter 20].

Proof of Theorem 4

(i) The result straightforwardly follows from Theorem 3. (ii) Let (x * , λ * ) be a primal-dual solution to P 0 . Let (x, λ) be a cluster point of (x j+1 , λ j+1 ) j∈N and let (x jq+1 , λ jq+1 ) q∈N be a subsequence converging to this point. Pick q ∈ N. In view of Remark 4 and (31) we have that

v jq+1 - p i=1 λ (i) jq+1 ∇c i (x jq+1 ) ∈ ∂(f + g)(x jq+1 ),
and

- p i=1 λ * (i) ∇c i (x * ) ∈ ∂(f + g)(x * ).
Since f + g is convex, we deduce from the monotonicity of its subdifferential that

0 ≤ x jq+1 -x * , v jq+1 - p i=1 x jq+1 -x * , λ (i) jq+1 ∇c i (x jq+1 ) -λ * (i) ∇c i (x * ) . (47) 
In addition, v jq+1 ≤ jq and (∀i ∈ {1, . . . , p}) c i is convex. Hence, we deduce from (47) that

0 ≤ x jq+1 -x * jq + p i=1 λ * (i) c i (x jq+1 ) -c i (x * ) + p i=1 λ (i) jq+1 c i (x * ) -c i (x jq+1 ) .
From ( 32) and ( 34), λ * , c(x * ) = 0 and, for every i ∈ {1, . . . , p}, λ

(i) jq+1 c i (x jq+1 ) = -µ jq . Hence, 0 ≤ x jq+1 -x * jq µ jq + p - p i=1 λ * (i) λ (i) jq+1 + c i (x * ) c i (x jq+1 ) . (48) 
Note that (∀i ∈ J P ) c i (x * ) = 0 and (∀i ∈ J D ) λ * (i) = 0. If J P (resp. J D ) is nonempty, we can then choose x * (resp. λ * ) such that c J P (x * ) < 0 (resp. λ * J D > 0). Consequently, by using Assumption 2, as q → +∞ , [START_REF] Chouzenoux | A block coordinate variable metric forward-backward algorithm[END_REF] becomes

i∈J D λ * (i) λ (i) + i∈J P c i (x * ) c i (x) ≤ p, (49) 
where we necessarily have

(∀i ∈ J D ) λ (i) > 0 and (∀i ∈ J P ) c i (x) < 0. (50) 
Because of the strict complementarity, there are exactly p positive terms in the left-hand side of [START_REF] Attouch | Proxpenalization and splitting methods for constrained variational problems[END_REF]. Therefore, we can apply the arithmetic-geometric mean inequality which leads to

i∈J D λ * (i) λ (i) i∈J P c i (x * ) c i (x) ≤ 1, (51) 
with the convention that, if J P (resp. J D ) is empty, the corresponding product is equal to 1. Since Theorem 3 states that (x, λ) is a primal-dual solution to P 0 and because (x, λ) satisfies ( 50), ( 51) also holds when either

λ * = λ or x * = x. Consequently, i∈J P (-c i (x * )) ≤ i∈J P (-c i (x)) and i∈J D λ * (i) ≤ i∈J D λ (i) . (52) 
If there exist at least two distinct elements in S P (resp. S D ) then, from Propositions 3 and 4, J P (resp. J D ) is nonempty. It follows from (52) that x (resp. λ) is a solution to P P (resp. P D ). In turn, Lemma 10 guarantees that P P (resp. P D ) has a unique solution. Thus, there exists a unique cluster point for the primal (resp. dual) sequence and (x j+1 ) j∈N (resp. (λ j+1 ) j∈N ) converges to the analytic center of S P (resp. S D ).

Numerical experiments

The good performance in terms of convergence speed of PIPA are illustrated in this section on two largescale image processing applications, namely hyperspectral unmixing and texture-geometry image reconstruction 2 . We also demonstrate that introducing a variable metric in PIPA can lead to a significant reduction of its computational time. All computational times are given for experiments run on Matlab 2018b on an Intel Xeon CPU E5-1650 at frequency 3.20GHz. Our code is available online 3 .

