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Abstract In this article, we introduce a new proximal

interior point algorithm (PIPA). This algorithm is able

to handle convex optimization problems involving vari-

ous constraints where the objective function is the sum

of a Lipschitz differentiable term and a possibly nons-

mooth one. Each iteration of PIPA involves the min-

imization of a merit function evaluated for decaying

values of a logarithmic barrier parameter. This inner

minimization is performed thanks to a finite number

of subiterations of a variable metric forward-backward

method employing a line search strategy. The conver-

gence of this latter step as well as the convergence the

global method itself are analyzed. The numerical effi-

ciency of the proposed approach is demonstrated in two

image processing applications.
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1 Introduction

Many problems in image processing, such as segmen-

tation [1], classification [2], or restoration [3], can be

formulated as the minimization of a convex objective

function under convex constraints. This type of problem

can be successfully addressed by interior point methods

(IPMs) [4, 5, 6]. Instead of tackling directly the original

optimization problem, IPMs solve a sequence of inter-

mediate problems parametrized by a barrier parameter

going to zero. In each intermediate problem, the orig-

inal objective function is penalized with a logarithmic

barrier, which is unbounded at the boundary of the

feasible set. This modified objective function is referred

to as a merit function. Thanks to the introduction of

the barrier term, IPMs produce only strictly feasible
iterates, which can be beneficial from the application

viewpoint and also boost convergence. For instance, un-

der suitable assumptions, the primal-dual interior point

algorithm proposed in [7] presents superlinear conver-

gence in the context of nonlinear programming. From

a numerical perspective, IPMs have demonstrated very

good performance on several challenging applications,

such as image reconstruction [8] and multispectral im-

age unmixing [9]. It is worth noting that most of interior

point approaches rely on first or second-order methods

and, therefore, assume that the objective function is at

least twice-differentiable [10, 11].

However, in many image processing applications, the

quality of the solution and its robustness to noise may

be improved by including a nondifferentiable regular-

ization term in the objective function. For instance, the

`1-norm promotes sparsity [12], while the total variation

semi-norm leads to almost piecewise constant solutions,

which is at the core of variational segmentation and

decomposition models [13]. Although IPMs can handle
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the `1 norm [14, 15, 16], for more general non-smooth

penalizations, approaches relying on the proximity op-

erator1 seem more appropriate [17].

In most applications, the objective function is actu-

ally composite, in that it can be split into a nons-

mooth term and a differentiable term. Some proximal

resolution methods take advantage of this decompo-

sition [17], such as the widely-used forward-backward

(FB) algorithm [18], where each iteration is made of

two steps, namely a gradient step (i.e., forward) on

the differentiable term, and a proximal step (i.e. back-

ward) on the nonsmooth term. The FB algorithm can

be accelerated by using a so-called variable metric or

preconditioner . For instance, in [19, 20], the conver-

gence of a variable metric forward-backward (VMFB)

method is established in the convex setting under a

monotonicity condition. Recent works [21, 22] relying

on the Kurdyka- Lojasiewicz (KL) inequality [23, 24, 25]

extend this convergence result to nonconvex problems,

under milder boundedness condition on the variable

metrics. The KL property is also useful for deriving

convergence rates [26, 27].

Proximal and interior point methods can be combined

in efficient solvers, as illustrated in [28], where the au-

thors proposed an algorithm that minimizes a convex

differentiable function over convex inequality constraints.

However, this framework does not make use of any split-

ting strategy, hence it assumes that the proximity op-

erator of the merit function is easy to compute. More

recently, a preconditioning strategy based on the loga-

rithmic barrier was proposed in [29] to modify the dual

update in a proximal primal-dual algorithm.

A major challenge, when dealing with IPMs is that

the logarithmic barrier does not satisfy the gradient-

Lipschitz property. Therefore, specific line search strate-

gies have to be designed in order to preserve the conver-

gence properties of the methods used to solve the sub-

problems [30]. This question has also been addressed in

the context of VMFB algorithms, when the gradient of

the smooth term in the objective function is not glob-

ally Lipschitz-continuous. Following the work of [31],

Armijo-type line searches were proposed in [32, 33],

where the convergence of the algorithm is obtained in a

convex setting under suitable assumptions on the vari-

able metrics. However, the line search strategy in [32]

requires multiple gradient computations, while [33] re-

quires the domain of the nondifferentiable function to

be closed. Other line searches have also been studied

in [34], where convergence guarantees and convergence

rate in terms of function values are provided for the con-

vex case. It is worth noting that, similarly to [35], [34]

considers a relaxed version of the monotonicity condi-

1 see http://proximity-operator.net/

tion on the variable metrics from [20], where the metrics

converge to a multiple of the identity operator, with a

multiplicative factor which is allowed to vary along it-

erations. This assumption still remains restrictive com-

pared to the conditions required in [21], where the proof

of convergence is carried out using the KL property.

In this paper, we propose to combine the VMFB algo-

rithm with the logarithmic barrier method, leading to a

proximal interior point algorithm, which is referred to

as PIPA. We will make use of one of the line searches

investigated in [34] to determine the stepsize value for

each iteration of the proposed algorithm. Since our as-

sumptions on the function domains are different from

those in [34], we prove that the line search remains valid

in our context. Furthermore, we carry out the conver-

gence analysis of the proposed algorithm under a mild

boundedness condition on the involved variable met-

rics. Under some additional assumptions, we derive a

linear convergence rate for the inner loop involved in

PIPA. We show that the proposed algorithm performs

well with respect to state-of-the-art methods on two

applications in image processing, namely hyperspec-

tral unmixing and joint geometry-texture decomposi-

tion and reconstruction of computed tomography (CT)

data. Our numerical experiments demonstrate in addi-

tion the benefits of using a variable metric to accelerate

the convergence of PIPA.

The article is organized as follows. Mathematical nota-

tion and definitions are provided in Section 2, where the

proposed method is detailed and summarized in Algo-

rithms 1 and 2. Section 3 is dedicated to the mathemat-

ical analysis of PIPA. Our main theoretical results are

provided in Section 3.1, while the proofs for these re-

sults are given in the following sections. In Section 3.2

we show that the line search and inner loop in PIPA

are well-defined, and in Section 3.3 we demonstrate the

linear convergence rate of Algorithm 1 for a useful case

where the KL property is satisfied. In Section 3.4 we

prove the convergence results regarding PIPA, i.e. Al-

gorithm 2. Numerical experiments are presented in Sec-

tion 4 and some conclusions are drawn in Section 5.

2 Proximal interior point method

2.1 Notation and definitions

In this paper, Rn denotes the n-dimensional Euclidean

space endowed with the standard scalar product 〈·, ·〉
and the norm ‖·‖. The set of symmetric positive definite

matrices in Rn×n is referred to as Sn. For every matrix

A ∈ Sn, |||A||| denotes its spectral norm and ‖ · ‖A de-

notes the norm induced by A, i.e. ‖ · ‖A = 〈·, A·〉1/2. In

addition, � refers to the Loewner partial order, i.e. for

http://proximity-operator.net/
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every A and B in Sn, A � B if and only if B − A is

positive semidefinite. The identity matrix in Rn×n is de-

noted as In. For every function f : Rn → R∪{+∞}, its

domain is defined as domf = {x ∈ Rn | f(x) 6= +∞}. A

function is said proper if its domain is nonempty. The

set of functions which are proper, convex, lower semi-

continuous (lsc) on Rn and take values in R ∪ {+∞},
is denoted as Γ0(Rn). For every set D ⊂ Rn, D denotes

its closure.

Definition 1 (Lipschitz-continuity) A function f :

Rn → Rp is said Lipschitz-continuous if there exists

L ≥ 0 such that

(∀(x, y) ∈ (domf)2) ‖f(x)− f(y)‖ ≤ L‖x− y‖.

The proximity operator [36, 37], which is defined below,

is a fundamental tool in convex analysis [17, 38, 39].

Definition 2 (Proximity operator) For every f ∈
Γ0(Rn), A ∈ Sn and x ∈ Rn, the proximity operator

of f at x, with regards to the norm induced by A, is

defined as

proxAf (x) = argminy∈Rn

(
f(y) +

1

2
‖x− y‖2A

)
. (1)

In Definition 2, when A is not specified, then the stan-

dard Euclidean norm is used, i.e. A = In. If proxf
is simple to compute, then the solution to (1) for an

arbitrary A ∈ Sn can be obtained by using the dual

forward-backward (DFB) algorithm [40] or its acceler-

ated version [41].

Definition 3 (Moreau Subdifferential) Let f :

Rn → R ∪ {+∞} be proper. The subdifferential of f is

the set-valued operator ∂f such that, for every x ∈ Rn,

∂f(x) = {u ∈ Rn | (∀y ∈ Rn) 〈y − x, u〉+ f(x) ≤ f(y)}.

The subdifferential, defined hereabove, provides an equi-

valent characterization for the proximity operator. From

[37, Proposition 16.44], it follows that for every f ∈
Γ0(Rn), A ∈ Sn, x ∈ Rn, and z ∈ Rn

z = proxAf (x) ⇐⇒ x− z ∈ A−1∂f(z). (2)

The proximity operator exhibits many useful proper-

ties, in particular it is firmly nonexpansive [37, Proposi-

tion 12.28]. Moreover, by combining Fermat’s rule [37,

Theorem 16.3] with (2), for every functions f and g

in Γ0(Rn), if g is differentiable on a neighborhood of

x ∈ Rn, then x is a minimizer of f + g if and only if

x = proxf (x−∇g(x)).

Definition 4 For every η > 0, Φη is the set of contin-

uous concave functions φ : [0, η[→ [0,+∞[ such that

φ(0) = 0, φ is C1 on ]0, η[ and continuous at 0 and, for

every s ∈]0, η[, φ′(s) > 0.

From the above definition, we can state the so-called

Kurdyka- Lojasiewicz (KL) property. Following the sem-

inal work of  Lojasiewicz and Kurdyka, the KL property

has been extensively used for proving the convergence

and obtaining convergence rates of optimization meth-

ods for possibly nondifferentiable functions, both in the

convex and nonconvex case [25, 42].

Definition 5 (KL property [42]) Let f : Rn →
R ∪ {+∞} be proper and lower semicontinuous. The

function f is said to have the Kurdyka- Lojasiewicz (KL)

property at x ∈ dom∂f = {x ∈ Rn | ∂f(x) 6= ∅} if

there exist η ∈]0,+∞], a neighborhood Ω of x and a

function φ ∈ Φη, such that for all x ∈ Ω such that

f(x) < f(x) < f(x) + η, the following inequality holds

φ′(f(x)− f(x))dist(0, ∂f(x)) ≥ 1.

If f satisfies the KL property at each point of dom∂f ,

then f is called a KL function.

The KL property is satisfied in most practical optimiza-

tion applications and, for a wide class of functions, the

reparametrization φ has a specific form and can be writ-

ten (∀s ∈ [0, η[) φ(s) = cs1−α for some c > 0 and

α ∈ [0, 1[. This parameter α is called the KL exponent

and can be made explicit under some conditions, as de-

tailed in [43]. This is of particular interest because this

exponent can help derive convergence rates for many

optimization methods, as proven for instance in [26,

Theorem 2] or [44, Theorem 3.4].

