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Abstract

We propose an incremental construction of multi-timestep integrators to accelerate

polarizable point dipole molecular dynamics while preserving sampling efficiency. We

start by building integrators using frequency-driven splittings of energy terms and a

Velocity-Verlet evaluation of the most rapidly varying forces, and compare a standard

bonded/non-bonded split to a three-groups split dividing non-bonded forces (includ-

ing polarization) into short- and long-range contributions. We then introduce new
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approaches by coupling these splittings to Langevin dynamics and to Leimkuhler’s

BAOAB integrator in order to reach larger time-steps (6 fs) for long-range forces. We

further increase sampling efficiency by: i) accelerating the polarization evaluation us-

ing a fast/non-iterative Truncated Conjugate Gradient (TCG-1) as short-range solver;

ii) pushing the outer time-step to 10 fs using hydrogen mass repartitioning. The new

BAOAB-RESPA1 integrators demonstrate up to a 7-fold acceleration over standard

1 fs (Tinker-HP) integration and reduce the performance gap between polarizable and

classical force fields while preserving static and dynamical properties.

The most straightforward way to speedup molecular dynamics (MD)1,2 is to use larger

time-steps. In this context, multi-timestep schemes emerged3, but the largest usable time-

step is limited by resonance effects4,5. As pointed out by various authors, it is possible to

overcome these effects by using modified dynamics that still sample the correct measure,

but these solutions alter the dynamical properties (Generalized Langevin Equation (GLE)6,

stochastic isokinetic extended phase-space algorithm7–9). However, in practice, one would

like to accelerate MD while also preserving the dynamic6,10. This letter addresses this prob-

lem in the particular context of polarizable force fields (PFF)11,12. This class of methods

is more computationally expensive than classical force fields (FF) because of the need to

evaluate a many-body polarizable energy13,14. Multi-timesteping is therefore essential. The

general consensus to ensure conserved properties is to limit the use of reversible Reference

System Propagator Algorithm (RESPA) integrators3 to a a bonded/non-bonded forces split

and to use a 2 fs time-step for the non-bonded forces. Further splitting of the non-bonded

forces is not straightforward, because of the many-body nature of polarization, but has been

shown to be applicable8,15. Indeed one can define a short-range polarization energy and

evaluate, at an outer-timestep, the slowly varying difference between the actual polarization

energy (and forces) and the short-range ones. More precisely, one has to evaluate both the

short-range and total polarization terms at these outer time-steps. The reduced computa-

tional cost of the short-range polarization contribution and the less frequent evaluation of
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the total one effectively reduces the computational effort. Since the upper limits of these

strategies have not yet been evaluated by the community, we will, in this letter, assess this

frontier to improve simulation performances while respecting two important constraints: i)

the mandatory need to preserve static and dynamical properties; ii) the possibility of a

black-box implementation allowing for strong computational speedups without dependence

to the studied system. In everything that follows tests have been made using the AMOEBA

polarizable force field16 and the Tinker-HP software17. Technical details as well as various

algorithmic setups are provided in Supplementary Information (see section S1). A summary

of our incremental strategy is depicted on Figure 1. Interested developers can also look at

the code that will be available on the Tinker-HP website18 and later on Github19.

Velocity-Verlet 
(reference)

Split forces 
(bonded/non
-bonded)

V-RESPAFaster 
computation

Change 
integrator 

BAOAB-RESPA1 Larger timestep
Conserved properties
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Figure 1: ’V-’ (respectively ’BAOAB-’) indicates that the numerical integration scheme is
Velocity-Verlet20 (respectively BAOAB21,22). ’RESPA’ and ’RESPA1’ respectively mean
the RESPA single-split (bonded vs. non-bonded) strategy3 and the RESPA1 double-split
(bonded, short-range non-bonded, long-range non-bonded) one23. ’TCG’ is the acronym
for Truncated Conjugate Gradient, a fixed-cost non-iterative polarization solver24. ’HMR’
stands for Hydrogen Mass Repartitioning10, implemented to avoid high-frequency motions.