Hyperspectral unmixing

Hyperspectral imaging devices are remote sensing systems that acquire emitting light spectrum of a distant scene, here modeled as a 2D image [START_REF] Bioucas-Dias | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. Let s and r be respectively the number of acquired spectral bands and pixels of the image, and let Y ∈ R s×r denote the measured hyperspectral cube. Assume that we have access to a library S ∈ R s×q , where each column of S contains the spectral signatures of one material (or endmember) among q that are expected to be present in the scene. The proportion or abundance of every material in every pixel is described through the abundance matrix X ∈ R q×r . The following linear model is frequently used to relate the data, the endmembers and the abundances, when there is no microscopic interaction between the materials:

Y = SX + w,
with w ∈ R s×r a realization of an additive white Gaussian noise. The estimation of X from Y and S is an inverse problem called unmixing [START_REF] Chan | A two-stage method for spectral-spatial classification of hyperspectral images[END_REF]. Following [START_REF] Iordache | Total variation spatial regularization for sparse hyperspectral unmixing[END_REF][START_REF] Chouzenoux | Fast constrained least squares spectral unmixing using primal-dual interior-point optimization[END_REF], we propose to formulate the following constrained minimization problem to perform the unmixing task, minimize

X∈R q×r 1 2 Y -SX 2 2 + κ q i=1 (W X i ) d 1 subject to (∀j ∈ {1, . . . , r}) q i=1 X i,j ≤ 1 (∀i ∈ {1, . . . , q})(∀j ∈ {1, . . . , r}) X i,j ≥ 0, (53) 
where • 2 denotes the Frobenius norm, X i ∈ R r with i ∈ {1, . . . , q} is the i th line of the abundance matrix X, W ∈ R r×r is a wavelet decomposition operator, (•) d 1 is the 1 -norm of the detail wavelet coefficients, and 2 Preliminary results regarding the use of proximal interior point methods in these applicative contexts can be found in our previously published communications [START_REF] Corbineau | PIPA: a new proximal interior point algorithm for largescale convex optimization[END_REF][START_REF] Corbineau | Geometry-texture decomposition/reconstruction using a proximal interior point algorithm[END_REF].

3 https://github.com/mccorbineau/PIPA κ ≥ 0 is a regularization parameter. It is worth noting that the linear constraints account for the atmospheric absorption [START_REF] Keshava | Spectral unmixing[END_REF] since, for every pixel, the sum of all fractional abundances may be less than one. Moreover, the wavelet-based penalization allows us to enforce useful spatial regularity on the sought abundance maps [START_REF] Pustelnik | Wavelet-based image deconvolution and reconstruction[END_REF].

From this point forward, the vectorizations of X ∈ R q×r and Y ∈ R s×r , in lexicographic order, are denoted by x ∈ R n with n = qr and y ∈ R sr , respectively, and ⊗ denotes the Kronecker product. Problem (53) can thus be re-written as in (3), with p = n + r and (∀x

∈ R n ) g(x) = 1/2 y-(I r ⊗S)x 2 , f (x) = κ q i=1 (W P i x) d 1 , (∀i ∈ {1, . . . , q}) P i ∈ R r×n is a decimation matrix such that P i x = X i , and c(x) = M x + m with M = I r ⊗ 1 q -I n and m = -1 r 0 n
where 1 r = (1, . . . , 1) ∈ R r and 0 n = (0, . . . , 0) ∈ R n . The resulting minimization problem satisfies Assumptions 1, 3 and 4. Hence, Theorems 1, 2 and 3 regarding convergence and convergence rate of Algorithm 1 hold. In addition, in the considered example, the rank of S is equal to q, so there exists a unique solution to [START_REF] Alvarez | Asymptotic selection of viscosity equilibria of semilinear evolution equations by the introduction of a slowly vanishing term[END_REF] and Theorem 4(i) holds.