2.2 Optimization problem and assumptions

In this paper we consider the following constrained con-

vex minimization problem,

P0 : minimize
x∈Rn

f(x) + g(x)

subject to (∀i ∈ {1, . . . , p}) ci(x) ≤ 0,
(3)

where p > 0, and Assumption 1 below is satisfied.

Assumption 1

(i) The set of solutions to P0 is nonempty and bounded.

(ii) Functions f , g and (ci)1≤i≤p belong to Γ0(Rn),

and f + g is bounded from below. The set

D = {x ∈ Rn | (∀i ∈ {1, . . . , p}) ci(x) < 0} is

assumed to be nonempty, open, and D ⊂ domf ⊂
domg.
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(iii) Functions g and (ci)1≤i≤p are differentiable on D;

∇g and (∇ci)1≤i≤p are Lipschitz–continuous on

any compact subset of D.

Since the functions (ci)1≤i≤p are lsc, the closure of D is

equal to D = {x ∈ Rn | (∀i ∈ {1, . . . , p}) ci(x) ≤ 0}. In

image processing, the constraints can be derived from

the underlying geometry of the problem [45]. For in-

stance, inequality constraints are used in a problem of

deformable image matching in [46] to ensure that the

estimated image deformation is injective and preserves

the topology. Constraints can also serve to enforce some

a priori knowledge about the solution, and act as regu-

larization terms, as in the image segmentation approach

in [47], where bound constraints are imposed on the seg-

mented areas and their barycenters.

Following the framework of interior point methods, we

propose to reformulate the constrained problem P0 as a

sequence (Pµj )j∈N of modified subproblems parametri-

zed for every j ∈ N by a so-called barrier coefficient

µj > 0 and defined as

Pµj : minimize
x∈Rn

f(x) + g(x) + µjB(x) (4)

where B is the logarithmic barrier associated with the

constraints:

B : Rn → R ∪ {+∞}

x 7→

−
p∑
i=1

ln(−ci(x)) if x ∈ D

+∞ otherwise.

For simplicity we introduce the shorter notation: (∀x ∈
Rn) c(x) = (ci(x))1≤i≤p ∈ Rp, and

(∀µ > 0) ϕµ = g + µB, Ψµ = f + ϕµ.

Ψµ is designated as merit function.

2.3 PIPA algorithm

The proposed method, PIPA, is made of two interlocked

loops, which are detailed in Algorithms 1 and 2. Given

j ∈ N, Algorithm 1 produces an approximate solution

to Pµj via VMFB steps [21] consisting in a gradient

step on the smooth term ϕµj and a proximal step on

the nondifferentiable term f . The proximity operators

are computed within the metric induced by symmetric

definite positive preconditioning matrices whose eigen-

values are bounded from below and from above (using ν

and ν positive constants). For well-chosen matrices, this

so-called variable metric strategy can significantly im-

prove the convergence speed. Preconditioning matrices

Algorithm 1: Aµ(x0, δ, θ, γ, ε, ν, ν)

Inputs are such that (δ, θ) ∈]0, 1[2, (γ, µ) ∈]0,+∞[2,
ε ∈ [0,+∞[, 0 < ν ≤ ν, and x0 ∈ D;

for k = 0, 1, . . . do
Choose Ak ∈ Sn such that νIn � Ak � νIn;
for l = 0, 1, . . . do

x̃k,l = proxAk
γθlf

(xk − γθlA−1
k ∇ϕµj (xk));

Exit loop if (5) is satisfied;

end
xk+1 = x̃k,l;

γk = γθl;

vk+1 = Ak
γk

(xk − xk+1)−∇ϕµ(xk) +∇ϕµ(xk+1);

Stop if ‖vk+1‖ < ε;

end
Return (xk+1, vk+1);

Algorithm 2: Proximal Interior Point Algorithm

(PIPA)

Let (δ, θ) ∈]0, 1[2, (γ, µ0) ∈]0,+∞[2, x0 ∈ D, and let
(µj)j∈N and (εj)j∈N satisfy Assumption 2;

for j = 0, 1, . . . do
Let 0 < νj ≤ νj ;
(xj+1, vj+1) = Aµj (xj , δ, θ, γ, εj , νj , νj);
λj+1 =

(
− µj
ci(xj+1)

)
1≤i≤p

;

end
Return xj+1;

can be determined for instance through a majorization-

minimization procedure [48]. It must be emphasized

that, since the barrier is logarithmic, the gradient of

ϕµj is not Lipschitz-continuous on Rn. Thus, the VMFB

algorithm must be associated with a line search to find

an appropriate value for the stepsize so as to guaran-

tee convergence of the scheme. In Algorithm 1, we use

the backtracking line search method investigated in [34,

LS1], itself a generalization of [32]. At iteration k ∈ N,

this backtracking procedure stops if

ϕµ(x̃k,l)− ϕµ(xk)− 〈x̃k,l − xk,∇ϕµ(xk)〉 ≤
δ

γ̄θl
‖x̃k,l − xk‖2Ak , (5)

for some l ∈ N. Such line search ensures both sufficient

decrease of the criterion and feasibility of the next it-

erate. It is interesting to note that if the whole cost

function in P0 is smooth (f = 0), then it reduces to the

standard Armijo line search along the steepest direc-

tion. Applications related to `p-norms, with 1 < p < 2,

and Bregman distances where considered in [34], but,

to the best of our knowledge, it is the first time that

this line search is applied in the context of an interior

point approach.

The resolution of the inner subproblem through Algo-

rithm 1 is stopped once a certain accuracy is reached.
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In practice, we propose to stop the iterations once the

norm of one element of the sequence (vk+1)k∈N, where

(∀k ∈ N) vk+1 ∈ ∂Ψµ(xk+1), is sufficiently small. As

stated in Assumption 2 below, the sequence (εj)j∈N

and the barrier parameter (µj)j∈N, have to be chosen

properly to secure the convergence of the sequence of

iterates produced by Algorithm 2 to a solution to the

initial problem P0.

Assumption 2 (Hyperparameters) For every j ∈
N, µj > 0 and εj > 0. In addition, limj→+∞ µj = 0

and limj→+∞ εj/µj = 0.

Remark 1 The sequence (λj+1)j∈N, produced by Algo-

rithm 2, is related to the Lagrangian associated with

the constrained problem P0 and it is used in the proof

of convergence as shown in Section 3.4.

2.4 Related works

It can be noted that there exist links between the pro-

posed PIPA algorithm and a different class of meth-

ods called diagonal or penalization methods [49, 50], for

which a general study was recently provided for the con-

tinuous setting in [51]. In [52], the authors proposed a

similar approach in the discrete setting based on the FB

algorithm. However, they assume that the gradient of

the penalization function, which is the equivalent of our

barrier, is Lipschitz continuous, and they let the penal-

ization parameter tend to infinity, whereas our barrier

parameter decreases to zero. In addition, their method

does not solve a problem of the form (3), instead, it

performs a hierarchical minimization [52, Eq. (6)]. This

key difference is also highlighted in [53] and [54], in the

continuous and discrete settings, respectively. In [54]

the author studied the proximal point algorithm, with-

out any forward-backward step, and considered a penal-

ization parameter that, similarly to our barrier param-

eter, vanishes to zero. The optimization problem that

is solved by this algorithm then depends on the rate

of reduction chosen for this coefficient. In addition, it

is assumed that the penalization function is bounded

from below, which is not necessarily satisfied by the

logarithmic barrier.

Related works also include Bregman distance approaches

and entropy-like proximal algorithms [55, 56, 57], where

the Euclidean norm in the definition of the proximity

operator is replaced by a divergence measure. The lat-

ter can be chosen such that feasibility is ensured at

each iteration. However, the computation of the modi-

fied proximity operator in such methods is usually not

straightforward.

3 Convergence analysis

This section aims at studying the convergence of the

proposed PIPA method. After stating our main results

in Section 3.1, we provide the corresponding proofs in

Sections 3.2, 3.3 and 3.4.

3.1 Main results

Theorem 1 guarantees that the stopping criterion in

Algorithm 1 is well-defined.

Theorem 1 Under Assumption 1, for every (δ, θ) ∈
]0, 1[2, (γ, µ, ν) ∈]0,+∞[3, ν ∈]0, ν], and x0 ∈ D, for

every ε > 0, there exists k ∈ N such that ‖vk+1‖ < ε.

Thus, an important feature of Algorithm 1 is the de-

cay rate of the sequence (‖vk+1‖)k∈N. This rate can

be made explicit for the particular instance of linear

inequality constraints. More precisely we focus on the

case when the constrained problem takes the form:

minimize
x∈Rn

g̃(Hx) + f(x)

subject to Mx+m ∈ ]−∞, 0]p,
(6)

where g̃ : Rs →]−∞,+∞], H ∈ Rs×n, M ∈ Rp×n, m ∈
Rp, and the involved functionals satisfy the following

assumption.

Assumption 3

(i) f is a polyhedral function, i.e. its epigraph a finite

intersection of closed halfspaces.

(ii) g̃ is lsc with an open domain, it is strongly convex

on any compact subset of domg̃ and it is twice

continuously differentiable on domg̃.

(iii) f + g̃ ◦ H is proper and it is continuous on the

domain of its subdifferential.

Remark 2 Assumption 3 holds for instance if

g̃ = 1
2‖ · −y‖

2 with y ∈ Rs and if f = κ‖W · ‖1 where

κ ≥ 0 and W ∈ Rq×n is a linear transform (e.g., a

wavelet analysis operator [58, 59]). This corresponds to

an `1-regularized least-squares problem, at the core of

many applications such as denoising [60], image restora-

tion [14], machine learning, or biological data analy-

sis [61, Chapter 18.4].

The following result can be deduced from existing

results concerning the use of the KL inequality in opti-

mization.

Theorem 2 Let µ > 0 and consider the barrier prob-

lem Pµ associated to problem (6). Under Assumptions 1

and 3, for every (δ, θ) ∈]0, 1[2, (γ, ν) ∈]0,+∞[2, ν ∈
]0, ν], and x0 ∈ D, the sequence (vk+1)k∈N generated by

Algorithm 1 converges linearly to 0 when ε = 0.
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We finally present results regarding the convergence of

the proposed method PIPA, i.e. Algorithm 2.

Theorem 3 Suppose that Assumptions 1 and 2 hold

for every (δ, θ) ∈]0, 1[2, (γ, µ0) ∈]0,+∞[2 and x0 ∈ D.

Then, any sequence (xj+1, λj+1)j∈N generated by Al-

gorithm 2 is bounded. In addition, every of its clus-

ter point (x∗, λ∗) is a primal-dual solution to P0, i.e.

(x∗, λ∗) is a saddle point for the Lagrangian defined in

(30).

A stronger convergence result can be obtained, under

additional assumptions. In particular the following one

will turn out to play an important role.

Assumption 4 Either the constraints are affine, i.e.

c : x 7→ Mx + m where M ∈ Rp×n and m ∈ Rp, and

M has full column rank (i.e. M is injective), or there

exists i ∈ {1, . . . , p} such that ci is strictly convex.