A popular integrator: V-RESPA. Let us first evaluate the limits of the bonded/non-

bonded RESPA integrators for which all the bonded terms are evaluated within a Velocity-
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Verlet20 loop (denoted as V-RESPA in the rest of the text) every 0.25 fs and for which

the non-bonded terms (van der Waals, electrostatics and polarization) are evaluated first

at 2 and then at 3 fs. To assess the accuracy of the associated integrators we ran sim-

ulations of 2 ns in the NVT ensemble at 300 K with two test systems: a cubic box of

500 water molecules, with a 24.66 Angstroms edge, and a 9737 atoms box with edges of

54.99×41.91×41.91 Angstroms containing a solvated protein (the ubiquitin). In both cases,

periodic boundary conditions for electrostatics and polarization were evaluated with Smooth

Particle Mesh Ewald (SPME)17,25,26 with standard parameters (see SI) as we chose a Pre-

conditioned Conjugate Gradient (PCG) polarization solver using a diagonal preconditionner

and a 10−5 convergence threshold13,14. For each of these systems and for each integrator, we

computed various static observables: average potential energy, average polarization energy

and for the bulk water system , the radial distribution functions. In this last case, we also

computed the self-diffusion coefficient, a dynamical property evaluated with the Einstein

formula by averaging over a series of time origins27. The self-diffusion coefficient is known to

have a size dependency vanishing at the infinite size limit27, but here these values are only

used as means of comparison between integrators, hence these corrections were not applied.

These tests are performed in the canonical ensemble for which the choice of the thermostat

impacts the dynamics of the system. We ran these tests using the global velocity rescaling

thermostat developed by Bussi et al. with a relaxation constant of 0.2 ps, for which the dy-

namical properties are close to the one obtained with pure hamiltonian dynamics28. These

values have been compared to the ones obtained with a Velocity-Verlet integrator used at

a 0.5 fs time-step, which can be considered as a reference. In the rest of the text, we will

be denoting the different time-step lengths as a/b, a being the bonded terms one and b the

non-bonded terms one (both in fs).

For both systems, the V-RESPA integrator where non-bonded forces are evaluated at 2 fs

gives similar results as the reference (within statistical uncertainty) with a difference of less

than two percents for average energies (see Tables 1-3 of the SI). With an outer time-step
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of 3 fs, the error on the total potential energy is still satisfactory (around one percent), but

the error on the polarization energy grows significantly (more than 2.5%). This advocates

for a careful use of this setup.

Concerning O-O radial distribution function for water, no significant differences with the

reference Velocity-Verlet (0.5fs) ones can be observed among these different methods (see

Figure 2).

Figure 2: Oxygen-oxygen radial distribution function for various integrators (see Text for
notations). Radial distributions appear correct with most of the setups. However, degraded
results are obtained with the V-RESPA1 integrators using large outer-timesteps beyond 4 fs.
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The self-diffusion coefficients of water is also nicely preserved for the V-RESPA integrator

with a 2 fs outer time-step, though it is slightly off (around eight percent) with a 3 fs outer

time-step (see Table 2, SI).

Further range-separation in polarizable force fields: V-RESPA1. As a second part,

we will now evaluate the limits of other RESPA integrators, for which the non-bonded terms

are further split in two parts, the short- and long-range. We are now considering three terms:

the bonded, the non-bonded short-range, and the non-bonded long-range terms. Regarding

the split of the electrostatics and the polarization energies, we chose to use the RESPA1

logic23, where the short-range part of the electrostatic (and polarization) energy is defined

as the short-range part of the real space SPME energy. In this case, it has been shown

that the stability of the integrator is less dependant on the smoothing parameters used to

switch between short- and long-range29. Details on the definition of these short and long

range forces as well as these smoothing parameters can be found in SI. We test various setups

within this context: the bonded forces are always evaluated every 0.25 fs, but the short-range

non-bonded ones are either evaluated every 2 or 2.5 fs, and the time-step of the long-range

forces (that has to be a multiple of the previous one) is either 4, 5 or 6 fs. In the rest of the

text, these integrators will be denoted as V-RESPA1. We will be denoting the different

time-steps lengths of the integrators as a/b/c, a being the bonded terms time-step length, b

the short-range non-bonded and c the long-range ones (all in fs). For the bulk water system

(see Table 4 in SI), we observe that both the average potential and polarization energies

are preserved within two percents of the reference value for the 0.25/2/4 and the 0.25/2.5/5

setups, but that the average polarization energy is more than two percents off for the 0.25/2/6

setup. Concerning the radial distribution functions of water, it is clear that only the 0.25/2/4

integrator gives satisfactory result as other choices diverge from the reference, as can be seen

in Figure 2. Furthermore, if the self-diffusion coefficient is stable for the 0.25/2/4 integrator

(see Table 5, SI), it exhibits a dramatic decrease for the other ones (falling at 1.34 instead
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of 2.08 for the 0.25/2/6 setup). This shows not only that the dynamical properties are not

well preserved with these setups, but also that the computational gains expected due to the

use of a larger time-step are counterbalanced by a lower sampling rate6,10.