Realistic data simulation and test configuration

In order to simulate Y , we make use of the Urban 4 dataset, which provides the spectral signatures and abundance maps for q = 6 materials in s = 162 spectral bands. We consider images of size r = 256 × 256. The product of the spectral library and attenuated abundance map is corrupted with an additive white Gaussian noise with a standard deviation of 0.06. Let the signal-to-noise ratio be defined as SNR = 20 log 10 ( x / x -x ), where x is the ground-truth for x. In addition, for each material i ∈ {1, . . . , q}, the signal-to-noise ratio of its associated abundance map

X i ∈ R r is SNR i = 20 log 10 X i / X i -X i .
The regularization weight κ is tuned by a grid search so as to reach the largest SNR, in that case κ = 0.01. Regarding the operator W , we selected an orthogonal Daubechies 4 wavelet decomposition performed over 2 resolution levels. As for the variable metric, we consider two cases: the proposed method without variable metric (taken as the identity matrix), which is referred to as PIPA; and PIPA-VM, which denotes the case when, following the strategy in [START_REF] Becker | A quasi-Newton proximal splitting method[END_REF], for every j ∈ N, the variable 4 www.escience.cn/people/feiyunZHU/Dataset_GT.html metric is chosen as the Hessian of ϕ µj . The proximity operator of the regularization term in the variable metric is computed numerically using the algorithm in [START_REF] Combettes | Proximity for sums of composite functions[END_REF].

Let us now discuss the boundedness condition required for the variable metrics in PIPA-VM. For every x ∈ D, we have

ϕ µ (x) = 1 2 y -(I r ⊗ S)x 2 -µ p i=1 ln(-M i x -m i ),
where

M i ∈ R n (resp. m i ∈ R) is the i th line (resp. component) of M (resp. of m).
For every µ > 0 and x ∈ D, the Hessian of ϕ µ at x is equal to

∇ 2 ϕ µ (x) = I r ⊗ (S S) + µ p i=1 M i M i (M i x + m i ) 2 ,
Finally, in view of Remark 3, we deduce that there exist c and c in ] -∞, 0[ such that, for every k ∈ N and every i ∈ {1, . . . , p}, c ≤ M i x k + m i ≤ c < 0. Since the rank of M is equal to n, for every µ > 0, the aforementioned variable metrics are bounded from below and above by strictly positive constants, as required in Algorithm 1.

In order to satisfy Assumption 2, we choose the barrier parameter and precision sequences as follows, (∀j ∈ N) j = µ j ζ j , and µ j+1 =

µ j ρ j , (54) 
where ρ j ≥ ρ > 1, ζ > 1 and > 0. Regarding PIPA, we take = 10 3 , µ 0 = 1, ρ j = 1.5 for every j ∈ N and ζ = 1 + 10 -5 . For PIPA-VM we choose = 10 5 , µ 0 = 0.01, ζ = 1 + 10 -5 and, to avoid numerical instabilities when µ j is very small, we pick ρ j = 1.5 for every j ∈ N such that µ j ≥ 10 -6 , and decrease it gradually: if 4 × 10 -9 ≤ µ j < 10 -6 then ρ j = 1.1, if 10 -12 ≤ µ j < 4 × 10 -9 then ρ j = 1.01, and finally, if µ j < 10 -12 , then ρ j = 1.001. We compare PIPA and PIPA-VM with three state-ofthe-art convex optimization algorithms: the alternating direction method of multipliers (ADMM) [START_REF] Setzer | Deblurring Poissonian images by split Bregman techniques[END_REF][START_REF] Iordache | Total variation spatial regularization for sparse hyperspectral unmixing[END_REF], the Condat-Vũ primal-dual splitting algorithm (PDS) in [START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF][START_REF] Combettes | A forward-backward view of some primal-dual optimization methods in image recovery[END_REF], and the generalized forward-backward splitting algorithm (GFBS) [START_REF] Raguet | A generalized forward-backward splitting[END_REF]. We also implement preconditioned versions of ADMM and GFBS, which are referred to as ADMM-VM and GFBS-VM, respectively. ADMM-VM is based on [START_REF] Shefi | Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization[END_REF]Algorithm 2], where the metrics are taken constant as in [START_REF] Shefi | Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization[END_REF]Example 3.4]. Regarding GFBS-VM, we implement [77, Algorithm 1] with a modified metric based on the Hessian of the data-fitting term in [START_REF] Alvarez | Asymptotic selection of viscosity equilibria of semilinear evolution equations by the introduction of a slowly vanishing term[END_REF]. 