Let SP be the set of solutions to P0 (primal solutions),

and let SD be the set of solutions to the Lagrange dual

problem associated with P0 (dual solutions) [62, Sec-

tion 5.2]. In addition, let

JP = {i ∈ {1, . . . , p}|(∃x ∈ SP ) ci(x) < 0}, (7)

JD = {i ∈ {1, . . . , p}|(∃λ = (λ(`))1≤`≤p ∈ SD) λ(i) > 0}.
(8)

Our main convergence result, summarized in Theorem 4,

provides a useful characterization for the limit point of

Algorithm 2 using the so-called analytic center, which

will be introduced in Section 3.4.2.

Theorem 4 Under Assumptions 1 and 2 the following

hold.

(i) If there exists only one element in SP (resp. SD)

then the sequence (xj+1)j∈N (resp. (λj+1)j∈N) con-

verges to this unique primal (resp. dual) solution

to P0.

(ii) Suppose that there exist at least two distinct ele-

ments in SP (resp. SD), Assumption 4 holds, and

P0 has the strict complementarity property, i.e.

JP∪JD = {1, . . . , p}. Then the sequence (xj+1)j∈N

(resp. (λj+1)j∈N) produced by Algorithm 2 con-

verges to a primal (resp. dual) solution to P0,

which is the analytic center of SP (resp. SD).

The next sections providing the proofs for the aforemen-

tioned theorems are organized as follows. After deriving

some properties for the solution set to Problem (4) in

Section 3.2.1, we show in Section 3.2.2 that, under the

considered assumptions, the chosen line search is well-

defined. Then, we derive Lemma 5, Corollary 3 and

Lemma 7 in Section 3.2.3, which lead to the proof of

Theorem 1 in Section 3.2.4. Section 3.3 is dedicated to

the convergence analysis and convergence rate of Algo-

rithm 1. In Section 3.3.1 we start by deriving Lemma 8

which, together with Lemmas 5 and 7, ensures that the

sufficient decrease, relative error and continuity condi-

tions required in [27, Theorem 2.9] are satisfied. This

leads to Proposition 1. We then derive Proposition 2

which directly leads to the proof of Theorem 2 in Sec-

tion 3.3.2. Finally, we study the convergence of Algo-

rithm 2 in Section 3.4 based on a Lagrangian approach.

The proof for Theorem 3 is given in Section 3.4.1, the

analytic center is presented in Section 3.4.2 and, finally,

the proof of Theorem 4 is provided in 3.4.3.

3.2 Well-definedness of Algorithm 1

3.2.1 Preliminary results

We first derive a preliminary result about functions ϕµ
and Ψµ with µ > 0.

Lemma 1 Under Assumption 1(iii), for every µ > 0,

∇ϕµ is Lipschitz-continuous on every compact subset

of D.

Proof Let K be a compact subset of D. By assumption,

for every i ∈ {1, . . . , p}, ci is differentiable on K, so

it is continuous on K and, according to the extreme

value theorem, it is bounded on K and it attains its

bounds. Thus, there exist (c, c) ∈] − ∞, 0[2 such that

(∀i ∈ {1, . . . , p})(∀x ∈ K) c ≤ ci(x) < c. Hence, for

every (x, y) ∈ K2,

‖∇B(x)−∇B(y)‖

≤
p∑
i=1

‖ci(y)∇ci(x)− ci(x)∇ci(y)‖
|ci(x)ci(y)|

≤
p∑
i=1

|ci(y)|
c2
‖∇ci(x)−∇ci(y)‖

+
|ci(y)− ci(x)|

c2
‖∇ci(y)‖. (9)

In addition, by assumption, for every i ∈ {1, . . . , p},
∇ci is Li-Lipschitz continuous on K for some Li > 0;

in particular, it is bounded by some constant Ki >

0. Hence, for every i ∈ {1, . . . , p}, ci is Ki-Lipschitz

continuous on K and we deduce from (9) that

‖∇B(x)−∇B(y)‖ ≤

(
p∑
i=1

cLi +K2
i

c2

)
‖x− y‖.

Therefore, for every µ > 0, ∇ϕµ = ∇g + µ∇B is Lips-

chitz continuous on K.

�
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The following lemma will be useful.

Lemma 2 [4, Theorem 4] Under Assumption 1, for ev-

ery µ > 0 and τ ∈ R, the level set {x ∈ D | Ψµ(x) ≤ τ}
is compact.

We now prove the existence of a solution for every sub-

problem Pµ (4).

Corollary 1 Under Assumption 1, for every µ > 0,

the solution set to Pµ is a nonempty convex and com-

pact subset of D.

Proof Let µ > 0. By assumption there exists x0 ∈ D
such that x0 ∈ domΨµ. Let S = {x ∈ D | Ψµ(x) ≤
Ψµ(x0)}. From Lemma 2, S is compact. The set S is

also nonempty since x0 ∈ S, and it is convex since

Ψµ ∈ Γ0(Rn) and D is convex. Solving Pµ amounts to

minimizing Ψµ over S. Hence, the solution set of Pµ is

nonempty, convex and closed; it is also bounded since

it is a subset of S, which is compact.

�

3.2.2 Line search

We show in this section that our proposed line search is

well-defined given our assumptions. Let (γ, µ) ∈]0,+∞[2,

θ ∈]0, 1[ and A ∈ Sn. We define function h such that

for every x ∈ D and l ∈ N,

h(x, l) = proxAγθlf
(
x− γθlA−1∇ϕµ(x)

)
.

Note that, from (2), for every x ∈ D and l ∈ N,

A(x− h(x, l))− γθl∇ϕµ(x) ∈ γθl∂f(h(x, l)). (10)

First, we check that, in the backtracking procedure, if

the stepsize tends to zero then the expression for the

next iterate in Algorithm 1 converges to the current

iterate.

Lemma 3 Under Assumption 1, for every θ ∈]0, 1[,

(γ, µ) ∈]0,+∞[2 and A ∈ Sn, if x ∈ D, then

lim
l→+∞

h(x, l) = x. (11)

Proof Let l ∈ N and x ∈ D. Since proxAγθlf is nonex-

pansive with respect to ‖ · ‖A, it follows that

‖h(x, l)− proxAγθlf (x)‖A ≤ γθl‖A−1∇ϕµ(x)‖A. (12)

Taking the limit in (12) we deduce that, as l → +∞,

‖h(x, l) − proxAγθlf (x)‖A → 0. In addition, A−1∂f is a

maximally monotone operator with respect to ‖ · ‖A.

From [37, Proposition 16.27] and since ∅ 6= intdomf ⊂
dom∂f , we have D ⊂ D ⊂ domf ⊂ domf = intdomf ⊂
dom∂f . Thus, [37, Theorem 23.48] leads to

lim
l→+∞

‖proxAγθlf (x)− x‖A = 0.

Finally, from the triangular inequality it follows that,

as l → +∞, ‖h(x, l)− x‖A → 0, hence the result since

A ∈ Sn.

�

We now show that, [34, Lemma 3.6(ii)] holds for the

line search.

Lemma 4 Under Assumption 1, for every θ ∈]0, 1[,

(γ, µ) ∈]0,+∞[2 and A ∈ Sn, if x ∈ D \ Argmin(f +

ϕµ), then

γθl(ϕµ(h(x, l))− ϕµ(x)− 〈h(x, l)− x,∇ϕµ(x)〉)
‖h(x, l)− x‖2A

→ 0,

as l→ +∞.

Proof Take l ∈ N. If x = h(x, l) then, from (10), it

follows that 0 ∈ ∂f(x) + ∇ϕµ(x) and x is a mini-

mizer of f +ϕµ, which leads to a contradiction. Hence,

‖h(x, l)− x‖A 6= 0. Since A−1∂f is a maximally mono-

tone operator with respect to ‖·‖A, [63, Lemma 1] leads

to

‖x− h(x, l)‖A
γθl

≤ ‖x− h(x, l + 1)‖A
γθl+1

and (γθl/‖h(x, l) − x‖A)l∈N is a decreasing sequence.

Hence, there exists l0 ∈ N and M > 0 such that

(∀l > l0)
γθl

‖x− h(x, l)‖A
≤M. (13)

In addition, from Lemma 3, (11) holds. According to

Assumption 1(iii), D is an open set, so there exist l1 ≥
l0 and a convex subset K of D such that x ∈ K and

for every l ≥ l1, h(x, l) ∈ K. From Lemma 1 it follows

that ∇ϕµ is uniformly continuous on any compact sub-

set of K. From, [34, Corollary 3.4 (ii)] and the norm

equivalence λmin(A)1/2‖ · ‖ ≤ ‖ · ‖A ≤ λmax(A)1/2‖ · ‖,
where λmin(A) and λmax(A) are the minimal and max-

imal eigen values of A, when l→ +∞ we have

ϕµ(h(x, l))− ϕµ(x)− 〈h(x, l)− x,∇ϕµ(x)〉
‖h(x, l)− x‖A

→ 0. (14)

Combining (13) and (14) completes the proof.

�

Finally, we derive Corollary 2 below which states that

the line search performed at each iteration of Algo-

rithm 1 is properly defined.

Corollary 2 Let (δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈]0,+∞[3, ν ∈
]0, ν], and x0 ∈ D. Suppose that Assumption 1 holds

and that Algorithm 1 is run at iteration k ∈ N. Then,

xk+1 ∈ D and condition (5) is met for some l ∈ N.
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Proof Let us prove the result by induction. First note

that x0 ∈ D. Assume that the property is satisfied at

iteration k− 1 if k ≥ 1. Under Assumption 1, if xk ∈ D
is not a minimizer of f+ϕµ then we can apply Lemma 4,

which implies that the line search will stop: for any δ >

0, (5) will be satisfied for a finite l. If xk ∈ Argmin(f +

ϕµ) then x̃k,0 = xk and the line search is satisfied for

l = 0. Moreover, if xk+1 6∈ D then ϕµ(xk+1) = +∞
and the inequality (5) could not be satisfied. Hence,

xk+1 ∈ D.

�

3.2.3 Key elements for the proof of Theorem 1

Let us first show the following sufficient decrease prop-

erty regarding the values of the merit function.

Lemma 5 (Sufficient decrease) For every (δ, θ) ∈
]0, 1[2, (γ, µ, ν) ∈]0,+∞[3, ν ∈]0, ν], and x0 ∈ D, if As-

sumption 1 holds, then the sequence (xk)k∈N produced

by Algorithm 1 with ε = 0 satisfies, for every k ∈ N,

the inequality

Ψµ(xk+1) ≤ Ψµ(xk)− ν(1− δ)
γ

‖xk+1 − xk‖2. (15)

Proof Let k ∈ N. The stopping criterion (5) for the

backtracking procedure on γk leads to

Ψµ(xk+1) ≤ ϕµ(xk) + 〈xk+1 − xk,∇ϕµ(xk)〉

+
δ

γk
‖xk+1 − xk‖2Ak + f(xk+1). (16)

In addition, we have

Ak(xk − xk+1)− γk∇ϕµ(xk) ∈ γk∂f(xk+1),

and it follows from the definition of the subdifferential

that

γkf(xk) ≥ 〈Ak(xk − xk+1)− γk∇ϕµ(xk), xk − xk+1〉
+ γkf(xk+1). (17)

Re-writing (17) in a more convenient form yields

〈xk+1 − xk,∇ϕµ(xk)〉+ f(xk+1)

≤ f(xk)− 1

γk
‖xk − xk+1‖2Ak . (18)

Plugging (18) into (16) and using νIn � Ak completes

the proof.