Indeed, as pointed out by Berendsen6,10, such a decrease in the self-diffusion coefficient

is expected to reduce the sampling efficiency by a similar amount because it is associated

to an increase of water viscosity and thus to a slowing down of large scale motions. For the

solvated ubiquitin, it is also clear that only the 0.25/2/4 setup corresponds to a satisfactory

accuracy, as the other ones give average potential and polarization energies off by more than

three percents (see Table 6, SI).

Figure 3: Average potential and polarization energies (in kcal/mol) for a 500-molecule water
box and solvated ubiquitin computed using various integrators.

Recovering accuracy through Langevin dynamics: the new BAOAB-RESPA1

integrator for polarizable force fields. Thirdly, another way to sample the canonical
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Figure 4: Self-diffusion (D) coefficient for various integrators (in 10−5 cm2s−1).

ensemble is Langevin dynamics where the coupling to a heat bath is made through additional

local frictions and dissipative stochastic terms. The dynamics is then known to be altered

compared to pure Hamiltonian one, but this impact is expected to be small for relatively

small friction constant (less than 1 ps−1). In this context, Leimkuhler and collaborators

proposed an integrator for Langevin dynamics based on operator splitting and a particular

ordering of the terms of the equations of motion named BAOAB21,22. They showed in

various contexts21 that this integrator has an improved accuracy for configurational sampling

compared to other ones. We thus also tested the previously presented splittings using this

new integrator, with a 1 ps−1 friction constant (they will be denoted BAOAB-RESPA and

BAOAB-RESPA1 in the rest of the text ; see SI for an additional description of these

integrators) and noted a significant improvement in terms of accuracy (reported on Tables

7-9 of SI). Indeed, for the bulk water system (Table 7 of SI), the errors for the BAOAB-

RESPA integrator with a bonded/non-bonded split and a 3 fs outer time-step is limited to

less than one percent for the average total potential energy and two percents for the average

polarization energy, staying in both case within statistical error, compared to 1.1 and 2.8%

for the Velocity-Verlet based integrator. Figure 2 also shows an improved agreement with
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the reference for the water radial distribution compared to RESPA. The same behaviour can

be observed on the solvated ubiquitin for which both these values stay respectively below one

and two percents – within statistical error (see Table 9, SI). Because the dynamics is modified

when running NVT trajectories with Langevin, even if the differences are expected to be

small for a small friction, comparing values of the self-diffusion coefficients obtained with

these integrators only makes sense by taking as a reference a numerical scheme integrating

Langevin dynamics with conservative parameters. This is why we chose, as a reference for

these values, the ones obtained with a 1 fs BAOAB integrator and a 1 ps−1 friction, which as

expected gives a self-diffusion close to the reference Velocity-Verlet one (1.82 versus 2.08). For

the BAOAB-RESPA integrators, we see that errors on the self-diffusion coefficients (see Table

8, SI) are limited to six percents with a 3 fs outer time-step compared to eight percents with

a similar time-step and a Velocity-Verlet inner loop. The better performances of BAOAB-

based integrators with respect to the Velocity-Verlet ones becomes obvious within a RESPA1

split. Indeed, we computed the same observables for the BAOAB-RESPA1 integrators (see

Tables 10-12, SI and Figures 3-4), equivalent to the V-RESPA1 integrators, and we see

that the average potential and polarization energies are strikingly more stable and always

within two percent error with respect to their reference value, that is to say within statistical

uncertainty. Similar comments can be made on the radial distribution functions: unlike the

Velocity-Verlet integrators, they almost perfectly overlap with their references even with a 5

or 6 fs outer time-step. When using the Velocity-Verlet based RESPA1 integrators with an

outer-time-step larger than the most conservative (4 fs) one, the diffusion coefficient showed

a dramatic decrease (see Figure 3, and Table 5 in SI). Yet in the BAOAB-RESPA1 case,

this dynamical observable remains far more stable for all integrator setups: even for the

choice of evaluating long-range non-bonded forces every 6 fs, the error is less than eight

percents, whereas it exceeds thirty-five percents in the equivalent V-RESPA1 setup. This

highlights again that BAOAB-RESPA1 integrators are not only more accurate, but also

ensure a conserved sampling rate, which is not the case for the V-RESPA1 ones.