Results

The solution to ( 53) with κ = 0, i.e. without regularization, can be obtained with the primal-dual interior point method from [START_REF] Chouzenoux | Fast constrained least squares spectral unmixing using primal-dual interior-point optimization[END_REF]. It is referred to as IPLS and yields SNR = 11.02 dB, whereas solving the same problem with κ = 0.01 leads to a better reconstruction with SNR = 12.45 dB, illustrating the benefits of regularizing in this example. Figure 1 shows that the SNR increases faster with PIPA-VM than with the four other algorithms. Moreover, it can be clearly seen in this figure that PIPA-VM exhibits a much faster convergence than PIPA, which demonstrates the advantage of using a variable metric in this example. The SNR obtained for each material after running PIPA-VM and ADMM for 11 sec can be found in Table 1. Remark that we did not provide the results for PIPA, PDS, GFBS, ADMM-VM and GFBS-VM, since they were outperformed by PIPA-VM and ADMM as shown in Figure 1. For 5 out of 6 endmembers, the SNR of the abundance maps obtained with PIPA-VM after 11 sec is better than for ADMM, and for all materials, PIPA-VM gives better results after 11 sec than the non-regularized solution IPLS. Visual results for Asphalt and Dirt materials are displayed in Figures 2 and3. One can notice that, after running all algorithms for 11 sec, the abundance maps produced by PIPA-VM for these two materials are visually more satisfactory than the ones obtained with ADMM, while the non-regularized solution IPLS is significantly noisy.

In order to evaluate the algorithms based on their pointwise convergence, we let them run for a very large number of iterations and compute the relative distance between the current iterate and the solution x ∞ . As one can see on Figure 4, the sequence generated by PIPA-VM converges faster to the solution than the iterates produced by the other algorithms. It is finally worth noticing that, although an inexact computation of the proximity operator is performed in PIPA-VM, the method appears to be robust to the error generated by this approximation.

Joint geometry-texture decomposition and reconstruction

Various problems in image processing and computer vision can be formulated as the decomposition of a natural image into texture and geometry components. One can mention, for instance, texture segmentation [START_REF] Frecon | Multifractal-based texture segmentation using variational procedure[END_REF], classification [START_REF] Aujol | Combining geometrical and textured information to perform image classification[END_REF], or digital inpainting [START_REF] Bertalmio | Simultaneous structure and texture image inpainting[END_REF]. In the following, we will denote by x t ∈ R r and x g ∈ R r , the texture and geometry components of a natural image Fig. 4 Relative distance from current iterate to limit point as a function of time.