�

Remark 3 It is worth noting that, without the assump-

tion of existence of bounds (ν, ν) on matrices (Ak)k∈N,

the proof of Lemma 5 still allows us to conclude that

the sequence (Ψµ(xk))k∈N is decreasing. Thus, in view

of Lemma 2, there exists a compact K ⊂ D such that

(∀k ∈ N) xk ∈ K. Therefore, by the continuity of func-

tion c on K we deduce that there exist c and c in

] −∞, 0[ such that for every k ∈ N and i ∈ {1, . . . , p},
c ≤ ci(xk) ≤ c < 0. This remark will be useful in Sec-

tion 4 to prove that the chosen variable metrics satisfy

the boundedness condition.

Before deriving a lowerbound for (γk)k∈N in Lemma 6

we show that the distance between two iterates pro-

duced by Algorithm 1 tends to zero and that the iter-

ates are bounded.

Corollary 3 Under Assumption 1, for every (δ, θ) ∈
]0, 1[2, (γ, µ, ν) ∈]0,+∞[3, ν ∈]0, ν], and x0 ∈ D, the

sequence (xk)k∈N produced by Algorithm 1 with ε = 0

satisfies the following properties:

(i) limk→+∞ ‖xk+1 − xk‖ = 0;

(ii) there exists a compact K ⊂ D such that (∀k ∈ N)

xk ∈ K.

Proof (i) Summing (15) for k = 0 to N − 1 ≥ 0 gives

N−1∑
k=0

‖xk+1 − xk‖2 ≤
γ

ν(1− δ)
(Ψµ(x0)− Ψµ(xN ))

≤ γ

ν(1− δ)

(
Ψµ(x0)− Ψµ

)
,

where Ψµ = minx∈Rn Ψµ(x). The existence of Ψµ is en-

sured by Corollary 1. Letting N tend to infinity gives∑∞
k=0 ‖xk+1 − xk‖2 < +∞, which leads directly to the

result.

(ii) From Lemma 2, the set {x ∈ D | Ψµ(x) ≤ Ψµ(x0)}
is compact, and from Lemma 5, for every k ∈ N xk
belongs to this set, which completes the proof.

�

Before deriving relative error and continuity conditions,

we show that, for every barrier problem, the stepsize

computed using the line search is bounded below from

zero.

Lemma 6 Under Assumption 1, for every (δ, θ) ∈]0, 1[2,

(γ, µ, ν) ∈]0,+∞[3, ν ∈]0, ν], and x0 ∈ D, there exists

γ
µ
> 0 such that the sequence (γk)k∈N generated by

Algorithm 1 with ε = 0 is bounded below by γ
µ

.

Proof Let I be the set of iterations in Algorithm 1 for

which the stepsize value produced by the backtracking

is strictly smaller than γ, i.e. I = {k ∈ N | γk < γ}.
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For every k ∈ I there exists an integer lk > 0 such that

γk = γθlk . By applying [63, Lemma 1], we have

(∀k ∈ I)
‖xk − x̃k,lk−1‖Ak

γθlk−1
≤ ‖xk − x̃k,lk‖Ak

γθlk
,

which leads to

(∀k ∈ I) ‖xk − x̃k,lk−1‖ ≤
1

θ

(
ν

ν

) 1
2

‖xk − xk+1‖. (19)

From Corollary 3(ii), there exists a compact subset

K of D such that, for every k ∈ N, xk ∈ K. Let ϑ : K →
[0,+∞[ : x 7→ d(x,Rn \ D) = infy∈Rn\D ‖x − y‖. ϑ is a

continuous function defined on a compact set and, since

D is open, it is positive valued. It follows from the ex-

treme value theorem, that there exists η ∈]0,+∞[ such

that η = minx∈K ϑ(x). For every z ∈ K, let B(z, η/2)

be the open ball with center z and radius η/2. For every

y ∈ B(z, η/2), ‖y− z‖ ≤ η/2 < η ≤ d(z,Rn \D), which

implies that y 6∈ Rn \D, that is y ∈ D. This shows that

(∀z ∈ K) B(z, η/2) ⊂ D. (20)

On the other hand, since ∪z∈KB(z, η/4) is a cover of K,

it follows from the compactness of this latter set that

there exists (zj)1≤j≤J in K such that

K ⊂
J⋃
j=1

B(zj , η/4). (21)

Let S = ∪Jj=1B(zj , η/2). It follows from (20) and (21)

that this set is a compact subset of D including K.

From (21), for every k ∈ I, there exists jk ∈ {1, . . . , J}
such that

‖xk − zjk‖ <
η

4
. (22)

On the other hand, according to Corollary 3(i), there

exists k0 ∈ N such that

(∀k ≥ k0) ‖xk − xk+1‖ ≤ θ
(ν
ν

) 1
2 η

4
. (23)

Set I0 = {k ∈ I | k ≥ k0}. By applying the triangle

inequality, we deduce from (19), (22), and (23) that

(∀k ∈ I0) ‖x̃k,lk−1 − zjk‖ <
η

2
,

which shows that x̃k,lk−1 ∈ S.

Since ϕµ is convex, the following inequality holds

for every k ∈ I0:

〈x̃k,lk−1 − xk,∇ϕµ (x̃k,lk−1)−∇ϕµ(xk)〉 ≥
ϕµ (x̃k,lk−1)− ϕµ(xk)− 〈x̃k,lk−1 − xk,∇ϕµ(xk)〉 .

(24)

In addition, lk is the smallest integer such that (5) is

satisfied. Hence, (5) is not satisfied for x̃k,lk−1 and, for

every k ∈ I0, the following holds:

ϕµ (x̃k,lk−1)− ϕµ(xk)− 〈x̃k,lk−1 − xk,∇ϕµ(xk)〉 >
νθδ

γk
‖x̃k,lk−1 − xk‖

2
. (25)

Necessarily, xk 6= x̃k,lk−1. From (24) and (25), it follows

that (∀k ∈ I0),

‖x̃k,lk−1 − xk‖ ‖∇ϕµ (x̃k,lk−1)−∇ϕµ(xk)‖ >
νθδ

γk
‖x̃k,lk−1 − xk‖

2
.

Moreover, according to Lemma 1, ∇ϕµ is Lipschitz con-

tinuous on S. Hence, there exists LS > 0 such that

(∀k ∈ I0) γk >
νθδ

LS
.

In addition, (∀k 6∈ I) γk = γ, and the set I \ I0 has a

finite number of elements. Hence, the proof is complete

by setting γ
µ

= min
{
γ, νθδLS , (γk)k∈I\I0

}
.

�

We are now ready to identify a sequence of subgradients

of Ψµ converging to zero.

Lemma 7 (Relative error condition) Under As-

sumption 1, for every (δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈]0,+∞[3,

ν ∈]0, ν], and x0 ∈ D, the sequence (vk+1)k∈N pro-

duced by Algorithm 1 when ε = 0 is such that (∀k ∈ N)

vk+1 ∈ ∂Ψµ(xk+1) and

(∃Kµ > 0)(∀k ∈ N) ‖vk+1‖ ≤ Kµ‖xk+1 − xk‖.

Proof Let k ∈ N. By definition of xk+1 and vk+1,

vk+1 −∇ϕµ(xk+1) =
1

γk
Ak(xk − xk+1)−∇ϕµ(xk)

∈ ∂f(xk+1). (26)

By definition of Ψµ, it follows that vk+1 ∈ ∂Ψµ(xk+1).

In addition, the triangle inequality and Lemma 6 lead

to

‖vk+1‖ ≤
ν

γ
µ

‖xk − xk+1‖+ ‖∇ϕµ(xk+1)−∇ϕµ(xk)‖.

From Corollary 3(ii) and Lemma 1, we know that (xk)k∈N

belongs to a compact subset K of D, on which ∇ϕµ is

Lipschitz-continuous for some constant LK > 0. Setting

Kµ = ν/γ
µ

+ LK completes the proof.

�

Remark 4 It can also be deduced from (26) that (∀k ∈
N) vk+1 − µ∇B(xk+1) ∈ ∂(f + g)(xk+1).
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3.2.4 Proof of Theorem 1

In view of Lemma 7 and Corollary 3(i), for every ε > 0,

there exists k ∈ N such that ‖vk+1‖ < ε.

3.3 Convergence analysis of Algorithm 1

3.3.1 Preliminary results

We first derive the following continuity condition.

Lemma 8 (Continuity condition) Under Assump-

tions 1, let (δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈]0,+∞[3, ν ∈]0, ν]

and x0 ∈ D. If the sequence (xk)k∈N is produced by Al-

gorithm 1 with ε = 0, then there exist x ∈ D and a

subsequence (xkq )q∈N such that

lim
q→+∞

xkq = x and lim
q→+∞

Ψµ(xkq ) = Ψµ(x).

Proof From Corollary 3(ii) we know that (xk)k∈N be-

longs to a compact subset K of D. Hence, there exists a

subsequence (xkq )q∈N converging to an element x ∈ D.

Since Ψµ is lsc, we have

Ψµ(x) ≤ lim inf
q→+∞

Ψµ(xkq ). (27)

Without loss of generality one can assume that k0 >

0. From Lemma 7, for every q ∈ N, vkq belongs to

∂Ψµ(xkq ) and ‖vkq‖ ≤ Kµ‖xkq − xkq−1‖. For every

q ∈ N, we have

Ψµ(xkq ) ≤ −
〈
vkq , x− xkq

〉
+ Ψµ(x)

≤ Kµ‖xkq − xkq−1‖‖x− xkq‖+ Ψµ(x). (28)

From Corollary 3(i), ‖xkq − xkq−1‖ → 0 as q → +∞.

Hence, taking the limit in (28) yields the following in-

equality

lim sup
q→+∞

Ψµ(xkq ) ≤ Ψµ(x). (29)

Altogether (27) and (29) lead to lim
q→+∞

Ψµ(xkq ) = Ψµ(x).

�

The next result guarantees that, in the absence of stop-

ping rule, Algorithm 1 converges to a solution to the

barrier problem.

Proposition 1 Let (δ, θ) ∈]0, 1[2, (γ, µ, ν) ∈]0,+∞[3,

ν ∈]0, ν], and x0 ∈ D. Suppose that Ψµ is a KL func-

tion and that Assumption 1 holds. Then the sequence

(xk)k∈N produced by Algorithm 1 with ε = 0 converges

to a solution to Pµ and has a finite length, i.e.

+∞∑
k=0

‖xk+1 − xk‖ < +∞.

Proof Under Assumption 1, Lemmas 5, 7 and 8 hold.