9



Concerning the effective speedups in our implementation, Table 1 displays the gains

obtained for the BAOAB-RESPA and the BAOAB-RESPA1 integrators (compared to a

regular 1 fs Velocity-Verlet). They are the same as the one obtained for the V-RESPA

and the V-RESPA1 integrators. We show two entries in table 1: one where a guess based

on Kolafa’s Always Stable Predictor Corrector30 (ASPC) is used for the induced dipoles

(standard Tinker-HP setting), but only at short-range for the RESPA1 integrators, and one

where the ”direct field” guess is used13,14, showing that up to a 2.53 speedup (3.7 without

ASPC) is achieved. Note that for the RESPA1 schemes, additional gains are made in the

long-range polarization solvers by using, at the same time-step, the short-range dipoles

obtained as guess for the long range ones, effectively reducing the number of iterations

required to converge. For the BAOAB based integrators, the benefits of using the RESPA1

splitting are clearly demonstrated as the 0.25/2.5/5 and 0.25/2/6 frameworks are both faster

than the 0.25/3 RESPA integrator for a similar accuracy.

Speeding up BAOAB-RESPA1: TCG-1 solver for the short-range polarization

and Hydrogen Mass Repartioning. When using a RESPA1 multi-timestep integrator

and a polarizable force field, the sole purpose of the short-range polarization energy is to

eliminate the high-frequency part of the total polarization energy8,31. This is why an approx-

imate but less computationally expensive and non-parametric expression of the polarization

energy can be used to fill this role and provide an additional speedup. In that context

we decided to use the recently introduced Truncated Conjugate Gradient (TCG)24,32 as

short-range solver. TCG can be chosen to be minimal in cost (TCG-1 with a diagonal pre-

conditioner, but without any guess and without peek step) to be the fastest possible. This

coupling provides an additional computational gain at a conserved accuracy (see Tables 13-

15, SI), corresponding to a final speedup of more than four times compared to a regular

molecular dynamics of 1 fs with a Velocity-Verlet integrator (see Table 1). Such polarization

setup offers full energy conservation and the static and dynamical properties are marginally
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affected by this choice13,14,24.

A this point, we reached the performance limits if one wants to preserve a tight accuracy

on the dynamics. One of the most natural ways to further increase the size of the usable

time-step when simulating a large biological system is to redistribute the mass of the heavy

atoms on the hydrogens they are carrying (a method named Hydrogen Mass Repartioning, or

HMR10), thus limiting the high frequency stretching motions of these atoms while keeping

the same configurational potential energy surface. In the following, we show that this redis-

tribution allows to use even larger time-steps while maintaining satisfactory accuracy with a

BAOAB-RESPA1 integrator and the same TCG-1 short-range polarization solver as before

(Table 16-18, SI). As can be seen in Table 1, the approach appears to be a very good com-

promise: large speedups can be obtained by pushing the bonded force time-step to 1 fs, the

short-range non-bonded forces time-step up to 10
3

fs and the outer one up to 10 fs. Details on

how the mass repartitioning is done can be found in SI (section S1). A resulting acceleration

of 4.72 (6.8 without ASPC) is obtained, keeping the errors on the average energies below

two percents, maintaining an accurate evaluation of radial distribution functions and a good

enough evaluation of the self-diffusion coefficient so that sampling efficiency is preserved.

Since PCG, as a Krylov method, is systematically improvable13, additional small speedups

can be obtained by focusing on the long range PCG solver performances. For example, be-

sides using a diagonal preconditioner, one could use more advanced techniques such as those

proposed by Skeel33 or by Beran34. Improved performances of three to four percents are

observed, reaching a global acceleration of more than seven, with the same accuracy as a 1 fs

Velocity Verlet scheme without ASPC. Finally, beside the net acceleration, another advan-

tage of the TCG use lies in the absence of use of a dipole history (as in predictor-correctors

such ASPC), leading to a method free of time-reversibilty and volume preservation issues24.