x t+g ∈ R r , so that x t+g = x t + x g . The geometry x g represents a piecewise smooth version of the image, and can be extracted by using the total variation semi-norm [START_REF] Osher | Image decomposition and restoration using total variation minimization and the H -1 norm[END_REF]. The texture highlights local components with higher spatial frequencies. Depending on the considered application, different texture models can be found in the literature, based on wavelet decompositions [START_REF] Briceño-Arias | Proximal algorithms for multicomponent image recovery problems[END_REF] or on the Hölder exponent [START_REF] Pustelnik | Local regularity for texture segmentation: Combining wavelet leaders and proximal minimization[END_REF], to name only a few. Here, we will focus on images in which the texture is located near the boundaries of different objects, as it can happen for instance in material image analysis, where the samples are subject to erosion and microporosity. Therefore, we will rely on the Laplacian detector for texture extraction, as the latter is known to be useful for edge and blob detection [START_REF] Haralick | Statistical and structural approaches to texture[END_REF]. X-Ray Computed Tomography (CT), a fast non-destructive scanning technique [START_REF] Kak | Principles of Computerized Tomographic Imaging[END_REF], is frequently used to acquire images from material samples. The acquisition process in CT can be modeled through the discrete Radon projection operator H ∈ R q×r , with r the number of pixels and q the number of measurements. Matrix H is high-dimensional and ill-conditioned. Reconstructing the image from the measured data y ∈ R q (also called sinogram) is a challenging inverse problem [START_REF] Chouzenoux | A majorize-minimize memory gradient algorithm applied to X-ray tomography[END_REF], the resolution of which can introduce a bias in subsequent image processing tasks, such as the classification of material components [START_REF] Gouillart | Belief-propagation reconstruction for discrete tomography[END_REF]. Therefore, we propose to perform jointly two tasks: the reconstruction and the geometry-texture decomposition. We show that this decomposition can be performed in a reasonable time with PIPA.

More precisely, we consider the following variational formulation: minimize

(x t ,x g )∈R r ×R r 1 2 F x t 2 + κTV(x g ) subject to x t + x g ∈ [x min , x max ] r x t ∈ [-α, α] r H(x t + x g ) -y ∞ ≤ χ (55) 
where x min = 0 and x max = 1 are the minimal and maximal pixel intensity values, α > 0 is a range value parameter for the texture, κ > 0 is a regularization parameter, χ > 0 is an upperbound on the measurement uncertainty, TV denotes the isotropic total variation semi-norm with (zero) Dirichlet boundary conditions. Moreover, F = I r -∆ ∈ R r×r where ∆ ∈ R r×r is the Laplacian associated with the following 2D kernel padded with circulant assumption:

  0 1 0 1 -4 1 0 1 0   .
The first term in the objective function enforces edge detection in the texture, while the geometry is made piecewise smooth thanks to the total variation regularization. The first set of constraints represents bounds on the pixel values of the natural image. The texture, which is supposed to capture small variations in the image, is modeled as a zero-centered component in the second set of constraints, where we take α = x max /3. The last constraint is the data-fit term, which can be decomposed into 2 × q linear inequalities. Hence, the constraints can be reformulated as

M x + m ∈] -∞, 0] p where x = [(x t ) , (x g ) ] , M ∈ R p×n , m ∈ R p , p = 2(q + 2r), n = 2r, M =         I r I r -I r -I r I r 0 r×r -I r 0 r×r H H -H -H         and m =         -x max 1 r x min 1 r -α1 r -α1 r -y -χ1 q y -χ1 q        
with 0 r×r the zero matrix in R r×r . As in the previous example, ( 55) is an instance of Problem (3) where (∀x ∈ R n ) f (x) = κTV(P g x) and g(x) = 1/2 F P t x 2 , with P t = (I r 0 r×r ) and P g = (0 r×r I r ). It can be noted that Assumptions 1 and 4 are satisfied. Thus, Theorems 1 and 3 hold. Since Assumption 3 does not hold, Theorem 2 does not apply here. The solution to (55) is not necessarily unique. Although the strict complementarity required to apply Theorem 4 is difficult to check, the convergence of PIPA to a single cluster point was observed in practice.