If, in addition, Ψµ is a KL function, then we can apply

[27, Theorem 2.9]. Thus, (xk)k∈N converges to a critical

point of Ψµ and has finite length. By convexity, every

critical point of Ψµ is a global minimizer of Ψµ, and a

solution to Pµ.

�

We now show that, for a useful special case, Algorithm 1

converges linearly in terms of iterate and objective func-

tion value.

Proposition 2 Let µ > 0 and consider the barrier

problem Pµ associated to problem (6). Under Assump-

tions 1 and 3, for every (δ, θ) ∈]0, 1[2, (γ, ν) ∈]0,+∞[2,

ν ∈]0, ν], and x0 ∈ D, the sequence (xk)k∈N generated

by Algorithm 1 with ε = 0 converges linearly to a so-

lution x∗ to Pµ, and (Ψµ(xk))k∈N converges linearly to

Ψ(x∗).

Proof Let µ > 0. Under Assumptions 1 and 3 we can

apply [43, Corollary 5.1] which states that Ψµ is a KL

function with exponent 1/2. The convergence of (xk)k∈N

to a solution x∗ ∈ D to Pµ is guaranteed by Proposi-

tion 1. From Lemmas 5, 7 and 8, we can apply [22,

Theorem 4(ii)]. Hence, there exist c > 0 and k0 ∈ N
such that for every k ≥ k0,

Ψµ(xk)− Ψµ(x∗) = O
(
exp(−cKµ)k

)
and

‖x∗ − xk‖ = O
(
exp(−cKµ/2)k

)
.

The linear convergence properties follow from the fact

that exp(−cKµ) < 1 and exp(−cKµ/2) < 1.

�

3.3.2 Proof of Theorem 2

Proposition 1 ensures the convergence of (xk)k∈N to

some x∗. According to Lemma 7, there exists Kµ > 0

such that

(∀k ∈ N) ‖vk+1‖ ≤ Kµ‖xk+1 − xk‖
≤ Kµ(‖xk+1 − x∗‖+ ‖x∗ − xk‖).

We then deduce from Proposition 2 that there exists

c > 0 such that ‖vk+1‖ = O
(
exp(−cKµ/2)k

)
.

3.4 Convergence analysis of Algorithm 2

We are now ready to establish the convergence of Al-

gorithm 2 to a solution to problem P0 described in (3).
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Under Assumption 1, finding a solution to P0 is equiv-

alent to finding a saddle point of the associated La-

grangian L0, which is defined, for every x ∈ Rn and

λ ∈ [0,+∞[p, as

L0(x, λ) = f(x) + g(x) + λ>c(x). (30)

A point (x∗, λ∗) with λ∗ = (λ∗(i))1≤i≤p is a saddle point

of L0 if and only if the following optimality conditions

are satisfied:
0 ∈ ∂f(x∗) +∇g(x∗) +

∑p

i=1
λ∗(i)∇ci(x∗)

(∀i ∈ {1, . . . , p}) λ∗(i)ci(x
∗) = 0

(∀i ∈ {1, . . . , p}) λ∗(i) ≥ 0 and ci(x
∗) ≤ 0

(31)

(32)

(33)

We prove in the following section that the sequences

(xj)j∈N and (λj+1)j∈N, produced by Algorithm 2, con-

verge to a saddle point of L0. We remind that, for every

j ∈ N, the dual variable λj+1 is defined as follows,

λj+1 =

(
− µj
ci(xj+1)

)
1≤i≤p

. (34)

It is worth noting that (34) can be seen as a perturba-

tion of condition (32).

Remark 5 In the case of affine inequality constraints,

(34) can be directly derived from the Lagrangian for-

mulation of the barrier problem. Let j ∈ N and µj > 0,

a simple change of variable leads to the following prob-

lem, which is equivalent to Pµj ,

minimize
(x,z)∈Rn×Rp

f(x) + g(x) + µjb(z)

subject to z = c(x)
(35)

where b(z) = −
∑p
i=1 ln(−zi) if z ∈]−∞, 0[p, +∞ other-

wise. Under Assumption 1, and when (∀i ∈ {1, . . . , p})
ci is affine, finding a solution to (35) is equivalent to

finding a saddle point of the Lagrangian Lµj defined,

for every x ∈ Rn, z ∈ Rp and λ ∈ [0,+∞[p, as

Lµj (x, z, λ) = f(x)+g(x)+µjb(z)+λ>(c(x)−z). (36)

A point (x, z, λ) is a saddle point of Lµj if and only if

the following system is satisfied.
0 ∈ ∂f(x) +∇g(x) +

∑p

i=1
λ
(i)∇ci(x)

(∀i ∈ {1, . . . , p}) λ
(i)
ci(x) = −µj

(∀i ∈ {1, . . . , p}) ci(x) < 0

z = c(x)

(37)

The definition of sequence (λj+1)j∈N is then directly

derived from (37).

We first show that the primal and dual sequences

produced by Algorithm 2 are bounded.

Lemma 9 Under Assumptions 1 and 2, for every (δ, θ) ∈
]0, 1[2, (γ, µ0) ∈]0,+∞[2, and x0 ∈ D, the sequences

(xj+1)j∈N and (λj+1)j∈N produced by Algorithm 2 are

bounded.

Proof Let j ∈ N. According to Lemma 7, vj+1 be-

longs to ∂Ψµj (xj+1). Using the definition of the sub-

differential, the stopping criterion ‖vj+1‖ ≤ εj , and the

Cauchy-Schwarz inequality leads to

Ψµj (xj+1) ≤ 〈vj+1, xj+1 − x0〉+ Ψµj (x0)

≤ εj‖xj+1 − x0‖+ Ψµj (x0). (38)

Eq. (38) is equivalent to

(f + g)(xj+1) ≤ µj(B(x0)− B(xj+1))

+ εj‖xj+1 − x0‖+ (f + g)(x0).

Moreover, since B is convex,

(f + g)(xj+1) ≤ −µj 〈∇B(x0), xj+1 − x0〉
+ εj‖xj+1 − x0‖+ (f + g)(x0)

≤ (εj + µj‖∇B(x0)‖)‖xj+1 − x0‖
+ (f + g)(x0). (39)

Assume that (xj+1)j∈N is unbounded. Then there ex-

ists a subsequence (dq)q∈N = (xjq+1)q∈N of (xj+1)j∈N

such that the sequence (tq)q∈N = (‖xjq+1‖)q∈N has only

strictly positive elements and satisfies

lim
q→+∞

tq = +∞, lim
q→+∞

dq
tq

= d ∈ Rn, and ‖d‖ = 1.

The last two equalities are derived from the compact-

ness of the unit ball. Let x∗ be a solution to P0, take

t > 0. For every q0 ∈ N, let τq0 = min{tq | q ≥ q0}.
Since (∀i ∈ {1, . . . , p}) ci(x∗) ≤ 0, (∀q ∈ N) ci(dq) < 0,

and ci is convex, (∀q ≥ q0)
(

1− τq0
tq

)
x∗ +

τq0
tq
dq ∈ D.

By taking the limit of (1 − τq0/tq)x
∗ + (τq0/tq)dq as

q →∞, we obtain x∗+ τq0d ∈ D. In addition, for every

q ≥ q0,

(f + g)

((
1− τq0

tq

)
x∗ +

τq0
tq
dq

)
≤
(

1− τq0
tq

)
(f + g)(x∗) +

τq0
tq

(f + g)(dq). (40)

We deduce from (39) that

1

tq
(f + g)(dq) ≤ (εjq + µjq‖∇B(x0)‖)

∥∥∥∥dqtq − x0
tq

∥∥∥∥
+

1

tq
(f + g)(x0). (41)
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As q → +∞, we have εjq → 0, µjq → 0, tq → +∞ and

‖dq/tq − x0/tq‖ → 1. Hence, taking the limit in (41)

leads to lim supq→∞(f + g)(dq)/tq ≤ 0. Using now the

lower-semicontinuity of f + g and letting q tend to +∞
in (40) lead to

(∀q0 ∈ N) (f + g)(x∗ + τq0d)

≤ lim inf
q→∞

(f + g)

((
1− τq0

tq

)
x∗ +

τq0
tq
dq

)
≤ (f + g)(x∗) + lim sup

q→∞

τq0
tq

(f + g)(dq)

≤ (f + g)(x∗).

Therefore, for every q0 ∈ N, x∗ + τq0d is a solution to

P0. Since τq0 → +∞ as q0 → +∞, the set of solution

to P0 is unbounded. This is however in contradiction

with Assumption 1(i), thus showing that (xj+1)j∈N is

bounded.

Similarly, we prove that (λj)j∈N is bounded. Let j ∈
N and i ∈ {1, . . . , p}. Since ci is convex, ci(xj+1) < 0

and µj > 0, the following inequality holds:

µj
ci(x0)

ci(xj+1)
≤ µj +

µj
ci(xj+1)

〈∇ci(xj+1), x0 − xj+1〉 .

(42)

Summing (42) for all i ∈ {1, . . . , p} leads to

−〈c(x0), λj+1〉 ≤ µjp−µj 〈∇B(xj+1), x0 − xj+1〉 . (43)

In addition, from Remark 4 and the definition of the

subdifferential of f + g, we deduce that

(f + g)(xj+1) ≤ −〈vj+1 − µj∇B(xj+1), x0 − xj+1〉
+ (f + g)(x0). (44)

Combining (43) and (44) yields

− 〈c(x0), λj+1〉 ≤ µjp+ (f + g)(x0)− (f + g)(xj+1)

+ εj‖x0 − xj+1‖.

Moreover, every component of λj+1 and of −c(x0) is

strictly positive, hence

0 < −〈c(x0), λj+1〉 ≤ µjp+ (f + g)(x0)− (f + g)(x∗)

+ εj‖x0 − xj+1‖,

where x∗ is a solution to P0. Since (µj , εj) → (0, 0) as

j → +∞, and since (xj+1)j∈N has been shown to be

bounded, we conclude that −〈c(x0), λj+1〉 is bounded

and so is (λj+1)j∈N.

�

3.4.1 Proof of Theorem 3

According to Lemma 9, the sequences (xj+1)j∈N and

(λj+1)j∈N are bounded. Hence, there exists a subse-

quence (xjq+1, λjq+1)q∈N converging to some point

(x∗, λ∗). By construction, for every q ∈ N and every

i ∈ {1, . . . , p}, ci(xjq+1) < 0 and 0 < λ
(i)
jq+1. Since (∀i ∈

{1, . . . , p}) ci is lsc, taking the limit as q → +∞ yields

(33). Moreover, by definition, (∀q ∈ N)(∀i ∈ {1, . . . , p})
λ
(i)
jq+1ci(xjq+1) = −µjq . Since (∀i ∈ {1, . . . , p}) ci is con-

tinuous on D, letting q → +∞ in the previous equality

leads to (32). Let q ∈ N. From Remark 4, it follows

that xjq+1 = proxf+g(xjq+1 + vjq+1 − µjq∇B(xjq+1)).