Finally, the small decrease (8 %) of the self-diffusion constant (see Figure 4) observed in the

most aggressive setup has to be compared with actual available large step methods9 that,

despite their qualities, are not able to maintain accuracy on dynamical properties provid-
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ing diffusion constants reduced by a factor of 59. Our approach does not suffer from these

problems: it remains operational, maintaining sampling efficiency.

To illustrate the robustness of these approaches, we performed several tests taking advan-

tage of our massively parallel AMOEBA production implementation in Tinker-HP17. First,

we checked the stability of the dynamics using the fastest available setup. We provide a

15 ns simulation of ubiquitin (see SI, section S3): the potential and polarization energies

normally fluctuate around their mean values, demonstrating the stability of the approach.

Furthermore, we computed the average molecular dipole moments for the bulk water systems

and confirmed their full stability (see SI, section S4). Second, we ran simulations on large

systems of biological interest, namely the solvated dihydrofolate reductase protein (DHFR,

23358 atoms) and the solvated Satellite Tobacco Virus (STMV, 1066628 atoms). The dis-

cussed speedup of 7 (vs. a 1 fs/Velocity Verlet/PCG-10−5) is conserved as we obtained a

production of 22.2 ns/day on 680 cores for DHFR and 1.2 ns/day on 10800 cores for STMV.

Such results are of major interest, as a 7-fold acceleration will enable to save millions of hours

of computing time while enabling long and accurate polarizable molecular dynamics studies

on large systems. Finally, we computed a more involved property which is of key importance

in biological simulations: hydration free energies. We applied the Bennett Acceptance Ra-

tio method35, a commonly used approach to compute free energies differences36 to evaluate

the solvation free energy of a sodium cation in water. Results are shown in Table 2), and

practical details on the choice of alchemical free energy difference windows can be found in

SI (section S1). Even for the fastest setup, the values obtained are within 0.1 kcal/mol over

89.7 kcal/mol for the reference37, demonstrating the validity of these acceleration schemes

and their capability to preserve accuracy.

To conclude, after examining the limits of a standard Velocity-Verlet integrator for Polar-

izable Force Fields used in combination with a RESPA1 split, we introduced new BAOAB-

RESPA1 Langevin integrators coupled to fast short-range non-iterative TCG-1 polariza-

tion solver and Hydrogen Mass Repartitioning, achieving all together large computational
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speedups. Two optimal BAOAB-RESPA1 setups were presented and compared to a 1 fs

Velocity-Verlet reference: i) one (namely 0.25/2(TCG)/6) for which all properties are pre-

served while providing a global speedup of more than four; ii) a second (1/10
3

(TCG)/10+HMR)

for which dynamical properties are slightly affected but where sampling remains efficient,

offering a strong acceleration up to a seven-fold. As accuracy is maintained and sampling effi-

ciency is preserved while being system independent, the proposed methodology can be used as

a black-box in our Tinker-HP framework, benefiting from its massive parallelism implementa-

tion and offering therefore further computational gains17. Such findings are game-changing,

as they extend the applicability of polarizable Molecular Dynamics to longer timescale sim-

ulations and larger systems. In practice, the resulting performance gain helps reducing the

computational gap between point dipole polarizable force fields such as AMOEBA and more

tractable models such as Drude38 or even non-polarizable force fields such as CHARMM39

or AMBER40.

Table 1: Speedup of BAOAB-RESPA and BAOAB-RESPA1 integrators calculated with re-
spect to the Velocity-Verlet integrator at 1fs. The types of RESPA integrators are defined
by: R1=RESPA1 and R=RESPA. Speedups obtained with V-RESPA and V-RESPA1 in-
tegrators are identical.*=replacement of the PCG diagonal preconditioner by an improved
technique33,34, see text.
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ASPC 1.75 2.37 1.72 2.43 2.53 2.32 2.7 2.9 4 4.72 (4.91*)
No ASPC 2.53 3.42 2.5 3.5 3.7 3.4 3.9 4.2 5.8 6.8 (7.0*)

RESPA-type R R R1 R1 R1 R1 R1 R1 R1(HMR) R1(HMR)

Table 2: Hydratation free energies for the Na+ cation

Velocity-Verlet 0.5fs 1/10
3

/10-HMR 1/10
3

(TCG1)/10-HMR
∆Ghydrat Na+ (kCal/mol) 89.7 (+/-0.13) 89.7 (+/-0.13) 89.6 (+/-0.13)
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