Initialization

In order to find an initial point that satisfies strictly the constraints, we set x t to zero. Following the method in [START_REF] Boyd | Convex optimization[END_REF]Chap. 11.4], we solve the minimization problem below to initialize x g , minimize (s,x g )∈R×R r s subject to s ≥ 0,

x g ∈ [x min , x max ] r Hx g -y ∞ ≤ χ + s, (56) 
where s ≥ 0 is the maximal infeasibility. The groundtruth natural image x t+g satisfies Hx t+g -y ∞ < χ so that the solution to ( 56) is reached for s = 0. Problem ( 56) is a linear programming problem, that we solve by using the code available online 5 for the primaldual interior point approach used in [START_REF] Boyd | Convex optimization[END_REF]Chap. 11.4]. This iterative algorithm generates iterates that belong to ]x min , x max [ r so that, in our numerical experiments, we are able to find a strictly feasible initial point in a reasonable time.

Variable metric and hyperparameters

Let µ j > 0 and k ∈ N. For every x ∈ D, the Hessian of

ϕ µj at x ∈ R n is equal to ∇ 2 ϕ µj (x) = F F + µ j D 3 (x) + G(x) G(x) G(x) G(x) ,
where Hereabove, D 1 (x) ∈ R r×r , D 2 (x) ∈ R q×q , and D 3 (x) ∈ R r×r are diagonal matrices with respective vectors of diagonal elements d 1 (x) ∈ R r , d 2 (x) ∈ R q , and d 3 (x) ∈ R r , defined as

G(x) = µ j D 1 (x) + H D 2 (x)H .
(∀i ∈ {1, . . . , r}) (d 1 (x)) (i) = (x t+g ) (i) -x min -2 + x max -(x t+g ) (i) -2 , (∀j ∈ {1, . . . , q}) (d 2 (x)) (j) = (Hx t+g -y) (j) + χ -2 + (y -Hx t+g ) (j) + χ -2 , (∀i ∈ {1, . . . , r}) (d 3 (x)) (i) = (x t ) (i) + α -2 + α -(x t ) (i) -2 .
Given the huge size and ill-conditioning of H, the inversion of ∇ 2 ϕ µj (x) is hardly feasible. Hence, instead of using the full Hessian of ϕ µj for the variable metric as in Section 4.1, we propose to use an upper-bound of it, i.e. A k ∈ S n such that A k -∇ 2 ϕ µj (x k ) also belongs to S n . We propose to majorize µ j D 3 (x) by β(x)I r where

β(x) = max 1≤i≤r µ j (d 3 (x)) (i)
For H D 2 (x)H, we propose to follow the strategy in [START_REF] Chouzenoux | Variable metric forwardbackward algorithm for minimizing the sum of a differentiable function and a convex function[END_REF] and upper-bound it by the diagonal matrix D 4 (x) ∈ R r×r with vector of diagonal elements P d 2 (x), where P ∈ R q×r is such that for every i ∈ {1, . . . , r} and j ∈ {1, . . . , q}, P j,i = H j,i r s=1 H j,s .

This leads to the following variable metric in Algorithm 1:

(∀k ∈ N) A k = F F + β(x k )I r + D(x k ) D(x k ) D(x k ) D(x k ) (57) 
where

D(x k ) = µ j D 1 (x k ) + D 4 (x k ) .
Since D(x k ) is diagonal, the operator A k is straightforward to invert using the Schur formula. In addition, similarly to Section 4.1, we deduce from Remark 3 that matrix (57) satisfies the boundedness condition required in Algorithm 1. In order to compute the proximity operator of f in such variable metric, we use [88, alg. 2]. Regarding the hyperparameters in the proposed method, in order to satisfy Assumption 2, as in the previous example, we take sequences of the form (54) with µ 0 = 10 -3 , ζ = 1 + 10 -5 , = 8.3 × 10 3 and ρ j = 1.1 for every j ∈ N.

Test settings

We perform the joint reconstruction and decomposition of two high-quality scans, referred to as Glass and Agaricus, which are displayed in Figure 5. These images are of size r = 128 × 128. The discrete Radon operator H models parallel projections along 180 angular positions on a detector grid of size 128, so that q = 180 × 128.