In addition, proxf+g is nonexpansive. Hence,∥∥∥xjq+1 − proxf+g

(
x∗ −

∑p

i=1
λ∗(i)∇ci(x∗)

)∥∥∥
≤
∥∥xjq+1 + vjq+1 − µjq∇B(xjq+1)− x∗

+

p∑
i=1

λ∗(i)∇ci(x∗)
∥∥. (45)

By applying the triangle inequality, we deduce from

(45) that∥∥∥x∗ − proxf+g

(
x∗ −

∑p

i=1
λ∗(i)∇ci(x∗)

)∥∥∥
≤ 2‖x∗ − xjq+1‖+ εj

+

p∑
i=1

‖λ(i)jq+1∇ci(xjq+1)− λ∗(i)∇ci(x∗)‖. (46)

The sequence (xj+1)j∈N is a bounded sequence in D.

Therefore, all its cluster points belong to a compact

subset of D. In view of Assumption 1(iii), ∇ci is thus

continuous at x∗. Thus, taking the limit in (46) as q →
+∞ leads to

x∗ = proxf+g

(
x∗ −

p∑
i=1

λ∗(i)∇ci(x∗)

)
,

which is equivalent to (31). Finally, (x∗, λ∗) is a saddle-

point for the Lagrangian (30), which completes the proof.

�

3.4.2 Analytic center

When there are several primal or dual solutions, as-

sumptions are needed to prove the uniqueness of the

cluster point exhibited in Theorem 3. As shown in this

section, interior point methods provide an insightful

characterization for the limit point.

Let us recall that under Assumption 1, strong duality

holds and the set of saddle points for the Lagrangian
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L0 is equal to SP × SD where SP and SD are the so-

called sets of primal and dual solutions to P0 [62, Sec-

tion 5.4.2]. We derive the following result for these sets.

Proposition 3 Under Assumptions 1(i)-(ii), SP and

SD are nonempty bounded convex sets.

Proof The results for SP directly follows from Assump-

tions 1(i)-(ii). The convexity of SD follows from stan-

dard results [62, Section 5.2]. The fact that SD is not

empty also follows from Assumption 1(i)-(ii). For ev-

ery (x∗, λ∗) ∈ SP × SD, the inequality (f + g)(x∗) ≤
(f + g)(x0) + λ∗>c(x0) holds for every x0 ∈ D. If SD is

unbounded, then the right-hand side can tend to −∞
which is in contradiction with (f +g)(x∗) being a finite

number. So SD is bounded.

We also show that under an additional assumption,

the sets JP , defined in (7), and JD, defined in (8), are

nonempty.

Proposition 4 If Assumption 4 holds and if the set

SP (resp. SD) contains at least two distinct elements,

then the set JP (resp. JD) is nonempty.

Proof Assume that there are at least two distinct ele-

ments x1 and x2 in SP . Then, for every i ∈ {1, . . . , p},
ci(x1) ≤ 0 and ci(x2) ≤ 0. Assume that Assumption 4

holds. If the constraints are affine, i.e. c : x 7→Mx+m,

with M an injective matrix, then there exists i0 ∈
{1, . . . , p} such that (Mx1)i0 6= (Mx2)i0 . There thus

exists i0 ∈ {1, . . . , p} such that ci0(x1) 6= ci0(x2). The

same conclusion obviously holds if i0 ∈ {1, . . . , p} is

such that ci0 is strictly convex. Hence, we have either

ci0(x1) < 0 or ci0(x2) < 0, that is i0 ∈ JP .

Assume that there are at least two distinct elements

λ1 and λ2 in SD. The components of two elements sat-

isfy (∀i ∈ {1, . . . , p}) λ(i)1 ≥ 0 and λ
(i)
2 ≥ 0. Since λ1

and λ2 are distinct there exists i0 ∈ {1, . . . , p} such

that λ
(i0)
1 6= λ

(i0)
2 . Hence, we have either λ

(i0)
1 > 0 or

λ
(i0)
2 > 0, that is i0 ∈ JD.

If JP is nonempty, we define the following quantities:

for every x ∈ Rn, cJP (x) = (ci(x))i∈JP and BJP (x) =

−
∑
i∈JP ln(−ci(x)) if cJP (x) < 0, +∞ otherwise. We

also consider the following problem:

PP : minimize
x∈Rn

BJP (x)

subject to x ∈ SP and cJP (x) < 0.

Similarly if JD is nonempty, we define the following

quantities: for every λ ∈ Rp, λJD = (λ(i))i∈JD and

bJD (λ) = −
∑
i∈JD ln(λ(i)) if λJD > 0, +∞ otherwise.

We also consider the following problem:

PD : minimize
λ∈Rp

bJD (λ)

subject to λ ∈ SD and λJD > 0.

Lemma 10 Under Assumptions 1 and 4, if SP (resp.

SD) does not reduce to a singleton, then there exists

a unique solution to PP (resp. PD) called the analytic

center of SP (resp. SD).

Proof Assume that SP does not reduce to a singleton.

According to Proposition 3, SP is nonempty and it thus

contains at least two distinct elements. It then follows

from Proposition 4 that the set JP is nonempty. In ad-

dition, by invoking again Proposition 3, SP is bounded

and convex. Since the constraint functions (ci)1≤i≤p
are convex, we deduce that the feasible set of PP is

bounded, and convex. Because of the convexity of the

set SP and the functions (ci)1≤i≤p, it can be checked

that this feasible set is nonempty. In addition, under

Assumptions 1 and 4, BJP is lsc and strictly convex,

and it is finite-valued on {x ∈ Rn | cJP (x) < 0}. Hence,

there exists a unique solution to PP .

Assume that SD does not reduce to a singleton. It

then follows from Propositions 3 and 4 that JD 6= ∅.

By using a similar reasoning as for PP we deduce that

there exists a unique solution to PD.

�

The complementary slackness property in (32) ensures

that JP ∩JD = ∅. We say that P0 has the strict comple-

mentarity property if JP ∪JD = {1, . . . , p}. Strict com-

plementarity always holds in Linear Programming (LP)

while in Quadratic Programming the concept of lin-

ear monotone complementarity can be used [64, Chap-

ter 20].

3.4.3 Proof of Theorem 4

(i) The result straightforwardly follows from Theorem 3.

(ii) Let (x∗, λ∗) be a primal-dual solution to P0. Let

(x, λ) be a cluster point of (xj+1, λj+1)j∈N and let

(xjq+1, λjq+1)q∈N be a subsequence converging to this

point. Pick q ∈ N. In view of Remark 4 and (31) we

have that

vjq+1 −
p∑
i=1

λ
(i)
jq+1∇ci(xjq+1) ∈ ∂(f + g)(xjq+1),

and

−
p∑
i=1

λ∗(i)∇ci(x∗) ∈ ∂(f + g)(x∗).

Since f +g is convex, we deduce from the monotonicity

of its subdifferential that

0 ≤
〈
xjq+1 − x∗, vjq+1

〉
−

p∑
i=1

〈
xjq+1 − x∗, λ(i)jq+1∇ci(xjq+1)− λ∗(i)∇ci(x∗)

〉
.

(47)



14 Emilie Chouzenoux et al.

In addition, ‖vjq+1‖ ≤ εjq and (∀i ∈ {1, . . . , p}) ci is

convex. Hence, we deduce from (47) that

0 ≤ ‖xjq+1 − x∗‖εjq +

p∑
i=1

λ∗(i)
(
ci(xjq+1)− ci(x∗)

)
+

p∑
i=1

λ
(i)
jq+1

(
ci(x

∗)− ci(xjq+1)
)
.

From (32) and (34), 〈λ∗, c(x∗)〉 = 0 and, for every i ∈
{1, . . . , p}, λ(i)jq+1ci(xjq+1) = −µjq . Hence,

0 ≤ ‖xjq+1 − x∗‖
εjq
µjq

+ p−
p∑
i=1

(
λ∗(i)

λ
(i)
jq+1

+
ci(x

∗)

ci(xjq+1)

)
.

(48)

Note that (∀i 6∈ JP ) ci(x
∗) = 0 and (∀i 6∈ JD) λ∗(i) =

0. If JP (resp. JD) is nonempty, we can then choose

x∗ (resp. λ∗) such that cJP (x∗) < 0 (resp. λ∗JD > 0).

Consequently, by using Assumption 2, as q → +∞ ,(48)

becomes∑
i∈JD

λ∗(i)

λ
(i)

+
∑
i∈JP

ci(x
∗)

ci(x)
≤ p, (49)

where we necessarily have

(∀i ∈ JD) λ
(i)
> 0 and (∀i ∈ JP ) ci(x) < 0. (50)

Because of the strict complementarity, there are exactly

p positive terms in the left-hand side of (49). Therefore,

we can apply the arithmetic-geometric mean inequality

which leads to(∏
i∈JD

λ∗(i)

λ
(i)

)(∏
i∈JP

ci(x
∗)

ci(x)

)
≤ 1, (51)

with the convention that, if JP (resp. JD) is empty, the

corresponding product is equal to 1. Since Theorem 3

states that (x, λ) is a primal-dual solution to P0 and

because (x, λ) satisfies (50), (51) also holds when either

λ∗ = λ or x∗ = x. Consequently,∏
i∈JP

(−ci(x∗)) ≤
∏
i∈JP

(−ci(x)) and
∏
i∈JD

λ∗(i) ≤
∏
i∈JD

λ
(i)
.

(52)

If there exist at least two distinct elements in SP (resp.

SD) then, from Propositions 3 and 4, JP (resp. JD) is

nonempty. It follows from (52) that x (resp. λ) is a so-

lution to PP (resp. PD). In turn, Lemma 10 guarantees

that PP (resp. PD) has a unique solution. Thus, there

exists a unique cluster point for the primal (resp. dual)

sequence and (xj+1)j∈N (resp. (λj+1)j∈N) converges to

the analytic center of SP (resp. SD).

�

4 Numerical experiments

The good performance in terms of convergence speed

of PIPA are illustrated in this section on two large-

scale image processing applications, namely hyperspec-

tral unmixing and texture-geometry image reconstruc-

tion 2. We also demonstrate that introducing a variable

metric in PIPA can lead to a significant reduction of its

computational time. All computational times are given

for experiments run on Matlab 2018b on an Intel Xeon

CPU E5-1650 at frequency 3.20GHz. Our code is avail-

able online 3.