To account for measurement uncertainty, the sinograms are degraded with a uniform noise with an amplitude χ equal to 2% of the maximal entry of y. We set manually the regularization parameter κ so that it leads to a visually satisfactory decomposition: it is set to 0.25 for Glass and to 0.5 for Agaricus. The proposed algorithm PIPA-VM is compared to ADMM [START_REF] Setzer | Deblurring Poissonian images by split Bregman techniques[END_REF], which was the most competitive method in Section 4.1. Remark that, in order to make the implementation of ADMM feasible, we follow the same strategy as in [START_REF] Iordache | Total variation spatial regularization for sparse hyperspectral unmixing[END_REF], and alternate the minimization on the splitting variables. In our example, we need seven splitting variables. Since ADMM does not require a feasible starting point, we run it with two different initializations: ADMM1 refers to ADMM initialized like PIPA-VM, and ADMM2 refers to ADMM initialized with x t taken as the zero vector and x g set to 1/2(x min + x max )1 r .

Results

To compare the convergence speed of the different methods, we plot for each of them the relative distance between the current iterate x and the final solution x ∞ , obtained after running the algorithms for 12 hours. As Fig. 6 Relative distance from the iterates to the limit point as a function of time for Glass.

Fig. 7 Relative distance from the iterates to the limit point as a function of time for Agaricus.

one can see in Figures 6 and7, PIPA-VM converges faster to its limit point than ADMM for both initializations. Remark that the time necessary to solve [START_REF] Brito | Interior proximal algorithm for quasiconvex pro-gramming problems and variational inequalities with linear constraints[END_REF] and to find a feasible point is taken into account in the graphs. The results clearly show the advantage of using a feasible starting point over a simple initial guess.

To assess the visual quality of the geometry-texture decomposition we consider the solution obtained after reaching the stopping criterion x-x ∞ / x ∞ ≤ 10 -2 . This accuracy is reached first for PIPA-VM after 14 min for Glass and 18 min for Agaricus. The corresponding visual decomposition and reconstruction after these durations are given in Figure 8. As one can see in this figure, PIPA-VM identifies correctly the geometry as an almost piecewise-constant image, free from locally-fast varying components like the gills in the Agaricus mushroom. Moreover, the texture obtained for Glass image captures well the elements on the borders between the two species in presence, and the Agaricus gills can be found in the texture (Figure 8 bottom left). Finally, we evaluate the reconstruction quality based on the signal-to-noise ratio: SNR = 20 log 10 ( x t+g / x t+g -x t+g ), where x t+g denotes the ground-truth image. The SNR values obtained with the three methods for the reconstructions x t+g after the same durations are summarized in Table 2.

It can be further observed in Figures 9 and10, that even if the SNR converges to the same value for the three methods, PIPA-VM follows a path which would lead to a better SNR if stopped before convergence.

Conclusion

In this paper we have shown that it is possible to combine efficiently two powerful optimization frameworks: proximal splitting methods and interior point algorithms. One interesting feature of the resulting iterative method is the use of a variable metric, which can boost the convergence, as illustrated in our hyperspectral unmixing application. The convergence of the proposed method, as well as a convergence rate for the inner loop, have been obtained under suitable assumptions. As shown on two large-scale image processing applications, our method compares favorably in terms of speed of convergence with state-of-the-art algorithms. One future direction for further improvements would be to relax the convexity assumption in the mathematical analysis of PIPA, possibly by better relying on the KL property. This would widen the scope of application of this algorithm.

  ν] and x 0 ∈ D. If the sequence (x k ) k∈N is produced by Algorithm 1 with = 0, then there exist x ∈ D and a subsequence (x kq ) q∈N such that lim q→+∞ x kq = x and lim q→+∞ Ψ µ (x kq ) = Ψ µ (x).

Fig. 1

 1 Fig. 1 SNR as a function of time.

Fig. 2

 2 Fig. 2 Abundance map of Asphalt road: (a) ground-truth, (b) IPLS solution, visual results after running (c) ADMM and (d) PIPA-VM for 11 sec.

Fig. 3

 3 Fig. 3 Abundance map of Dirt: (a) ground-truth, (b) IPLS solution, visual results after running (c) ADMM and (d) PIPA-VM for 11 sec.
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Fig. 5

 5 Fig. 5 Natural images: (left) phase-separated barium borosilicate glass sample, imaged at the ESRF synchrotron (courtesy of David Bouttes), (right) mushroom Agaricus bisporus (courtesy of DigiMorph.org, The University of Texas High-Resolution X-ray CT Facility (UTCT), and NSF grant IIS-0208675).

Fig. 8

 8 Fig. 8 Visual results for PIPA-VM. (Top) Glass obtained after 14 min. (Bottom) Agaricus obtained after 18 min. Left to right: texture, geometry, reconstruction x t+g .

Fig. 9

 9 Fig. 9 SNR (dB) for x t+g as a function of time for Glass.

Fig. 10

 10 Fig. 10 SNR (dB) for x t+g as a function of time for Agaricus.

  A is positive semidefinite. The identity matrix in R n×n is denoted as I n . For every function f : R n

. In addition, refers to the Loewner partial order, i.e. for every A and B in S n , A B if and only if B -

  Proof Under Assumption 1, Lemmas 5, 7 and 8 hold. If, in addition, Ψ µ is a KL function, then we can apply [27, Theorem 2.9]. Thus, (x k ) k∈N converges to a critical point of Ψ µ and has finite length. By convexity, every critical point of Ψ µ is a global minimizer of Ψ µ , and a solution to P µ . Let µ > 0 and consider the barrier problem P µ associated to problem[START_REF] Gondzio | Interior point methods 25 years later[END_REF]. Under Assumptions 1 and 3, for every (δ, θ) ∈]0, 1[ 2 , (γ, ν) ∈]0, +∞[ 2 , ν ∈]0, ν], and x 0 ∈ D, the sequence (x k ) k∈N generated by Algorithm 1 with = 0 converges linearly to a solution x

	We now show that, for a useful special case, Algorithm 1
	converges linearly in terms of iterate and objective func-
	tion value.
	Proposition 2

* to P µ , and (Ψ µ (x k )) k∈N converges linearly to Ψ (x * ).

Proof Let µ > 0. Under Assumptions 1 and 3 we can apply [43, Corollary 5.1] which states that Ψ µ is a KL function with exponent 1/2. The convergence of (x k ) k∈N to a solution x * ∈ D to P µ is guaranteed by Proposition 1. From Lemmas 5, 7 and 8, we can apply

[START_REF] Frankel | Splitting methods with variable metric for Kurdyka-Lojasiewicz functions and general convergence rates[END_REF] Theorem 4(ii)

]. Hence, there exist c > 0 and k 0 ∈ N such that for every k ≥ k 0 ,

Table 1

 1 Signal-to-noise ratio (SNR i ) 1≤i≤6 (in dB) for each material after 11 sec.

		IPLS ADMM PIPA-VM
	Asphalt 10.12	7.40	11.31
	Grass 11.21	11.37	12.25
	Tree 11.86	12.45	13.04
	Roof 14.91	15.08	15.27
	Metal	4.90	7.25	7.12
	Dirt 13.68	12.34	14.52

Table 2

 2 SNR (dB) of the reconstruction x t+g obtained after running the algorithms for the same duration.
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-norm promotes sparsity[START_REF] Ahmad | Iteratively reweighted 1 approaches to sparse composite regularization[END_REF], while the total variation semi-norm leads to almost piecewise constant solutions, which is at the core of variational segmentation and decomposition models[START_REF] Osher | Image decomposition and restoration using total variation minimization and the H -1 norm[END_REF]. Although IPMs can handle