4.1 Hyperspectral unmixing

Hyperspectral imaging devices are remote sensing sys-

tems that acquire emitting light spectrum of a distant

scene, here modeled as a 2D image [67]. Let s and r be

respectively the number of acquired spectral bands and

pixels of the image, and let Y ∈ Rs×r denote the mea-

sured hyperspectral cube. Assume that we have access

to a library S ∈ Rs×q, where each column of S con-

tains the spectral signatures of one material (or end-

member) among q that are expected to be present in

the scene. The proportion or abundance of every mate-

rial in every pixel is described through the abundance

matrix X ∈ Rq×r. The following linear model is fre-

quently used to relate the data, the endmembers and

the abundances, when there is no microscopic interac-

tion between the materials:

Y = SX + w,

with w ∈ Rs×r a realization of an additive white Gaus-

sian noise. The estimation of X from Y and S is an

inverse problem called unmixing [68]. Following [69, 9],

we propose to formulate the following constrained min-

imization problem to perform the unmixing task,

minimize
X∈Rq×r

1
2‖Y − SX‖

2
2 + κ

q∑
i=1

‖(WXi)d‖1

subject to (∀j ∈ {1, . . . , r})
q∑
i=1

Xi,j ≤ 1

(∀i ∈ {1, . . . , q})(∀j ∈ {1, . . . , r}) Xi,j ≥ 0,

(53)

where ‖ · ‖2 denotes the Frobenius norm, Xi ∈ Rr with

i ∈ {1, . . . , q} is the ith line of the abundance matrix X,

W ∈ Rr×r is a wavelet decomposition operator, ‖(·)d‖1
is the `1-norm of the detail wavelet coefficients, and

2 Preliminary results regarding the use of proximal interior
point methods in these applicative contexts can be found in
our previously published communications [65, 66].
3 https://github.com/mccorbineau/PIPA

https://github.com/mccorbineau/PIPA
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κ ≥ 0 is a regularization parameter. It is worth noting

that the linear constraints account for the atmospheric

absorption [70] since, for every pixel, the sum of all frac-

tional abundances may be less than one. Moreover, the

wavelet-based penalization allows us to enforce useful

spatial regularity on the sought abundance maps [58].

From this point forward, the vectorizations of X ∈ Rq×r

and Y ∈ Rs×r, in lexicographic order, are denoted by

x ∈ Rn with n = qr and y ∈ Rsr, respectively, and ⊗
denotes the Kronecker product. Problem (53) can thus

be re-written as in (3), with p = n + r and (∀x ∈ Rn)

g(x) = 1/2‖y−(Ir⊗S)x‖2, f(x) = κ
∑q
i=1 ‖(WPix)d‖1,

(∀i ∈ {1, . . . , q}) Pi ∈ Rr×n is a decimation matrix such

that Pix = Xi, and c(x) = Mx+m with

M =

(
Ir ⊗ 1>q
−In

)
and m =

(
−1r
0n

)
where 1r = (1, . . . , 1)> ∈ Rr and 0n = (0, . . . , 0)> ∈
Rn. The resulting minimization problem satisfies As-

sumptions 1, 3 and 4. Hence, Theorems 1, 2 and 3

regarding convergence and convergence rate of Algo-

rithm 1 hold. In addition, in the considered example,

the rank of S is equal to q, so there exists a unique

solution to (53) and Theorem 4(i) holds.

4.1.1 Realistic data simulation and test configuration

In order to simulate Y , we make use of the Urban4

dataset, which provides the spectral signatures and abun-

dance maps for q = 6 materials in s = 162 spectral

bands. We consider images of size r = 256 × 256. The

product of the spectral library and attenuated abun-

dance map is corrupted with an additive white Gaus-

sian noise with a standard deviation of 0.06. Let the

signal-to-noise ratio be defined as

SNR = 20 log10(‖x‖/‖x− x‖),

where x is the ground-truth for x. In addition, for each

material i ∈ {1, . . . , q}, the signal-to-noise ratio of its

associated abundance map Xi ∈ Rr is

SNRi = 20 log10

(
‖Xi‖/‖Xi −Xi‖

)
.

The regularization weight κ is tuned by a grid search

so as to reach the largest SNR, in that case κ = 0.01.

Regarding the operator W , we selected an orthogonal

Daubechies 4 wavelet decomposition performed over 2

resolution levels. As for the variable metric, we consider

two cases: the proposed method without variable metric

(taken as the identity matrix), which is referred to as

PIPA; and PIPA-VM, which denotes the case when, fol-

lowing the strategy in [71], for every j ∈ N, the variable

4 www.escience.cn/people/feiyunZHU/Dataset_GT.html

metric is chosen as the Hessian of ϕµj . The proximity

operator of the regularization term in the variable met-

ric is computed numerically using the algorithm in [40].

Let us now discuss the boundedness condition re-

quired for the variable metrics in PIPA-VM. For every

x ∈ D, we have

ϕµ(x) =
1

2
‖y − (Ir ⊗ S)x‖2 − µ

p∑
i=1

ln(−M>i x−mi),

where Mi ∈ Rn (resp. mi ∈ R) is the ith line (resp.

component) of M (resp. of m). For every µ > 0 and

x ∈ D, the Hessian of ϕµ at x is equal to

∇2ϕµ(x) = Ir ⊗ (S>S) + µ

p∑
i=1

MiM
>
i

(M>i x+mi)2
,

Finally, in view of Remark 3, we deduce that there exist

c and c in ]−∞, 0[ such that, for every k ∈ N and every

i ∈ {1, . . . , p}, c ≤M>i xk +mi ≤ c < 0. Since the rank

of M is equal to n, for every µ > 0, the aforementioned

variable metrics are bounded from below and above by

strictly positive constants, as required in Algorithm 1.

In order to satisfy Assumption 2, we choose the bar-

rier parameter and precision sequences as follows,

(∀j ∈ N) εj = ε
µj
ζj
, and µj+1 =

µj
ρj
, (54)

where ρj ≥ ρ > 1, ζ > 1 and ε > 0. Regarding PIPA,

we take ε = 103, µ0 = 1, ρj = 1.5 for every j ∈ N
and ζ = 1 + 10−5. For PIPA-VM we choose ε = 105,

µ0 = 0.01, ζ = 1 + 10−5 and, to avoid numerical insta-

bilities when µj is very small, we pick ρj = 1.5 for

every j ∈ N such that µj ≥ 10−6, and decrease it

gradually: if 4 × 10−9 ≤ µj < 10−6 then ρj = 1.1, if

10−12 ≤ µj < 4 × 10−9 then ρj = 1.01, and finally, if

µj < 10−12, then ρj = 1.001.

We compare PIPA and PIPA-VM with three state-of-

the-art convex optimization algorithms: the alternat-

ing direction method of multipliers (ADMM) [72, 69],

the Condat-Vũ primal-dual splitting algorithm (PDS)

in [73, 74], and the generalized forward-backward split-

ting algorithm (GFBS) [75]. We also implement precon-

ditioned versions of ADMM and GFBS, which are re-

ferred to as ADMM-VM and GFBS-VM, respectively.

ADMM-VM is based on [76, Algorithm 2], where the

metrics are taken constant as in [76, Example 3.4]. Re-

garding GFBS-VM, we implement [77, Algorithm 1]

with a modified metric based on the Hessian of the

data-fitting term in (53).

www.escience.cn/people/feiyunZHU/Dataset_GT.html
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Fig. 1 SNR as a function of time.

4.1.2 Results

The solution to (53) with κ = 0, i.e. without regular-

ization, can be obtained with the primal-dual interior

point method from [9]. It is referred to as IPLS and

yields SNR = 11.02 dB, whereas solving the same prob-

lem with κ = 0.01 leads to a better reconstruction with

SNR = 12.45 dB, illustrating the benefits of regulariz-

ing in this example. Figure 1 shows that the SNR in-

creases faster with PIPA-VM than with the four other

algorithms. Moreover, it can be clearly seen in this fig-

ure that PIPA-VM exhibits a much faster convergence

than PIPA, which demonstrates the advantage of using

a variable metric in this example. The SNR obtained

for each material after running PIPA-VM and ADMM
for 11 sec can be found in Table 1. Remark that we did

not provide the results for PIPA, PDS, GFBS, ADMM-

VM and GFBS-VM, since they were outperformed by

PIPA-VM and ADMM as shown in Figure 1. For 5 out

of 6 endmembers, the SNR of the abundance maps ob-

tained with PIPA-VM after 11 sec is better than for

ADMM, and for all materials, PIPA-VM gives better

results after 11 sec than the non-regularized solution

IPLS.

IPLS ADMM PIPA-VM

Asphalt 10.12 7.40 11.31
Grass 11.21 11.37 12.25
Tree 11.86 12.45 13.04
Roof 14.91 15.08 15.27

Metal 4.90 7.25 7.12
Dirt 13.68 12.34 14.52

Table 1 Signal-to-noise ratio (SNRi)1≤i≤6 (in dB) for each
material after 11 sec.

(a) (b)

(c) (d)

Fig. 2 Abundance map of Asphalt road: (a) ground-truth,
(b) IPLS solution, visual results after running (c) ADMM and
(d) PIPA-VM for 11 sec.

Visual results for Asphalt and Dirt materials are

displayed in Figures 2 and 3. One can notice that, af-

ter running all algorithms for 11 sec, the abundance

maps produced by PIPA-VM for these two materials

are visually more satisfactory than the ones obtained

with ADMM, while the non-regularized solution IPLS

is significantly noisy.

In order to evaluate the algorithms based on their

pointwise convergence, we let them run for a very large

number of iterations and compute the relative distance
between the current iterate and the solution x∞. As

one can see on Figure 4, the sequence generated by

PIPA-VM converges faster to the solution than the it-

erates produced by the other algorithms. It is finally

worth noticing that, although an inexact computation

of the proximity operator is performed in PIPA-VM,

the method appears to be robust to the error generated

by this approximation.

4.2 Joint geometry-texture decomposition and

reconstruction

Various problems in image processing and computer vi-

sion can be formulated as the decomposition of a natu-

ral image into texture and geometry components. One

can mention, for instance, texture segmentation [78],

classification [79], or digital inpainting [80]. In the fol-

lowing, we will denote by xt ∈ Rr and xg ∈ Rr, the

texture and geometry components of a natural image
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(a) (b)

(c) (d)

Fig. 3 Abundance map of Dirt: (a) ground-truth, (b) IPLS
solution, visual results after running (c) ADMM and (d)
PIPA-VM for 11 sec.

Fig. 4 Relative distance from current iterate to limit point
as a function of time.

xt+g ∈ Rr, so that xt+g = xt + xg. The geometry

xg represents a piecewise smooth version of the im-

age, and can be extracted by using the total varia-

tion semi-norm [13]. The texture highlights local com-

ponents with higher spatial frequencies. Depending on

the considered application, different texture models can

be found in the literature, based on wavelet decompo-

sitions [81] or on the Hölder exponent [82], to name

only a few. Here, we will focus on images in which the

texture is located near the boundaries of different ob-

jects, as it can happen for instance in material image

analysis, where the samples are subject to erosion and

microporosity. Therefore, we will rely on the Laplacian

detector for texture extraction, as the latter is known

to be useful for edge and blob detection [83].

X-Ray Computed Tomography (CT), a fast non-des-

tructive scanning technique [84], is frequently used to

acquire images from material samples. The acquisition

process in CT can be modeled through the discrete

Radon projection operator H ∈ Rq×r, with r the num-

ber of pixels and q the number of measurements. Matrix

H is high-dimensional and ill-conditioned. Reconstruct-

ing the image from the measured data y ∈ Rq (also

called sinogram) is a challenging inverse problem [85],

the resolution of which can introduce a bias in subse-

quent image processing tasks, such as the classification

of material components [86]. Therefore, we propose to

perform jointly two tasks: the reconstruction and the

geometry-texture decomposition. We show that this de-

composition can be performed in a reasonable time with

PIPA.

More precisely, we consider the following variational

formulation:

minimize
(xt,xg)∈Rr×Rr

1
2‖Fx

t‖2 + κTV(xg)

subject to xt + xg ∈ [xmin, xmax]r

xt ∈ [−α, α]r

‖H(xt + xg)− y‖∞ ≤ χ

(55)

where xmin = 0 and xmax = 1 are the minimal and

maximal pixel intensity values, α > 0 is a range value

parameter for the texture, κ > 0 is a regularization pa-

rameter, χ > 0 is an upperbound on the measurement

uncertainty, TV denotes the isotropic total variation

semi-norm with (zero) Dirichlet boundary conditions.

Moreover, F = Ir − ∆ ∈ Rr×r where ∆ ∈ Rr×r is

the Laplacian associated with the following 2D kernel

padded with circulant assumption:0 1 0

1 −4 1

0 1 0

 .

The first term in the objective function enforces edge

detection in the texture, while the geometry is made

piecewise smooth thanks to the total variation regular-

ization. The first set of constraints represents bounds

on the pixel values of the natural image. The texture,

which is supposed to capture small variations in the

image, is modeled as a zero-centered component in the

second set of constraints, where we take α = xmax/3.

The last constraint is the data-fit term, which can be

decomposed into 2 × q linear inequalities. Hence, the

constraints can be reformulated as Mx+m ∈]−∞, 0]p

where x = [(xt)>, (xg)>]>, M ∈ Rp×n, m ∈ Rp, p =
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2(q + 2r), n = 2r,

M =



Ir Ir
−Ir −Ir
Ir 0r×r
−Ir 0r×r
H H

−H −H

 and m =



−xmax1r
xmin1r
−α1r
−α1r
−y − χ1q
y − χ1q


with 0r×r the zero matrix in Rr×r.
As in the previous example, (55) is an instance of Prob-

lem (3) where (∀x ∈ Rn) f(x) = κTV(Pgx) and g(x) =

1/2‖FPtx‖2, with Pt = (Ir 0r×r) and Pg = (0r×r Ir).
It can be noted that Assumptions 1 and 4 are satis-

fied. Thus, Theorems 1 and 3 hold. Since Assumption 3

does not hold, Theorem 2 does not apply here. The so-

lution to (55) is not necessarily unique. Although the

strict complementarity required to apply Theorem 4 is

difficult to check, the convergence of PIPA to a single

cluster point was observed in practice.

4.2.1 Initialization

In order to find an initial point that satisfies strictly the

constraints, we set xt to zero. Following the method in

[62, Chap. 11.4], we solve the minimization problem

below to initialize xg,

minimize
(s,xg)∈R×Rr

s

subject to s ≥ 0, xg ∈ [xmin, xmax]r

‖Hxg − y‖∞ ≤ χ+ s,

(56)

where s ≥ 0 is the maximal infeasibility. The ground-

truth natural image xt+g satisfies ‖Hxt+g − y‖∞ < χ

so that the solution to (56) is reached for s = 0. Prob-

lem (56) is a linear programming problem, that we

solve by using the code available online5 for the primal-

dual interior point approach used in [62, Chap. 11.4].

This iterative algorithm generates iterates that belong

to ]xmin, xmax[r so that, in our numerical experiments,

we are able to find a strictly feasible initial point in a

reasonable time.

4.2.2 Variable metric and hyperparameters

Let µj > 0 and k ∈ N. For every x ∈ D, the Hessian of

ϕµj at x ∈ Rn is equal to

∇2ϕµj (x) =

(
F>F + µjD3(x) +G(x) G(x)

G(x) G(x)

)
,

where

G(x) = µj
(
D1(x) +H>D2(x)H

)
.

5 https://web.stanford.edu/~boyd/cvxbook/cvxbook_

examples/chap11/

Hereabove, D1(x) ∈ Rr×r, D2(x) ∈ Rq×q, and D3(x) ∈
Rr×r are diagonal matrices with respective vectors of

diagonal elements d1(x) ∈ Rr, d2(x) ∈ Rq, and d3(x) ∈
Rr, defined as

(∀i ∈ {1, . . . , r}) (d1(x))(i) =
(

(xt+g)(i) − xmin

)−2
+
(
xmax − (xt+g)(i)

)−2
,

(∀j ∈ {1, . . . , q}) (d2(x))(j) =
(

(Hxt+g − y)(j) + χ
)−2

+
(

(y −Hxt+g)(j) + χ
)−2

,

(∀i ∈ {1, . . . , r}) (d3(x))(i) =
(

(xt)(i) + α
)−2

+
(
α− (xt)(i)

)−2
.

Given the huge size and ill-conditioning of H, the in-

version of ∇2ϕµj (x) is hardly feasible. Hence, instead of

using the full Hessian of ϕµj for the variable metric as

in Section 4.1, we propose to use an upper-bound of it,

i.e. Ak ∈ Sn such that Ak −∇2ϕµj (xk) also belongs to

Sn. We propose to majorize µjD3(x) by β(x)Ir where

β(x) = max
1≤i≤r

µj(d3(x))(i)

For H>D2(x)H, we propose to follow the strategy in

[87] and upper-bound it by the diagonal matrixD4(x) ∈
Rr×r with vector of diagonal elements P>d2(x), where

P ∈ Rq×r is such that for every i ∈ {1, . . . , r} and

j ∈ {1, . . . , q},

Pj,i = Hj,i

r∑
s=1

Hj,s.

This leads to the following variable metric in Algo-

rithm 1:

(∀k ∈ N) Ak =

(
F>F + β(xk)Ir +D(xk) D(xk)

D(xk) D(xk)

)
(57)

where

D(xk) = µj
(
D1(xk) +D4(xk)

)
.

Since D(xk) is diagonal, the operator Ak is straight-

forward to invert using the Schur formula. In addi-

tion, similarly to Section 4.1, we deduce from Remark 3

that matrix (57) satisfies the boundedness condition re-

quired in Algorithm 1. In order to compute the prox-

imity operator of f in such variable metric, we use [88,

alg. 2].

https://web.stanford.edu/~boyd/cvxbook/cvxbook_examples/chap11/
https://web.stanford.edu/~boyd/cvxbook/cvxbook_examples/chap11/
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0 0.5 1 0 0.5 1

Fig. 5 Natural images: (left) phase-separated barium
borosilicate glass sample, imaged at the ESRF synchrotron
(courtesy of David Bouttes), (right) mushroom Agaricus bis-
porus (courtesy of DigiMorph.org, The University of Texas
High-Resolution X-ray CT Facility (UTCT), and NSF grant
IIS-0208675).

Regarding the hyperparameters in the proposed method,

in order to satisfy Assumption 2, as in the previous ex-

ample, we take sequences of the form (54) with µ0 =

10−3, ζ = 1+10−5, ε = 8.3×103 and ρj = 1.1 for every

j ∈ N.

4.2.3 Test settings

We perform the joint reconstruction and decomposition

of two high-quality scans, referred to as Glass and Agar-

icus, which are displayed in Figure 5. These images are

of size r = 128 × 128. The discrete Radon operator H

models parallel projections along 180 angular positions

on a detector grid of size 128, so that q = 180 × 128.

To account for measurement uncertainty, the sinograms

are degraded with a uniform noise with an amplitude

χ equal to 2% of the maximal entry of y. We set manu-

ally the regularization parameter κ so that it leads to a
visually satisfactory decomposition: it is set to 0.25 for

Glass and to 0.5 for Agaricus. The proposed algorithm

PIPA-VM is compared to ADMM [72], which was the

most competitive method in Section 4.1. Remark that,

in order to make the implementation of ADMM feasible,

we follow the same strategy as in [69], and alternate the

minimization on the splitting variables. In our example,

we need seven splitting variables. Since ADMM does

not require a feasible starting point, we run it with two

different initializations: ADMM1 refers to ADMM ini-

tialized like PIPA-VM, and ADMM2 refers to ADMM

initialized with xt taken as the zero vector and xg set

to 1/2(xmin + xmax)1r.

4.2.4 Results

To compare the convergence speed of the different meth-

ods, we plot for each of them the relative distance be-

tween the current iterate x and the final solution x∞,

obtained after running the algorithms for 12 hours. As

Fig. 6 Relative distance from the iterates to the limit point
as a function of time for Glass.

Fig. 7 Relative distance from the iterates to the limit point
as a function of time for Agaricus.

one can see in Figures 6 and 7, PIPA-VM converges

faster to its limit point than ADMM for both initial-

izations. Remark that the time necessary to solve (56)

and to find a feasible point is taken into account in the

graphs. The results clearly show the advantage of using

a feasible starting point over a simple initial guess.

To assess the visual quality of the geometry-texture

decomposition we consider the solution obtained after

reaching the stopping criterion ‖x−x∞‖/‖x∞‖ ≤ 10−2.

This accuracy is reached first for PIPA-VM after 14 min

for Glass and 18 min for Agaricus. The corresponding

visual decomposition and reconstruction after these du-

rations are given in Figure 8. As one can see in this fig-

ure, PIPA-VM identifies correctly the geometry as an

almost piecewise-constant image, free from locally-fast

varying components like the gills in the Agaricus mush-

room. Moreover, the texture obtained for Glass image

captures well the elements on the borders between the
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Fig. 8 Visual results for PIPA-VM. (Top) Glass obtained
after 14 min. (Bottom) Agaricus obtained after 18 min. Left
to right: texture, geometry, reconstruction xt+g.

PIPA-VM ADMM1 ADMM2

Glass (14 min) 19.00 18.74 18.69
Agaricus (18 min) 20.57 20.32 20.32

Table 2 SNR (dB) of the reconstruction xt+g obtained after
running the algorithms for the same duration.

two species in presence, and the Agaricus gills can be

found in the texture (Figure 8 bottom left).

Finally, we evaluate the reconstruction quality based

on the signal-to-noise ratio:

SNR = 20 log10(‖xt+g‖/‖xt+g − xt+g‖),

where xt+g denotes the ground-truth image. The SNR

values obtained with the three methods for the recon-

structions xt+g after the same durations are summa-

rized in Table 2.

It can be further observed in Figures 9 and 10, that

even if the SNR converges to the same value for the

three methods, PIPA-VM follows a path which would

lead to a better SNR if stopped before convergence.

5 Conclusion

In this paper we have shown that it is possible to com-

bine efficiently two powerful optimization frameworks:

proximal splitting methods and interior point algorithms.

One interesting feature of the resulting iterative method

is the use of a variable metric, which can boost the con-

vergence, as illustrated in our hyperspectral unmixing

application. The convergence of the proposed method,

as well as a convergence rate for the inner loop, have

been obtained under suitable assumptions. As shown

Fig. 9 SNR (dB) for xt+g as a function of time for Glass.

Fig. 10 SNR (dB) for xt+g as a function of time for Agari-
cus.

on two large-scale image processing applications, our

method compares favorably in terms of speed of con-

vergence with state-of-the-art algorithms. One future

direction for further improvements would be to relax

the convexity assumption in the mathematical analysis

of PIPA, possibly by better relying on the KL prop-

erty. This would widen the scope of application of this

algorithm.
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